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Abstract

The aim of this paper is twofold: to introduce the mathematics of stochastic differential equa-

tions (SDEs) for forest dynamics modeling and to describe how such a model can be applied

to aid our understanding of tree height distribution corresponding to a given diameter using

the large dataset provided by the Lithuanian National Forest Inventory (LNFI). Tree height-

diameter dynamics was examined with Ornstein-Uhlenbeck family mixed effects SDEs.

Dynamics of a tree height, volume and their coefficients of variation, quantile regression

curves of the tree height, and height-diameter ratio were demonstrated using newly devel-

oped tree height distributions for a given diameter. The parameters were estimated by

considering a discrete sample of the diameter and height and by using an approximated

maximum likelihood procedure. All models were evaluated using a validation dataset. The

dataset provided by the LNFI (2006–2010) of Scots pine trees is used in this study to esti-

mate parameters and validate our modeling technique. The verification indicated that the

newly developed models are able to accurately capture the behavior of tree height distribu-

tion corresponding to a given diameter. All of the results were implemented in a MAPLE

symbolic algebra system.

Introduction

Understanding the key forces that shape tree heights distribution patterns and their dynamics

through average breast height diameter within a forest stand (in the sequel–diameter) is a fun-

damental goal of forestry [1]. Stand volume, one of the most important variables in forest man-

agement, is heavily dependent on tree diameter and height distribution. The literature on

forestry reports that tree height distribution varies across different stands and/or species. The

tree height distribution is of prime importance from the point of view of the quality and quan-

tity of a stand and its future growth. The importance of using the tree height rather than the

tree diameter as a predictor of forest demographics arises from the former’s high potential for

predicting the properties of forest productivity as pointed out by Kempes et al. [2]. Traditional

methods quantify the tree size distribution in an even-age forest stand [3]. Unfortunately,

height and diameter distributions cannot be combined if they are estimated independently
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using datasets from different stands. Much research has been conducted on the utilization of

various theoretical functions for height and diameter distribution modeling techniques for

improving stand volume prediction, such as Johnson’s [4–5], beta distribution [6], and power-

normal [3]. Recently, there were also a few results published on the use of the copula approach

for the modeling of tree height and diameter distribution in stands [7], [8].

The relationship between height and diameter varies for the same tree in different forest

stands, such that there is a distribution of tree heights for any given tree diameter based on envi-

ronmental conditions, or a random site effect. The different height-diameter relationships affect

growth predictions and stand trajectories. The new developed stochastic differential equation

(SDEs) based modeling approach for complex stands uses stochastic height-diameter relation-

ships at the individual-tree level representing tree growth and neighborhood interactions that

are then aggregated to predict the stand height structure. In this study, to project height distri-

bution for a given diameter, a one-dimensional SDE with mixed effects was employed. The

main feature of mixed effects models is that they allow parameter vectors to vary from plot to

plot by splitting regression coefficients into a fixed part, common to the population, and ran-

dom components, specific to each plot [9]. Mixed effects models allow fixed and random

parameters to be estimated simultaneously and evaluate the value of the random parameters for

a location not present in the original estimation dataset. This approach is known as calibration

and can be applied if a sub-sample of trees measured for the total height and breast height diam-

eter are available [10]. Fixed effects parameter SDEs are used in a wide range of applications in

environmental, engineering, and biological modeling [11–14]. Discrete stationary stochastic

models defined by Markov chains have been used to describe size-structure predictions [15].

The essential features of developed height distributions for a given diameter may be ex-

plained as follows. Heights are measured at different diameters in a number of sample plots. The

diameters and number of measurements differ among plots and the measurements of the diam-

eters are not evenly spaced. The diameter based dependent tree height distribution models are

assumed to have some fixed effects parameters that are common to all plots and random effects

that are specific to each plot. Two sources of variation were simultaneously included for model-

ing tree height distribution: variability between plots using a random effects approach and vari-

ability in the individual tree height using system noise, which reflects the random fluctuations

around the corresponding theoretical height-diameter model. New developed conditional prob-

ability density functions of a tree height at a given diameter based on diffusion processes can be

used for calculating the mean value of growth and yield attributes and its coefficient of variation

as a function of tree height at any specified diameter. The random effects SDEs height-diameter

relationships allow taking into account the effect of multiple causal relations in the model, the

influence of unknown covariates affecting the height growth and they allow for developing

height distribution accounting for spatial variability in large-scale modeling.

In this study, the evolution of a random variable (height), H(d), for a given diameter, d, is

modeled using mixed effects SDEs from the Ornstein—Uhlenbeck family [16], for example,

the Vasicek, the Gomperz (3-parameters and 4-parameters), the Bertalanffy, and the Gamma.

We focused on mixed effects SDEs with a deterministic term depending on random effects

and a stochastic term without random effects.

The aim of this study is to present the advantages of SDEs with mixed effects in analyzing

tree height distributions for a given diameter and their application to describe the evolution of

the height-diameter ratio, quantile curves, mean tree height, mean stem volume and the coeffi-

cients of variation for the mean tree height and stem volume. We also discuss how a condi-

tional height’s probability density function for a given diameter can be used to construct

maximum likelihood estimators using large collections of datasets provided by the Lithuanian

National Forest Inventory (LNFI). A MAPLE program was used to carry out the calculations.

Tree Height Distribution Based on Univariate Diffusion Processes
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Materials and Methods

A typical diffusion process is modeled as a differential equation involving a deterministic

(drift) term and a stochastic (diffusion) term, the latter represented by Brownian motion [14].

Traditionally used ordinary differential equation models are the Malthus, Mitscherlich, Gom-

pertz, and Bertalanffy types [11–13] (see Appendix A).

There are alternative ways of introducing stochasticity in an ordinary differential equation.

In this work, the tree height randomness was approximated as a standard Brownian motion

[11–14]. Therefore, the complete deterministic models defined by Eqs A.1, A.3, A.4, A.7 and

A.9 were converted, into stochastic models assuming that the deterministic parameter, α, var-

ies randomly around the mean:

aðdÞ ¼

(
aþ sεðdÞ; for Eqs: C:1; C:3; C:4;

abg

ebd � g
þ sεðdÞ; for Eq: C:7;

a

d
� bþ sεðdÞ; for Eq: C:9:

ð1Þ

where σ (σ>0) is the diffusion coefficient, which reflects random fluctuations around the cor-

responding theoretical height-diameter curve, and ε(d) is a Gaussian white noise process. If

the magnitude of the parameter capturing system noise, σ, is zero, the entire system noise term

will vanish, and the remaining part of the SDEs will simply be differential forms, the solutions

to which are Eqs A.2, A.5, A.6, A.8 and A.10, respectively.

The relationships between total tree height and diameter are altered by environmental con-

ditions. Among other plot-specific characteristics such as soil type, nutrient status, resistance

of trees to windthrow, competition for light, and elevation cause the parameters to differ across

plots. In the case of between-plot variations, the fixed effects parameters α, β, and σ vary from

plot to plot and, hence, account for these variations. For the construction of the mixed effects

parameters models, the first step is to determine which parameters should be considered

mixed effects and which should be considered purely fixed effects. The parameters with high

variability could be considered mixed effects. The parameter α has high variation between

plots for all used SDEs models, so it can be altered by adding plot-specific random effects to

the fixed effects parameter to produce a plot-specific parameter in the following form:

aþ �i; ð2Þ

where ϕi (i = 1, 2, . . ., M)—plot-specific random effects, M is the number of plots. It is assumed

that the random effects, ϕi, i = 1, 2, . . ., M, are independent and normally distributed with 0
mean and constant variance s2

�
(�i � Nð0; s2

�
Þ).

In order to derive mixed effects SDEs height-diameter models, it is sufficient to substitute

Eqs 1 and 2 into Eqs A.1, A.3, A.4, A.7 and A.9. In this study, the tree height, Hi(d), i = 1,2,. . .,

M, evolving in M different experimental plots randomly chosen from a theoretical population

was described by the Itô [17] sense SDE of the Vasicek type:

dHiðdÞ ¼ bððaþ �iÞ � HiðdÞÞ � dd þ s � dWiðdÞ; PðHið0Þ ¼ 1:3Þ ¼ 1; d 2 ½0;D0�; ð3Þ

the 3-parameters Gompertz type:

dHiðdÞ ¼ ½ðaþ �iÞH
iðdÞ � bHiðdÞlnðHiðdÞÞ� � dd þ sHiðdÞ � dWiðdÞ; PðHið0Þ ¼ 1:3Þ

¼ 1; d 2 ½0;D0�; ð4Þ

Tree Height Distribution Based on Univariate Diffusion Processes
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the 4-parameters Gompertz type:

dHiðdÞ ¼ ½ðaþ �iÞðH
iðdÞ � gÞ � bðHiðdÞ � gÞlnðHiðdÞ � gÞ� � dd þ sðHiðdÞ � gÞ

� dWiðdÞ; PðHið0Þ¼1:3Þ¼1; d2½0;D0�; ð5Þ

the Bertalanffy type:

dHiðxÞ ¼
ðaþ �iÞbg

ebd � g
HiðdÞ � dd þ sHiðdÞ � dWiðdÞ; PðHið0Þ ¼ 1:3Þ ¼ 1; d 2 ½0;D0�; ð6Þ

the Gamma type:

dHiðxÞ ¼
aþ �i

d
� b

� �

HiðdÞ � dd þ sHiðdÞ � dWiðdÞ; PðHið0:001Þ ¼ 1:3Þ ¼ 1; d

2 ½0:001;D0�; ð7Þ

where Wi(d), d�0 are the independent standard Brownian motions, Wi(d) and ϕj are mutually

independent for all 1�i,j�M, and M is the total number of plots used for model fitting. The

term P(Hi(0) = 1.3) = 1 or P(Hi(0.001) = 1.3) = 1 (for Eq 7) ensures that if d = 0, then Hi = 1.3.

Taking into account the analytical expressions of the deterministic term and the stochastic

term specified by Eqs 3–7, both terms fulfil the Lipschitz restriction on growth conditions for

the existence and unicity of the solutions of the SDEs defined by Eqs 3–7 [18]. Transforming

Eq 3 by Yi(d) = eβdHi(d), Eqs 4, 6 and 7 by Yi(d) = eβdln(Hi(d)), and Eq 5 by Yi(d) = eβdln(Hi(d)

−γ), and applying Ito’s [17] formula, we deduce that the solution, Hi(d), of Eq 3 has a normal

distribution NðmVðdÞ; l
2

VðdÞÞ and the solutions, Hi(d), of Eqs 4–7 have lognormal distributions,

respectively, NðmG3VðdÞ; l
2

G3
ðdÞÞ, NðmG4ðdÞ; l

2

G4
ðdÞÞ, NðmBðdÞ; l

2

BðdÞÞ, and NðmGðdÞ; l
2

GðdÞÞ.
The conditional probability density, mean, and variance functions were deduced in Appen-

dix B.

An approximated maximum likelihood procedure (see Appendix C) was used for the esti-

mation of the fixed effects parameters and random effects by assuming that tree height and

diameter observations are without measurement noise.

Data

The data used for developing the models were obtained from the Lithuanian National Forest

Inventory (LNFI) (2006–2010). The NFI plots are systematically distributed using a grid of 4x4

km squares with a random starting point. The sample plots are arranged into triangle distrib-

uted clusters with a distance between angles of 2 km. Each cluster has 4 sample plots. They are

situated on each 250 m length side of square 25 m from its angles [19]. At plot establishment,

the following data were recorded for every sample tree: the species, the diameter over bark at

1.30 m high and measured to the nearest millimeter and the total height to the nearest quarter

meter. The tree diameters were measured with outside calipers in two perpendicular direc-

tions. A total of 3,455 plots (500 m2) of Scots pine trees were chosen from the LNFI 2006–2010

database. A random sample of 1,999 plots (7,343 trees) was selected for model estimation, and

the remaining dataset of 1,456 plots (5,413 trees) was utilized for model validation. Only mea-

surements from live trees without top damage were included in the statistical analysis. Sum-

mary statistics for the diameter at breast height (d), the total height (h) and the age (A) for all

of the trees used in model estimation and validation datasets are presented in Table 1. Table 2

presents the distribution of the number of trees per plot measurements from both datasets. It

should be noted that data on the number of plots with greater than 10 measured trees were

very limited.

Tree Height Distribution Based on Univariate Diffusion Processes
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Results

To examine the impact of fixed and random effects on the prediction of the height distribu-

tion, the maximum likelihood estimators (Eqs A.2 and A.10) were calculated using the

NLPSolve procedure in MAPLE 11 [20]. The models with fixed effects and mixed effects were

evaluated based on Akaike’s [21] information criterion (AIC), which was defined as follows:

AIC ¼ � 2 � LLsK þ 2 � p; s ¼ 1; 2; K 2 fV;G3;G4;B;Gg; ð8Þ

where LLsK is the log-likelihood function and p is the number of parameters in the model. The

nested models with the smallest AIC value are considered to be the best. Using the estimation

dataset presented in Table 1, the parameter estimates of the fixed effects and mixed effects

SDEs height-diameter models, defined by Eqs 3–7, are summarized in Table 3. The standard

errors of the parameter estimates were calculated by Eq C12. All of the parameters of the fixed

effects and mixed effects SDEs height-diameter models are highly significant (p< 0.001). The

AIC values for the fixed effects SDEs height-diameter models were more than for mixed effects

models, indicating that random effects are needed in the height-diameter SDEs.

Height distributions

Tree height structure is a basic modeling component of many complex forest yield models

relating individual tree characteristics with stand variables. The distribution of the tree height,

as a diameter dependent variable, can be approximated by classifying diameter and applying

the desired transformation to the mean tree of the class [22]. A more convenient way to derive

tree height distributions for a given diameter is the use of SDEs. This paper described research

aimed at deriving tree height probability densities for a given diameter (Eqs B.1, B.4, B.7, B.10

and B.13) by directly fitting the SDEs (Eqs 3–7) to the diameter and height observations. Fig 1

demonstrates the estimated probability density functions of tree height for a given diameter

(Eqs B.1, B.4, B.7, B.10 and B.13) for three randomly selected plots from the estimation dataset.

These probability density functions indicate that density curves are steeper for the young

stands and less steep for the mature stands. On the other hand, Fig 1 shows that the mixed

effects probability density functions are characterized as having smaller variances than the

fixed effects probability density functions.

Several empirical methods are available for comparing conditional probability densities,

as has been illustrated by [23]. In the present paper, a well-known measure of distributional

accuracy named by Kullback-Leibler Information Criterion (KLIC) [24] was utilized. We

Table 1. Datasets summary statistics.

Data Number of trees Min Max Mean St. Dev. Number of trees Min Max Mean St. Dev.

Estimation Validation

d (cm) 7343 15.10 66.10 27.33 8.69 5413 15.10 74.30 27.29 8.68

h (m) 7343 6.70 37.80 22.10 4.44 5413 7.10 37.80 21.98 4.39

A (yr) 7343 17 221 65.90 23.62 5413 17 192 66.75 23.85

doi:10.1371/journal.pone.0168507.t001

Table 2. Distribution of the number of trees per plot measurement.

Number of trees per plot 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Estimation dataset

Number of plots 125 492 407 394 293 146 81 37 15 5 2 1 0 1

Validation dataset

Number of plots 76 362 295 282 219 111 72 26 7 3 2 1 0 0

doi:10.1371/journal.pone.0168507.t002

Tree Height Distribution Based on Univariate Diffusion Processes
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are interested in comparing two conditional probability density functions fA h; djbys

� �

and

fB h; djbyt

� �

, by2 ð by
1

K ; 0Þ; ð
by
2

K ;
b�Þ

n o

, 1< s,t< 2, A,B 2 {V,G3,G4,B,G}. Therefore, in particular,

we choose conditional probability density fA h; djbys

� �

over fB h; djbyt

� �

if:

KLIC ¼ E ln fA h; djbys

� �� �

� ln fB h; djbyt

� �� �� �

> 0; 1 � s; t � 2; A;B 2 fV;G3;G4;B;Gg ð9Þ

Under appropriate conditions, the KLIC has limiting distribution under the null, and is

consistent against all possible fixed alternatives. The expression for KLIC in Eq 9 depends on

the unknown expectation E(�). We consider estimating KLIC by a discrete height sample

Table 3. Estimated parameters and AIC for all height-diameter models applied to the estimation dataset.

Models Parameters

α β γ σ σϕ AIC

Fixed effects

Gamma 0.2557 (0.0007) -0.0083 (0.0003) - 0.0340 (0.0003) - 35177.793

Vasicek 30.6854 (0.0026) 0.0479 (8.7*10−6) 1.0568 (0.0001) - 38138.604

Gompertz 4-parameters 0.2825 (0.0028) 0.0502 (0.0004) -245.9571 (16.3678) 0.0040 (0.0003) - 38184.947

Gompertz 3-parameters 0.3721 (0.0023) 0.1128 (0.0008) - 0.0786 (0.0007) - 39515.975

Bertalanffy 0.9748 (0.0926) 0.0436 (0.0052) 0.9625 (0.0128) 0.0335 (0.0003) - 40072.053

Mixed effects

Gamma 0.2663 (0.0004) -0.0034 (0.0001) - 0.0165 (0.0002) 0.0164 (0.0003) 29773.814

Vasicek 26.6348 (0.0739) 0.0667 (0.0005) - 0.6059 (0.0448) 3.9371 (0.6891) 33262.853

Gompertz 4-parameters 0.3682 (0.0043) 0.0710 (0.0007) -152.6744 (2.4079) 0.0036 (0.0001) 0.0016 (3.6*10−5) 33343.351

Gompertz 3-parameters 0.4324 (0.0019) 0.1354 (0.0007) - 0.0429 (0.0006) 0.0238 (0.0005) 34733.167

Bertalanffy 0.6770 (0.0049) 0.0436 (0.0007) 0.9893 (0.0004) 0.0164 (0.0002) 0.0404 (0.0006) 34785.470

doi:10.1371/journal.pone.0168507.t003

Fig 1. Height’s conditional probability density functions (Eqs B.1, B.4, B.7, B.10 and B.13) for three different plots within estimation dataset.

Left–fixed effects models; right–mixed effects models; first plot–solid line and height’s dataset–cross; second plot–dash line and height’s dataset–

diamond; third plot–dot line and height’s dataset–box; mean diameter within a plot is recorded in the graph.

doi:10.1371/journal.pone.0168507.g001

Tree Height Distribution Based on Univariate Diffusion Processes
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(hi ¼ hi
1
; hi

2
; . . . ; hini) at diameters (di ¼ di

1
; di

2
; . . . ; di

ni
) analogue:

KLIC ¼
1

n

XM

i¼1

Xni

j¼1

ln fA hij; d
i
j j
cy
s
K ;
b�i

� �� �

� ln fB hij; d
i
j j
by
t
K ;
b�i

� �� �

; 1 � s; t � 2; A;B

2 fV;G3;G4;B;Gg; ð10Þ

where ni is the number of observed trees of the ith plot, i = 1,2,. . .,M.

Analysis of paired comparison of the five conditional probability densities, described in Sec-

tion 2 by Eqs B.1, B.4, B.7, B.10 and B.13 was performed by KLIC calculated using the estimation

dataset. The results of comparisons are presented in Table 4. As we see in Table 4, the Vasicek

type conditional probability density function of the tree height with mixed effects (see Table 4, val-

ues above diagonal) and fixed effects (see Table 4, values below diagonal) are superior to the other

densities and the worst conditional probability density function is the Gompertz (3-parameters)

type with mixed and fixed effects. All mixed effects density functions are superior to correspond-

ing fixed effects parameters density functions (see bold values in diagonal Table 4).

Height-diameter models

Many comparisons between the different models or ecoregions have been carried out to iden-

tify the appropriate height–diameter relationships within stands. The height dynamics defined

by Eqs B.16, B.18, B.20, B.22 and B.24 are affected by many processes and vary among stands.

Fig 2 illustrates the influence of the plot within Lithuanian pine forests on the mean and stan-

dard deviation of height-diameter dynamics using the Vasicek and 4-parameters Gompertz

diffusion processes and random-effects parameter, ϕ, for the 3 randomly selected plots from

the estimation dataset. The parameter estimates for each plot are calculated by adding the

fixed effect parameter and random effect. Therefore, considering the asymptotic maximum

height parameter, α+ϕ, for the Vasicek type model, the values varied from plot to plot. Fig 2

shows significant differences of tree height dynamics among the sample plots.

To understand the advantages of the height-diameter equations (Eqs B.16, B.18, B.20, B.22

and B.24), fixed effects models, mixed effects models and mixed effects models with the ran-

dom effects set to zero scenarios were used to predict tree height in both the estimation and

validation datasets. The performance statistics of new developed tree height’s equations

included three statistical indices: prediction accuracy, δ, which combines the mean bias, B, and

the variation, ξ, of the biases, enabling improved assessment of model accuracy; an adjusted

coefficient of determination, �R2, which reflects the part of the total variance explained by the

equation; and Akaike’s information criterion, AICC, which measure the quality of the height-

diameter equation for a given dataset. The expressions for these statistics are as follows:

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 þ x

p
; B ¼

1

n

Xn

i¼1

yi � byi
� �

; x ¼
1

n � 1

Xn

i¼1

yi � byi � B
� �2

 !

Table 4. Comparison of the conditional probability density functions.

Model Vasicek Bertalanffy Gamma Gompertz 4-parameters Gompertz 3-parameters

Vasicek 0.8186 0.1103 0.1180 0.1630 0.2521

Bertalanffy 0.1315 0.8398 0.0077 0.0527 0.1418

Gamma 0.1450 0.0134 0.8455 0.0449 0.1341

Gompertz 4-parameters 0.0996 -0.0319 -0.0453 0.7552 0.0892

Gompertz 3-parameters 0.1904 0.0588 0.0454 0.0908 0.7568

doi:10.1371/journal.pone.0168507.t004

Tree Height Distribution Based on Univariate Diffusion Processes

PLOS ONE | DOI:10.1371/journal.pone.0168507 December 21, 2016 7 / 25



�R2 ¼ 1 �
n � 1

n � p

Xn

i¼1

yi � byi
� �2

Xn

i¼1

ðyi � �yÞ2

AICC ¼ nlnðRSSÞ þ 2p RSS ¼
Xn

i¼1

yi � byi
� �2

 !

where n is the total number of observations used to estimate the height-diameter model, p is

the number of model parameters, and yi, byi , and �y are the measured, predicted, and average

values of the dependent variable (total tree height), respectively.

Fig 2. Mean (Eqs B.16 and B.20) and standard deviation (Eqs B.17 and B.21) curves of the height for the 3

randomly selected plots within estimation dataset. First plot–black color, diameter and height dataset–cross;

second plot–blue color, diameter and height dataset–diamond; third plot–red color, diameter and height dataset–box;

mean height curve—solid line; mean ± standard deviation curve–dash line.

doi:10.1371/journal.pone.0168507.g002

Tree Height Distribution Based on Univariate Diffusion Processes
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Table 5 presents the performance statistics for the tree height’s models for all three scenar-

ios; these include the fixed effects model, the mixed effects model and the mixed effects model

with random effects set to zero, illustrating the extent to which the inclusion of the random

effects improved the performance statistics for both the estimation and validation datasets.

The random effects for the validation dataset were calibrated using Eqs D.1–D.5, respectively.

The results of this study show (see Table 5, Akaike’s information criterion) that the SDEs Vasi-

cek and Gompertz 4-parameters type tree height’s models with mixed effects are significantly

superior at predicting tree height compared to the other newly developed models. Compared

to the basic fixed effects models, the mixed effects models show better performance with lower

bias and prediction accuracy, and with a higher adjusted coefficient of determination evaluated

over the entire dataset. The mixed effects models with random effects set to zero show the

worst performance, with greater bias and prediction accuracy, and with a lower adjusted coef-

ficient of determination evaluated over the entire dataset. The fixed effects models, the mixed

effects models, and the mixed effects models with random effects set to zero have very similar

fit statistics for both the estimation and validation datasets.

The plots of the residuals versus predicted heights and the lowess line [25], estimated for the

validation dataset, in the fixed effects and mixed effects scenarios (random effects for the valida-

tion dataset were calibrated by Eqs D.1–D.5) are presented in Fig 3. Fig 3 shows that the residu-

als that were calculated using the mixed effects scenario are distributed more symmetrically

around zero, with approximately constant variance, compared with the fixed effects scenario. A

non-parametric smoothing line, called a lowess line, shows a clear trend in the middle range of

predicted height; however, what happens at the extremes is dictated by relatively little data.

Quantile regression

The conditional tree height’s mean, defined by Eqs B.16, B.18, B.20, B.22 and B.24, illuminates

just one aspect of the conditional distribution of a tree height and yet neglects all other features

of possible interest. Quantile regression model allows the predictor variable to have a more

complex relationship with the response variable [26]. Our developed tree height’s conditional

probability density functions for a given diameter (Eqs B.1, B.4, B.7, B.10 and B.13) enables us

to write the quantile equation of the tree height to any desired conditional quantile of the

height’s distribution. Forest researchers are not mainly interested in quantifying the conditional

Table 5. Fit statistics for all of the scenarios used*.

Models Fixed effects Mixed effects Mixed effects, ϕ = 0

δ R2 AICC δ R2 AICC δ R2 AICC

Estimation dataset

Vasicek 3.2576 0.4621 82712.75 1.4025 0.9003 70338.84 3.3667 0.4270 83177.48

Gompertz 4-parameters 3.2574 0.4621 82714.09 1.4021 0.9003 70335.78 3.3753 0.4243 83212.99

Bertalanffy 3.2640 0.4603 82738.25 1.4478 0.8937 70807.43 3.3899 0.4317 83118.15

Gompertz 3-parameters 3.3019 0.4474 82910.37 1.4484 0.8936 70811.32. 3.4663 0.3911 83623.51

Gamma 3.4016 0.4142 83339.16 1.4832 0.8885 71159.34 3.3969 0.4303 83135.02

Models Validation dataset

Vasicek 3.1937 0.4720 59103.94 1.4140 0.8964 50290.13 3.2970 0.4369 59453.04

Gompertz 4-parameters 3.1934 0.4721 59104.84 1.4143 0.8963 50294.93 3.3051 0.4342 59479.82

Bertalanffy 3.2035 0.4699 59125.96 1.4272 0.8945 50390.49 3.3114 0.4411 59413.85

Gompertz 3 parameters 3.2349 0.4586 59239.11 1.4560 0.8902 50604.51 3.4149 0.4015 59783.72

Gamma 3.3540 0.4196 59916.50 1.4719 0.8878 50722.98 3.3234 0.4379 59444.05

* Height-diameter models are ranked with regard to their AICC for the mixed effect scenarios and validation dataset.

doi:10.1371/journal.pone.0168507.t005
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central tendency of the tree height. Evidently, quantile tree height models also allow us to

explore the lower boundary relationship which covers cramped trees with a very slender trunk.

On the other hand, the exact conditional density functions, defined by Eqs B.1, B.4, B.7, B.10

and B.13, can be employed in practice by the quantile regression, which allow us to make height

predictions using intervals that contain the tree height for a given diameter, with a specific prob-

ability, 0<p<1. For the Vasicek type model the quantiles functions are defined as follows:

QVðd; pÞ ¼ inf y : F mbVðd; b�Þ;
cl

2

VðdÞ
� �

� p
n o

¼ F� 1

p mbVðd; b�Þ;
bl
2

VðdÞ
� �

and for the Gompertz 4-parameters type model:

QG4ðd; pÞ ¼ inf y : LN mbG4
ðd; b�Þ; cl2

G4
ðdÞ

� �

� p
n o

¼ bgþ LN � 1

p mbG4
ðd; b�Þ; cl2

G4
ðdÞ

� �

:

For example, the 10% quantile function, hbðdÞ
0;1
¼ Qðd; 0:1Þ, (splits off the lowest 10% tree

height predictions from the highest 90%) and the 90% quartile function, hbðdÞ
0:9
¼ Qðd; 0:9Þ,

(splits off the highest 10% of tree height predictions from the lowest 90%). For three randomly

selected plots 10% and 90% quantile functions are presented in Fig 4.

Slenderness ratio

Tree height to diameter ratio (slenderness ratio) is regarded as an index of the resistance of

trees to windthrow and competition for light, and its mean value may be useful in determining

stand stability. The slenderness ratio is calculated by dividing the tree height to its diameter at

breast height. For the fixed effects and mixed effects SDEs height-diameter models, defined by

Eqs 3–7, the slenderness functions are defined as follows:

RKðdÞ ¼
Z50

0

h
d
fKðh; djbyÞ � dh; by2 fð

by
1

K; 0Þ; ð
by
2

K;
b�Þg; K 2 fV;G3;G4;B;Gg:

The slenderness ratio dynamics for three randomly selected plots are presented in Fig 5.

Fig 3. Residuals and the lowess curve of the tree height fixed effects and mixed effects models for the validation dataset.

doi:10.1371/journal.pone.0168507.g003
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The findings of our investigation generally support that the height’s conditional probability

densities driven by diameter correctly predict slenderness ratio (see Fig 5). Furthermore, all

new developed tree height’s distribution models show a decrease of slenderness ratio with

increasing diameter.

Mean stem volume

The fixed effects and mixed effects height’s conditional probability density functions allow us

to revise mean stem volume calculation in the following form:

�V ðdÞ ¼
Z

h>0

Vðd; hÞ � fK h; djby
� �

�dh; by2 by
1

K ; 0

� �

; by
2

K ;
b�

� �n o

; K 2 fV;G3;G4;B;Gg:

Here V(d,h) is the stem volume regression function of power form [27], V ¼ b1db2hb3 ,

where parameters β1, β2, and β3 are to be estimated. The selection of stem volume model was

Fig 4. 10% and 90% quantile functions for the mixed-effects models and three different plots within estimation dataset. First plot–solid line

and dataset (diameter and height)–circle; second plot–dash line and dataset (diameter and height)–diamond; third plot–dot line and dataset

(diameter and height)–box.

doi:10.1371/journal.pone.0168507.g004

Fig 5. Slenderness dynamics for mixed-effects models and three different plots within estimation dataset. First plot described by solid line–

dataset (height/diameter) by circle; second plot described by dash line–dataset (height/diameter) by diamond; third plot described by dot line–dataset

(height/diameter) by box.

doi:10.1371/journal.pone.0168507.g005
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basically motivated by the available measured tree level characteristics. Parameter estimates were

calculated by weighted least squares technique. The estimators and their standard deviations (in

parenthesis) are, bb
1
¼ 5:8�10� 5 ð5:8�10� 6Þ, bb

2
¼ 1:8801 ð0:028Þ, bb

3
¼ 0:9723 ð0:045Þ [12].

The relationship between the mean stem volume and the diameter of a tree for the fixed effects

and mixed effects Vasicek and Gompertz 4-parameters type models are shown in Fig 6.

The direct effects of stand variables such as site index and management practices and thin-

ning could be included in the new developed models (see [28], [29]); however, their indirect

effect via mixed effects (see right side Fig 6) has been included in mixed effects tree mean vol-

ume models.

Coefficient of variation for height and volume

The coefficient of variation is typically used to indicate the precision of the dispersion of data-

sets and is also often used to compare numerical distributions measured at different scales.

Tree height based and tree volume based quantifications of the stand structural diversity can

Fig 6. Mean stem volume for three different plots within estimation dataset. Left–fixed effects models; right–mixed effects models; first plot (mean

diameter 48.23)–solid line; second plot (mean diameter 26.88)–dash line; third plot (mean diameter 17.86)–dot line; mean diameter within a plot is

recorded in graph.

doi:10.1371/journal.pone.0168507.g006

Tree Height Distribution Based on Univariate Diffusion Processes

PLOS ONE | DOI:10.1371/journal.pone.0168507 December 21, 2016 12 / 25



be performed using the coefficient of variation. The coefficient of variation reaches its maxi-

mum with two-storied stands. The coefficient of variation of tree height (tree volume) mea-

sures the variability of tree height (tree volume) relative to its mean and relates the mean and

standard deviation by expressing the standard deviation as a percentage of the mean. To fur-

ther discuss the results of this study, the coefficient of variation, which may help examine dis-

persion in tree heights occurring at diameter d, is defined by:

CVh
KðdÞ ¼

ffiffiffiffiffiffiffiffiffiffiffi
vKðdÞ

p

mKðdÞ
� 100; K 2 fV;G3;G4;B;Gg

and dispersion in tree volumes occurring at diameter d:

CVv
K dð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Zþ1

� 1

Vðd; hÞ2 � f h; djby
� �

� dh � �V ðdÞ2

v
u
u
u
t

�V ðdÞ
� 100; by2 by

1

K; 0

� �

; by
2

K ;
b�

� �n o

; K

2 fV;G3;G4;B;Gg:

Fig 7 shows a plot of the coefficient of variation as a function of a diameter using the mean

trend and standard deviation functions. In both cases (height and volume), the coefficient of

variation of the tree height and volume evolves into a stationary coefficient of variation. The

coefficient of variation based on tree height (volume) decreases with an increase in diameter.

Discussion

The models commonly used of height distribution fitting in a forest stand are supplemented

by tree height’s measurements. However, in the Lithuanian National Forest Inventory foresters

measure no more than 15 heights (see Table 2) of pine trees per stand. For estimating the

parameters by traditionally used maximum likelihood technique such sample sizes are too

small [5], [30]. New developed height distribution models based on mixed effects parameters

diffusion processes overcome such weakness. The pioneer of the SDE approach in forest

growth modeling is Suzuki [31]. In this paper for height-diameter evolution were used linear

and non-linear SDEs from the Ornstein—Uhlenbeck family by incorporating random effects

into deterministic (drift) term. This extended model describes the within-stand variation in

data through the system noise reflecting the random fluctuations around the corresponding

theoretical height-diameter curve and the between-stand variation in data through the random

effects. The maximum likelihood estimation procedure converged for all five diffusion pro-

cesses using the estimated dataset from LNFI.

In order to predict the parameters of the tree size probability density function for a new

stand, traditionally were carried out regression models from the different stand variables [32].

If the diameter and height of a sub-sample of trees are known, then for new developed height

distributions based on univariate diffusion processes the random effects can be calibrated by

Eqs D.1–D.5.

Quantifying variability in tree height at a given diameter by a distribution law has both the-

oretical and practical value. First, knowledge of the tree height distribution in forest stands is

important for understanding of competition and self-thinning which must studied not in the

mean size of trees but in the size structure of trees in a forest stand. Second, understanding

tree height distribution at a given diameter is important for improving estimates of stand bio-

mass and carbon storage. To describe how tree height distribution vary across regional scales,

we developed new empirical distributions of tree height at a given diameter across the Scots
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pine trees in Lithuania. In this paper our specific objectives were to test (1) what new devel-

oped probability density function based on stochastic differential equation height-diameter

evolution provides the best fit, (2) how new developed models explain observed variation in

Fig 7. Coefficient of variation of tree height and volume for three different plots within estimation dataset. Left–fixed effects; right–mixed effects

models; first plot (mean diameter 17.86)–solid line; second plot (mean diameter 25.88)–dash line; third plot (mean diameter 48.23)–dot line; mean

diameter within a plot is recorded in graph.

doi:10.1371/journal.pone.0168507.g007
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the probability density functions, the mean height-diameters, quantile height-diameter, mean

slenderness ratio and mean stem volume relationships across the Scots pine trees in Lithuania,

and (3) how to describe the mean height-diameter and mean stem volume relationships fit in

terms of the relative sizes defined by coefficient of variation.

The Kullback-Leibler Information Criterion [24] was used to compare all new developed

conditional probability density functions using the estimation dataset. The conditional proba-

bility density function derived from the Vasicek type height-diameter univariate diffusion pro-

cess showed better results than the other used stochastic processes (Table 4). All mixed effects

parameters probability density functions are superior to corresponding fixed effects parame-

ters density functions (see bold values in diagonal, Table 4). Theoretical validating that a height

dataset observed at discrete diameters follows univariate probability density functions defined

by Eqs B.1, B.4, B.7, B.10 and B.13 is not easy and there is no simple statistical test. The good-

ness of fit of the estimated univariate density functions (Eqs B.1, B.4, B.7, B.10 and B.13)

graphically were illustrated in Fig 1 using fixed effects and mixed effects parameters scenarios

and three randomly selected plots from an estimation dataset by plotting the estimated proba-

bility density functions and height’s measurements. Fig 1 showed that the mixed effects and

fixed effects parameters estimated probability density functions well capture the main features

of the data from three randomly selected plots. The height-diameter evolution can be written

using a wide range of mathematical relationships from linearized fixed effects regression equa-

tions to nonlinear mixed effects generalized relationships. Mathematical technique of a system

of uniform diameter and height regional functions is the approach known as the generalized

model. The mixed effects regression models are able to achieve the same results than the gener-

alized model [10, 33]. In this study new developed mixed effects parameters height-diameter

relationships demonstrated similar statistical indexes as in the nonlinear generalized height-

diameter regression models presented by Petrauskas et al. [34].

In addition, one of the advantages of using diffusion processes for quantifying tree height

distribution is that it allows to derive the first two moments about height’s and volume’s evolu-

tions through diameter and to calculate the relative standard deviation (coefficient of varia-

tion) for the height and volume. Fig 8 shows the variation of the coefficient of variation in pine

trees forest stands from the estimation dataset from LNFI as a function of mean plot diameter

using the mixed effects Vasicek type diffusion process. There is an exponential increase of the

coefficient of variation as the mean diameter per plot decreases; the coefficients of variation

for tree height varies from 6.94% to 24.72% and for stem volume varies from 4.77% to 17.05%.

Conclusions

This study demonstrated the use of SDEs to quantify tree height distribution at a given diame-

ter in a forest stand using the Lithuanian National Forest Inventory dataset. The results

Fig 8. Coefficient of variation of tree height and volume for plots within estimation dataset. Left–tree height; right–stem volume.

doi:10.1371/journal.pone.0168507.g008
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indicated that it is possible to measure mean tree height and volume evolution with an accept-

able accuracy over a broad area of Lithuania. Overall, the models explained over 90% of the

variation in height predictions observed in the LNFI (2006–2010) dataset. The remaining vari-

ation was likely to have resulted from stand variables. Better performance can be expected by

introducing stand variables [29]. The diffusion processes based SDE models described here

implicitly model spatial effects. The technique we described can be used for developing a new

generation of forest growth models.

A system of bivariate stochastic differential equations with mixed-effects parameters could

be used to develop tree diameter and height at a given age (or trivariate: diameter, height and

stand density at a given age) distribution model. This extension to multivariate SDEs come

with an increased computational burden.

Results for both tree height and volume predictions using the mixed effects SDE Vasicek

type height-diameter model indicate that the coefficient of variation over all plots for the tree

height and volume (at the mean diameter of a plot) takes values from the interval 6.9%–24.8%

and 1.7%–16.0%, respectively, and evolves to a stationary value from the interval 6.6%–19.8%

and 1.7%–13.0%, respectively.

The field of SDEs is a large and growing area of applied mathematics that is being

increasingly used to model biological systems. In this paper, new mixed effects height’s

probability density functions for a given diameter were developed using an Ornstein-

Uhlenbeck SDE family. Unfortunately, measurements from at least one tree in a stand,

or their measure of central tendency (mean, median, mode of diameter and height) are

required for the practical calibration of the random effects for a new stand. The use of the

mixed effects model enables us to develop a simple model structure without including addi-

tional predictor stand variables.

The results showed that the mixed effects Vasicek type tree heights distribution models are

superior to the other new developed models.

The variance functions developed here can be applied to generate weights in every linear

and nonlinear least squares regression height-diameter model by the weighted least squares

form.

Appendix A

Deterministic models

The mathematical representation of Mitscherlich growth [35] is derived from physical chemis-

try, where it describes a first order irreversible chemical reaction. The deterministic height-

diameter model used to describe the individual growth of a tree in terms of its size (height), h

(d), at instant (diameter), d, can be written in the form of an autonomous differential equation

given by the following:

dhðdÞ
dd
¼ bða � hðdÞÞ; hð0Þ ¼ 1:3; d 2 ½0;D0�; ðA:1Þ

where D0 is the upper limit on the diameter at the breast height. Height dynamics are irrevers-

ible, and the growth rate is proportional to the difference between the asymptotic maximum

height, α, and the already formed tree height, h(d), β is the proportionality constant (β>0).

The formula describing a Mitscherlich type height-diameter trajectory takes the form:

hðdÞ ¼ aþ ð1:3 � aÞexpð� bdÞ; d 2 ½0;D0�: ðA:2Þ

The changes in tree height, h(d), using deterministic ordinary differential equations, devel-

oped by Gompertz [36], for 2-parameters and 3-parameters models, respectively, are described
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as follows:

dhðdÞ
dd
¼ ahðdÞ � bhðdÞlnðhðdÞÞ; d 2 ½0;D0�; ðA:3Þ

dhðdÞ
dd
¼ aðhðdÞ � gÞ � bðhðdÞ � gÞlnðhðdÞ � gÞ; d 2 ½0;D0�: ðA:4Þ

The formulas describing a Gompertz type height-diameter trajectory for 2-parameters and

3-parameters models, respectively, are as follows:

hðdÞ ¼ exp
a

b
�

a

b
� lnð1:3Þ

� �

� expð� bdÞ
� �

; d 2 ½0;D0�; ðA:5Þ

hðdÞ ¼ gþ exp
a

b
�

a

b
� lnð1:3 � gÞ

� �

� expð� bdÞ
� �

; d 2 ½0;D0�: ðA:6Þ

where α is the intrinsic growth rate of the height, β is the growth deceleration factor, γ is a

threshold parameter, and exp a

b

� �
represents the largest height size that the tree can sustain.

Von Bertalanffy (for a review, see example in Román-Román et al. [13]) hypothesized that

the growth of an organism could be represented as the difference between the synthesis and

degradation of its building materials. There are few theoretical equations formulated specifi-

cally for biology applications. In this paper, the tree height, h(d), are described using an ordi-

nary differential equation:

dhðdÞ
dd
¼

abg

ebd � g
hðdÞ; d 2 ½0;D0�: ðA:7Þ

where α, β, and γ are unknown fixed effects parameters. The formula describing the Berta-

lanffy trajectory follows the form of a sigmoidal function:

hðdÞ ¼ 1:3
1 � ge� bd

1 � g

� �a

; d 2 ½0;D0�: ðA:8Þ

The changes in tree height, h(d), using the well-known regulated Malthusian growth pro-

cess [37], are described in the following form:

dhðdÞ
dd
¼

a

d
� b

� �
hðdÞ; d 2 ½0:001;D0�: ðA:9Þ

The formula describing the Gamma (Malthusian) trajectory follows the form:

hðdÞ ¼ 1:3
d

0:001

� �a

e� bðd� 0:001Þ; d 2 ½0:001;D0�: ðA:10Þ
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Appendix B

Conditional probability densities

The solution, Hi(d), of Eq 3 has a normal distribution NðmVðdÞ; l
2

VðdÞÞ with conditional proba-

bility density, mean, and variance, respectively [29]:

fVðh; dja; b; s; �iÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2pl
2

VðdÞ

s

exp �
ðh � mVðdÞÞ

2

2l
2

VðdÞ

 !

; ðB:1Þ

mVðdÞ ¼ 1:3e� bd þ
aþ �i

b
ð1 � e� bdÞ; ðB:2Þ

l
2

VðdÞ ¼
1 � e� 2bd

2b
s2; ðB:3Þ

and the solutions, Hi(d), of Eqs 4–7 have lognormal distributions, with conditional probability

density, means, and variance, respectively [28, 38]:

fG3ðh; dja; b;s; �iÞ ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pl
2

G3
ðdÞ

q

h
exp �

ðlnðhÞ � mG3ðdÞÞ
2

2l
2

G3
ðdÞ

 !

; ðB:4Þ

mG3ðdÞ ¼ lnð1:3Þ � e� bd þ aþ �i �
s2

2

� �
1 � e� bd

b

� �

; ðB:5Þ

l
2

G3
ðdÞ ¼

1 � e� 2bd

2b
s2; ðB:6Þ

fG4ðh; dja; b; g; s; �iÞ ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pl
2

G4
ðdÞ

q

ðh � gÞ

exp �
ðlnðh � gÞ � mG4ðdÞÞ

2

2l
2

G4
ðdÞ

 !

; ðB:7Þ

mG4ðdÞ ¼ gþ lnð1:3 � gÞ � e� bd þ aþ �i �
s2

2

� �
1 � e� bd

b

� �

; ðB:8Þ

l
2

G4
ðdÞ ¼

1 � e� 2bd

2b
s2; ðB:9Þ

fBðh; dja; b; g; s; �iÞ ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pl
2

BðdÞ
q

h
exp �

ðlnðhÞ � mG3ðdÞÞ
2

2l
2

BðdÞ

� �

; ðB:10Þ

mBðdÞ ¼ ln 1:3
bgð1 � ge� bdÞ

1 � g

� �ða0þ�iÞ
 !

; ðB:11Þ

l
2

BðdÞ ¼ s2d; ðB:12Þ
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fGðh; dja; b; g; s; �iÞ ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pl
2

GðdÞ
q

h
exp �

ðlnðhÞ � mGðdÞÞ
2

2l
2

GðdÞ

 !

; ðB:13Þ

mGðdÞ ¼ lnð1:3Þ þ ðaþ �iÞln
d

0:001

� �

� bþ
s2

2

� �

ðd � 0:001Þ; ðB:14Þ

l
2

GðdÞ ¼ s2ðd � 0:001Þ: ðB:15Þ

The conditional mean, m(d), and variance, v(d), functions of the tree height, H(d), for all

the models (Eqs 14–17) are given by the following expressions [28], [29], [38]:

mVðdÞ ¼ EðHiðdÞjHið0Þ ¼ 1:3Þ ¼ aþ �i þ ð1:3 � ðaþ �iÞÞe
� bd; ðB:16Þ

vVðdÞ ¼ Var ðHiðdÞjHið0Þ ¼ 1:3Þ ¼
1 � e� 2bd

2b
s2; ðB:17Þ

mG3ðdÞ ¼ EðHiðdÞjHið0Þ ¼ 1:3Þ
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1 � e� bd

b
aþ �i �

s2

2

� �

þ
s2

4b
ð1 � e� 2bdÞ
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; ðB:18Þ

vG3ðdÞ ¼ Var ðHiðdÞjHið0Þ ¼ 1:3Þ

¼ exp 2 lnð1:3Þ � e� bd þ
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vG4ðdÞ ¼ Var ðHiðdÞjHið0Þ ¼ 1:3Þ

¼ exp 2 lnð1:3 � gÞ � e� bd þ
1 � e� bd

b
aþ �i �

s2

2

� �� �

þ
s2

2b
ð1 � e� 2bdÞ

� �

exp
s2

2b
ð1 � e� 2bdÞ

� �

� 1

� �
; ðB:21Þ

mBðdÞ ¼ EðHiðdÞjHið0Þ ¼ 1:3Þ ¼ 1:3
1 � ge� bd

1 � g

� �ðaþ�iÞ

; ðB:22Þ

vBðdÞ ¼ Var ðHiðdÞjHið0Þ ¼ 1:3Þ ¼ 1:3
1 � ge� bd

1 � g

� �aþ�i
 !2

� ðexpðs2dÞ � 1Þ; ðB:23Þ

mGðdÞ ¼ EðHiðdÞjHið0Þ ¼ 1:3Þ ¼ 1:3
d

0:001

� �aþ�i

� expð� bðd � 0:001ÞÞ; ðB:24Þ

Tree Height Distribution Based on Univariate Diffusion Processes

PLOS ONE | DOI:10.1371/journal.pone.0168507 December 21, 2016 19 / 25



vGðdÞ ¼ Var ðHiðdÞjHið0Þ ¼ 1:3Þ

¼ 1:32 d
0:001

� �2ðaþ�iÞ

� expð� 2bðd � 0:001ÞÞ � ðexpðs2ðd � 0:001ÞÞ � 1Þ: ðB:25Þ

Appendix C

Maximum likelihood procedure

We consider the SDEs height-diameter models, as defined by Eqs 3–7, from two perspectives.

First, the log-likelihood functions are derived for the fixed effects parameters models (in this

case the parameters of random effects, ϕi, i = 1,. . .,M are assumed to be equal to its mean

value E(ϕi) = 0). Second, the log-likelihood functions are derived for the mixed effects. In the

sequel, K 2 {V,G3,G4,B,G}, y
1

V ¼ y
1

G3
¼ y

1

G ¼ fa;b; sg, y
1

G4
¼ y

1

B ¼ fa; b; g; sg y
2

G4
¼ y

2

B ¼

fa; b; g; s;s�g, y
2

V ¼ y
2

G3
¼ y

2

G ¼ fa; b; s; s�g, y
2

G4
¼ y

2

B ¼ fa; b; g; s; s�g.

The fixed effects parameters y
1

K , y
2

K , K 2 {V,G3,G4,B,G} are estimated by means of an approx-

imated maximum likelihood procedure using discrete sampling and conditional probability

density functions defined by Eqs B.1, B.4, B.7, B.10 and B.13. We assume that all observations

are independent (no repeated measurements are used in the dataset for model estimation). Let

us consider a discrete height sample (hi
1
; hi

2
; . . . ; hini) at diameters (di

1
; di

2
; . . . ; dini) without mea-

surement errors, where ni is the number of observed trees of the ith plot, i = 1,2,. . .,M. The asso-

ciated likelihood functions for the fixed effects parameters SDEs height-diameter models (the

parameters of random effects, ϕi, i = 1,. . .,M are assumed to be equal to the mean value E(ϕi) =

0), take the following forms:

L1

Kðy
1

KÞ ¼
YM

i¼1

Yni

j¼1

fKðh
i
j; d

i
j jy

1

K ; 0Þ; K 2 fV;G3;G4;B;Gg ðC:1Þ

and the log-likelihood functions are:

LL1

Kðy
1

KÞ ¼
XM

i¼1

Xni

j¼1

lnðfKðh
i
j; d

i
j jy

1

K ; 0ÞÞ; K 2 fV;G3;G4;B;Gg; ðC:2Þ

where ni is the number of observed trees of the ith plot i = 1,2,. . .,M, y
1

K are fixed effects parame-

ters (the same for all plots), density functions fKðhij; d
i
j jy

1

K ; 0Þ take the forms defined by Eqs B.1,

B.4, B.7, B.10 and B.13.

The likelihood functions for the mixed effects SDE height-diameter models take the follow-

ing forms:

L2

Kðy
2

KÞ ¼
YM

i¼1

Yni

j¼1

Zþ1

� 1

fKðh
i
j; d

i
j jy

1

K ; �iÞ� pð�ijs�Þ � d�i; K 2 fV;G3;G4;B;Gg; ðC:3Þ

and the log-likelihood function is:

LL2

Kðy
2

KÞ ¼
XM

i¼1

Zþ1

� 1

Xni

j¼1

lnðfKðh
i
j; d

i
j jy

1

K ; �iÞÞ þ lnðpð�ijs�ÞÞ � d�i; K 2 fV;G3;G4;B;Gg; ðC:4Þ

where y
2

K are fixed effects parameters (the same for all plots) and ϕi are random effects (plot

Tree Height Distribution Based on Univariate Diffusion Processes

PLOS ONE | DOI:10.1371/journal.pone.0168507 December 21, 2016 20 / 25



specific), which are assumed to follow a normal distribution with 0 mean and constant vari-

ance s2
�
, and p(ϕi|σϕ) is the normal density of the random effects.

The integral in Eq C.4 does not have a closed form solution. Because analytic expression for

the integrand in Eq C.4 is known, the Laplace method [39], [40] may be used. Let us define a

function g:R!R as follows:

gKð�ijy
2

KÞ ¼
Xni

j¼1

lnðfKðh
i
j; d

i
j jy

1

K ; �iÞÞ þ lnðpð�ijs�ÞÞ; i ¼ 1; 2; . . . ;M; K

2 fV;G3;G4;B;Gg: ðC:5Þ

The Laplace approximation to

Zþ1

� 1

egK ð�i jy
2
K Þ � d�i, i = 1,2,. . .,M, K 2 {V,G3,G4,B,G} is based

on a second-order Taylor series expansion about mode b�i, i = 1,2,. . .,M:

Zþ1

� 1

egK ð�i jy
2
K Þ � d�i� egK ðb�i jy

2
K Þ

Zþ1

� 1

exp
1

2

@2gKðb�ijy
2

KÞ

@2�i
ð�i �

b�iÞ
2

 !

� d�i; K

2 fV;G3;G4;B;Gg; ðC:6Þ

where b�i is the global max of gKð�ijy
2

KÞ and the root of:

@gKð�ijy
2

KÞ

@�i
¼ 0; i ¼ 1; 2; . . . ;M; K 2 fV;G3;G4;B;Gg: ðC:7Þ

Then, the Laplace approximation of ln
Zþ1

� 1

egK ð�i jy
2
K Þ � d�i

0

B
@

1

C
A, i = 1,2,. . .,M, K 2 {V,G3,G4,B,

G} takes the following form:

ln
Zþ1

� 1

egK ð�i jy
2
K Þ � d�i

0

B
@

1

C
A � gKðb�ijy

2

KÞ þ
1

2
lnð2pÞ �

1

2
ln �

@2gKðb�ijy
2

KÞ

@2�i

 !

; ðC:8Þ

where:

b�i ¼ arg max
�i

gKð�ijy
2

KÞ; i ¼ 1; 2; . . . ; M; K 2 fV;G3;G4;B;Gg: ðC:9Þ

The log-likelihood function for the mixed-effects SDEs height-diameter models is approxi-

mately given by:

LL2

Kðy
2

KÞ �
XM

i¼1

gKðb�ijy
2

KÞ þ
1

2
lnð2pÞ �

1

2
ln �

@2gKðb�ijy
2

KÞ

@2�i

 ! !

; K

2 fV;G3;G4;B;Gg: ðC:10Þ

The maximization of LL2
Kðy

2

KÞ is a two-step optimization problem. The internal optimiza-

tion step estimates the b�i for every plot i = 1,2,. . .,M with Eq C.9. The external optimization

step maximizes LL2
Kðy

2

KÞ after plugging the b�i into Eq C.10.
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To assess the asymptotic standard errors of the maximum likelihood estimators for the sto-

chastic height-diameter models, a study of the Fisher [41] information matrix was performed.

The approximate asymptotic variance of the approximated maximum likelihood estimators

(Eq C.10) was calculated by the inverse of observed Fisher information matrix. By defining the

vector LLsKðy
k
Þ

� �0
�

@LLsK ðy
s
K Þ

@ysK;i
, and the matrix LLsKðy

s
KÞ

� �@
�

@2LLsK ðy
s
K Þ

@ysK;i@ysK;j

� �T

, s = 1,2, K 2 {V,G3,G4,B,

G}, the observed Fisher information matrix takes the following form:

eIð bys
KÞ ¼ �

@2LLsKðy
s
KÞ

@y
s
K;i@y

s
K;j

" #T

jy
s
K ¼

by
s
K; s ¼ 1; 2; K 2 fV;G3;G4;B;Gg: ðC:11Þ

The approximate asymptotic standard errors of the fixed effects parameters are defined by

the diagonal elements of the matrix½Ieð bys
KÞ�
� 1

, s = 1,2, K 2 {V,G3,G4,B,G} by:

SEðbyiÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ieiið by
s
KÞ

h i� 1

�
1

n

r

: ðC:12Þ

Appendix D

Calibration and stochastic prediction

In the literature on forestry, calibration means that random effects are predicted using a sup-

plementary sample of observations taken from a sampling unit. The tree heights for new stand

can be predicted either by using random effects set to zero, or by adding random effects that

were predicted from prior observations. When the diameter and height of a sub-sample of

trees are known, the predicted random effects are added to the fixed effects parameters to

obtain localized parameters for this sub-sample plot.

Let us assume that a sub-sample of m trees with height hj and diameter dj, j = 1, 2, . . ., m, is

taken from a new plot. Using height-diameter models defined by Eqs 3–7, the random effect,

ϕ, for a new stand can be approximately calibrated as follows:

b�V ¼
1

m

Xm

j¼1

hj � ab� ð1:3 � ab; Þ � expð� bb�djÞ

1 � expð� bb�djÞ
; ðD:1Þ

b�G3
¼

1

m

Xm

j¼1

ln hj
� �
� ln 1:3ð Þ � expð� bb�djÞ

� �

� bb

1 � expð� bb�djÞ
�
bs2

4
expð� bb� djÞ � 1

� �

� ba

0

B
@

1

C
A; ðD:2Þ

b�G4
¼

1

m

Xm

j¼1

ln hj � bg
� �

� ln 1:3 � bgð Þ � expð� bb�djÞ
� �

� bb

1 � expð� bb�djÞ
�
bs2

4
expð� bb� djÞ � 1

� �

� ba

0

B
@

1

C
A; ðD:3Þ

b�B ¼
1

m

Xm

j¼1

ln hj
� �
� ln 1:3ð Þ

ln 1 � bgexp � bbdj
� �� �

� ln 1 � bgð Þ
� ba

0

@

1

C
A; ðD:4Þ

b�G ¼
1

m

Xm

j¼1

ln hj
� �
� ln 1:3ð Þ þ bb dj � 0:001

� �

ln dj
� �
� ln 0:001ð Þ

� ba

0

@

1

A; ðD:5Þ
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where ab; bb;bgare the parameter estimates calculated using the approximated maximum likeli-

hood procedure (Eq C.10). The height of another tree from the same plot can be predicted by

adding the random effect calibrated by Eqs D.1–D.5 to the fixed effects parameter ab, respec-

tively. The random effects height distribution models explain much more variability than the

fixed effects models and provide better height-diameter model fitting. The calibrated height

distribution models allow accurate results to be obtained with a very small sampling effort,

making this approach highly effective and useful.

Mixed effects models incorporate the variability between plots using the expression of the

model’s parameters in terms of both fixed and random effects. Random effects are conceptu-

ally random variables; they can be simulated as such, in terms of utilizing their distribution. To

address this, we can also add a random component to the height prediction. This stochastic

prediction approach uses distribution functions of random variable, H(d), and their confi-

dence intervals. The stochastic predictions, hstoch,K, K 2 {V,G3,G4,B,G}, of a tree height can be

defined as follows:

bhðdÞstoch;V ¼ mbVðdÞ þ F� 1

U 0; bl
2

VðdÞ
� �

¼ F� 1

U mbVðdÞ;
bl
2

VðdÞ
� �

; ðD:6Þ

bhðdÞstoch;K ¼ mbKðdÞ þ LN � 1

U 0; bl
2

KðdÞ
� �

¼ LN � 1

U mbKðdÞ;
bl
2

KðdÞ
� �

; K 2 fG3;B;Gg ðD:7Þ

bhðdÞstoch;G4
¼ mbG4

ðdÞ þ LN � 1

U 0; cl
2

G4
ðdÞ

� �

¼ bgþ LN � 1

U mbG4
ðdÞ; cl2

G4
ðdÞ

� �

; ðD:8Þ

where mbKðdÞ, K 2 {V,G3,G4,B,G} is the estimated trend of the mean (calculated using Eqs

B.16, B.18, B.20, B.22 and B.24) of the tree height; and F� 1

U mbVðdÞ; l
2

V
b
ðdÞ

� �

(LN � 1
U mbKðdÞ; l

2

K
b
ðdÞ

� �

, K 2 {G3,G4,B,G}) is the inverse of the normal (the lognormal) distribu-

tion with a mean of mbKðdÞ, K 2 {V,G3,G4,B,G} defined by Eqs B.2, B.5, B.8, B.11 and B.14, and

a variance of l
2

K
b
ðdÞ, K 2 {V,G3,G4,B,G} defined by Eqs B.3, B.6, B.9, B.12 and B.15, for a uni-

form random variable, U, in the interval (0;1).
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