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Highlights Impact and implications

� PLD1 is highly expressed in hepatocytes of patients

with NAFLD and HFD-fed mice.

� Hepatocyte-specific deficiency of Pld1 ameliorates
hepatic steatosis.

� PLD1 promotes CD36 expression and alters lipid
composition in hepatocytes.

� PA, the downstream product of PLD1, upregulates
CD36 expression via PPARc.
https://doi.org/10.1016/j.jhepr.2023.100726
The involvement of PLD1 in hepatocyte lipid meta-
bolism and NAFLD has not been explicitly explored. In
this study, we found that the inhibition of hepatocyte
PLD1 exerted potent protective effects against HFD-
induced NAFLD, which were attributable to a reduc-
tion in PPARc/CD36 pathway-mediated lipid accumu-
lation in hepatocytes. Targeting hepatocyte PLD1 may
be a new target for the treatment of NAFLD.
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Background & Aims: Phospholipase D1 (PLD1), a phosphatidylcholine-hydrolysing enzyme, is involved in cellular lipid
metabolism. However, its involvement in hepatocyte lipid metabolism and consequently non-alcoholic fatty liver disease
(NAFLD) has not been explicitly explored.
Methods: NAFLD was induced in hepatocyte-specific Pld1 knockout (Pld1(H)-KO) and littermate Pld1flox/flox (Pld1-Flox) control
mice feeding a high-fat diet (HFD) for 20 wk. Changes of the lipid composition in the liver were compared. Alpha mouse liver
12 (AML12) cells and mouse primary hepatocytes were incubated with oleic acid or sodium palmitate in vitro to explore the
role of PLD1 in the development of hepatic steatosis. Hepatic PLD1 expression was evaluated in liver biopsy samples in
patients with NAFLD.
Results: PLD1 expression levels were increased in the hepatocytes of patients with NAFLD and HFD-fed mice. Compared with
Pld1-Flox mice, Pld1(H)-KO mice exhibited decreased plasma glucose and lipid levels as well as lipid accumulation in liver
tissues after HFD feeding. Transcriptomic analysis showed that hepatocyte-specific deficiency of PLD1 decreased Cd36
expression in steatosis liver tissues, whichwas confirmed at the protein and gene levels. In vitro, specific inhibition of PLD1with
VU0155069 orVU0359595 decreased CD36 expression and lipid accumulation in oleic acid- or sodiumpalmitate-treatedAML12
cells or primary hepatocytes. Inhibition of hepatocyte PLD1 significantly altered lipid composition, especially phosphatidic acid
and lysophosphatidic acid levels in liver tissueswith hepatic steatosis. Furthermore, phosphatidic acid, the downstreamproduct
of PLD1, increased the expression levels of CD36 in AML12 cells, which was reversed by a PPARc antagonist.
Conclusions: Hepatocyte-specific Pld1 deficiency ameliorates lipid accumulation and NAFLD development by inhibiting the
PPARc/CD36 pathway. PLD1 may be a new target for the treatment of NAFLD.
Impact and implications: The involvement of PLD1 in hepatocyte lipid metabolism and NAFLD has not been explicitly
explored. In this study, we found that the inhibition of hepatocyte PLD1 exerted potent protective effects against HFD-induced
NAFLD, which were attributable to a reduction in PPARc/CD36 pathway-mediated lipid accumulation in hepatocytes. Tar-
geting hepatocyte PLD1 may be a new target for the treatment of NAFLD.
© 2023 The Author(s). Published by Elsevier B.V. on behalf of European Association for the Study of the Liver (EASL). This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction
Non-alcoholic fatty liver disease (NAFLD) has become the leading
chronic liver disease globally; however, no effective treatment
has been approved.1 Patients with NAFLD have an increased risk
for severe metabolic diseases including type 2 diabetes mellitus,
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insulin resistance, and dyslipidemia.2 Increasing evidence sug-
gests that abnormal lipid metabolism in hepatocytes is an
important contributor to the initiation and progression of
NAFLD.3,4 Lipid droplet (LD) accumulation in hepatocytes is a
distinctive characteristic of NAFLD, a chronic, heterogeneous
liver condition that can progress to liver fibrosis and hepatocel-
lular carcinoma.5 This lipid accumulation may occur owing to
increased de novo lipogenesis, increased fatty acid uptake,
decreased redistribution of fatty acids to other tissues, or
decreased utilisation of lipids as energy substrates.6

Phospholipase D (PLD) enzymes are phosphodiesterases that
serve as key components of multiple signalling and metabolic
pathways.7 In mammalian cells, the PLD isoenzymes – PLD1 and
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PLD2 – are major sources of phosphatidic acid (PA), a lipid sec-
ond messenger that modulates diverse intracellular signalling.8,9

PLD is involved in cell proliferation, inflammation, survival,
redox signalling, mitochondrial function, and many pathophysi-
ological actions; it has also been associated with neuronal ail-
ments, cancer, thrombotic events, and infectious diseases.7,9

PLD activity is also linked to cell-free LD assembly.10,11 The
PLD1 isoform (but not PLD2) is present in LDs, and increased PLD1
expression promotes LD formation.10,12 PLD1 is essential for the
formation, growth, and accumulation of LDs, and its number and
size are correlated with obesity and NAFLD.5,9,13 In addition, PLD1
played a role in the development and progression of liver fibrosis
in rats.14 However, one study showed that Pld1 systemic knockout
induced NAFLD by decreasing LDs.15 Further studies are needed to
clarify the role of hepatic PLD1 in metabolic processes.

In this study, inducing hepatic steatosis in hepatocyte-specific
Pld1-deficient mice using a high-fat diet (HFD), we provide evi-
dence that PLD1 plays a key role in promoting hepatocyte lipid
accumulation and steatosis development via the peroxisome
proliferative activating receptor gamma (PPARc)/CD36 pathway.
Furthermore, PA may be the main factor involved in the activa-
tion of the PPARc/CD36 pathway during hepatocyte lipid
accumulation.
Materials and methods
Animals and experiment protocol
Pld1flox/floxmicewere generated at the ShanghaiModel Organisms
Center, Inc (China). To generate hepatocyte-specific Pld1 knockout
(Pld1flox/flox; Alb-Cre+; Pld1(H)-KO) mice, Pld1flox/flox mice were
crossed with Alb-Cre mice (003574, The Jackson Laboratory, Bar
Harbor, Maine, USA). Littermate Pld1-Flox (Pld1flox/flox; Alb-Cre-)
mice were used as controls. All animals were maintained in a
pathogen-free, temperature-controlled environment under a 12-
h light/dark cycle at Beijing Friendship Hospital, and all animal
protocols were approved by the Institutional Animal Care and
Ethics Committee. Male Pld1-Flox and Pld1(H)-KOmice at 8–9 wk
were fed a normal control diet (NCD) or an HFD (60 kcal% fat;
D12492, Research Diets, New Brunswick, New Jersey, USA).

Clinical study
The samples involved in the clinical study were collected from
twelve patients diagnosed with NAFLD by liver biopsy at Beijing
Friendship Hospital, Capital Medical University. Patients with
NAFLD who consumed <10 g alcohol/day for women or 20 g
alcohol/day for men and those with other causes of steatosis or
chronic liver diseasewere excluded. The demographic and clinical
characteristics of the patients with NAFLD are shown in Table S2.
For each biopsy, a NAFLD activity score (NAS) summarising the
main histological lesions was defined based on the grade of
steatosis, the grade of activity (hepatocytes ballooning and lobular
inflammation), and the stage of fibrosis (Table S2).16 Healthy liver
tissues were obtained from eight donors, whose livers were
subsequently used for transplantation. Written informed consent
was obtained from all patients before enrolment, and the study
protocolwas approvedby the human institutional reviewboard of
the Beijing Friendship Hospital (No. 2017-P2-131-03).

Statistical analysis
Statistical analysis was performed using GraphPad Prism soft-
ware (version 9.0, San Diego, California, USA), and values were
expressed as mean ± SEM. Differences between two groups were
JHEP Reports 2023
compared using Student’s t test for normal distribution and the
Mann–Whitney test for abnormal distribution. One-way ANOVA
with Tukey’s test for normal distribution and the Kruskal–Wallis
test for abnormal distribution were used for analysing differ-
ences among three or more groups. Statistical significance was
set at p <0.05.

For further details regarding the materials and methods used,
please refer to the Supplementary CTAT Table and Supplemen-
tary Materials and methods.
Results
Hepatocyte-specific deficiency of Pld1 ameliorated NAFLD in
HFD-fed mice
After 20 wk of HFD feeding, hepatocellular PLD activity was
significantly upregulated compared with that in the NCD-fed
control mice (Fig. 1A). The protein and mRNA expression levels
of PLD1 were markedly increased in the hepatocytes obtained
from HFD-fed mice than in those obtained from NCD-fed mice
(Fig. 1B–D). However, the expression level of PLD2 did not
change after HFD feeding (Fig. 1B, C, and E). We further tested
PLD1 expression in hepatocytes of patients with NAFLD and in
those of healthy controls by immunofluorescence (Fig. 1F and G)
and found the proportion of ALB+PLD1+ area to be higher in
patients with NAFLD than in healthy controls. These findings
suggest that hepatocellular PLD1 is involved in the development
and progression of NAFLD in both mice and humans.

To investigate the role of hepatocellular PLD1 in NAFLD
development or progression, HFD was fed to Pld1(H)-KO and
Pld1-Flox mice for 20 wk. The protein and mRNA expression
levels of PLD1 decreased in Pld1-deficient hepatocytes in both
HFD- and NCD-fed mice (Fig. S1A–C). PLD1 deficiency did not
alter the expression of PLD2 in hepatocytes after HFD feeding
(Fig. S1D–F). As shown in Fig. 2A–C, Pld1(H)-KO mice gained
remarkably less body weight, liver size, and liver weight than
age-matched Pld1-Flox mice, although food intake among each
group was not significantly different after HFD feeding (Fig. S1G).
HFD-fed mice had insulin resistance with an impaired oral
glucose tolerance test (OGTT) compared with NCD-fed mice;
these were improved by hepatocyte Pld1 knockout (Fig. 2D and
E). Plasma triglyceride (TG) and free fatty acid (FFA) levels did
not differ between NCD- and HFD-fed mice (Fig. 2F). Plasma
levels of total cholesterol (TC), LDL-cholesterol (LDL-C), glucose
(GLU), alanine aminotransferase (ALT), and aspartate trans-
aminase (AST) in mice with hepatocyte-specific deficiency of
Pld1 were significantly reduced compared with those in Pld1-
Flox mice after HFD feeding (Fig. 2F–I). Hepatocyte-specific Pld1
deficiency significantly decreased liver steatosis score, lobular
inflammation score, and the NAS in HFD-fed Pld1(H)-KO mice
compared with those in HFD-fed Pld1-Flox mice (Fig. 2J and K
and Fig. S1H–J). Oil Red O staining revealed decreased lipid
accumulation in the livers of Pld1(H)-KO mice compared with
those of Pld1-Flox mice after HFD feeding (Fig. 2J and L). BODIPY
staining showed that LDs were increased in the livers of HFD-fed
mice and decreased in hepatocyte Pld1 knockout mice (Fig. 2M
and N). LD deposition was also found in a portion of Desmin+

hepatic stellate cells (HSCs) in both NCD- and HFD-fed mice
(Fig. S1K). Furthermore, the deficiency of PLD1 could decrease
liver-infiltrating CD45+, F4/80+, and CD3+ cells and the expres-
sion levels of inflammation-related genes, such as Tnfa, Il1b, Il6,
and Il17, after HFD feeding (Fig. 2J, O, and P). Meanwhile, the
levels of fibrosis-related genes, such as a-SMA, Col1a1, Col3a1,
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Fig. 1. PLD1 expression was increased in the hepatocytes of HFD-fed mice and patients with NAFLD. (A) PLD activity, (B) representative Western blot images
showing PLD1, PLD2, and GAPDH levels, (C) quantification of PLD1 and PLD2 by densitometry and gene expression levels of (D) Pld1 and (E) Pld2 in the hepa-
tocytes of Pld1-Flox mice after 20 wk of NCD or HFD feeding. (F) Representative immunofluorescence staining images in the liver of patients with NAFLD and
healthy controls; ALB in red (546), PLD1 in green (488), and nuclei in blue (DAPI) (scale bar, 20 lm). (G) Quantification of ALB+PLD1+ area. n = 8–12 participants
per group. Differences between two groups were compared using Student’s t test for normal distribution and the Mann–Whitney test for abnormal distribution.
**p <0.01, ***p <0.001. ALB, albumin; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; HFD, high-fat diet; NAFLD, non-alcoholic fatty liver disease; NCD,
normal control diet; PLD, phospholipase D; PLD1, phospholipase D1; PLD2, phospholipase D2.
and Col6a1, and hydroxyproline were also downregulated in the
liver tissues after Pld1 knockout (Fig. 2Q and R).

Hepatocyte-specific deficiency of Pld1 changed hepatic lipid
metabolism in HFD-fed mice
Considering the substantial difference in liver Oil Red O and LD
staining between HFD-fed Pld1(H)-KO and Pld1-Flox mice. We
performed lipidomic analysis to examine lipid metabolism and
lipidomic changes in the livers of Pld1(H)-KO and Pld1-Flox mice
after HFD feeding. Our lipidomic data revealed 460 lipid species
in the liver tissues, consisting of 181 triacylglycerols (TAGs), 49
cardiolipins, 47 phosphatidylcholines (PCs), 25 diacylglycerols
(DAGs), and other lipid classes (Fig. S2A). We visualised all
significantly altered lipid species using a bubble map (Fig. S2B).
Using a p value of 0.05 as cut-off, a total of 207 species were
significantly changed in the Pld1-deficient livers (Fig. S2B). The
overall abundance of TAG and DAG, which are the most abundant
lipid classes in the liver, was significantly decreased by Pld1
deficiency (Fig. S2C). As a key enzyme regulating phospholipid
metabolism, hepatocyte Pld1 knockout had a tendency to in-
crease the total levels of PC in the liver (Fig. S2D). The levels of
PC34:0p, PC36:3p, PC32:2/0, PC34:2/1/0, PC36:4, and PC38:6
among 47 PC species were significantly increased by hepatocyte
Pld1 knockout (Fig. S2E). In addition, there were significant
changes in other glycerophospholipids, including a decrease in
the abundance of lysophosphatidylethanolamines and bis(mo-
noacylglycerol)phosphate and an increase in the abundance of
phosphatidylethanolamines (Fig. S2F). Sphingolipids, including
sphingomyelins and ceramides, were unaffected by Pld1
JHEP Reports 2023
deficiency (Fig. S2G). The abundance of FFAs and cholesteryl
esters was decreased by Pld1 deficiency (Fig. S2H and I). These
results suggest that the inhibition of hepatocellular PLD1 affects
the composition of lipids in liver tissues.

Transcriptome sequencing analysis showed that the
expression of fatty acid translocase CD36 changed
significantly in Pld1(H)-KO mice
To explore the impact of hepatocyte-specific Pld1 deficiency,
mRNA transcriptome sequencing was performed in the liver
tissues of Pld1(H)-KO and Pld1-Flox mice after NCD or HFD
feeding (Fig. S3A and B). Gene Ontology (GO) pathway analysis
revealed that pathways related to lipid uptake, transport, and
metabolism were upregulated and lipase activity pathways were
downregulated in Pld1(H)-KO mice compared with those in Pld1-
flox mice (Fig. S3C). Compared with pathways in Pld1-flox mice,
pathways related to lipid activity were upregulated in Pld1(H)-
KO mice and pathways related to lipid digestion, absorption,
metabolism, and import cells were downregulated (Fig. 3A).
Gene set expression analysis revealed that intestinal lipid ab-
sorption and LD were positively enriched in Pld1-Flox-HFD mice
compared with those in Pld1-Flox-NCD mice (Fig. S3D), whereas
cellular responses to fatty acids and LDs were negatively enriched
in Pld1(H)-KO-HFD mice compared with those in Pld1-Flox-HFD
mice (Fig. 3B). A total of 193 differentially expressed genes were
obtained from the intersection of the differentially expressed
genes in Pld1-Flox-HFD vs. Pld1-Flox-NCD mice and in Pld1(H)-
KO-HFD vs. Pld1-Flox-HFD mice. Among these genes, four lipid
metabolism-related GO pathways were enriched: the arachidonic
3vol. 5 j 100726
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acid metabolic process, long-chain fatty acid metabolic process,
fatty acid metabolic process, and regulation of plasma lipoprotein
particle levels. Among the genes involved in these pathways, 10
were downregulated and five were upregulated in Pld1(H)-KO-
HFD mice compared with those in Pld1-Flox-HFD mice. All genes
were sequenced according to -log10(p value), and we found that
among the genes involved in lipid metabolism, fatty acid trans-
locase Cd36 was in a relatively high position (Fig. 3C). To verify
these observations, CD36 expression levels were measured
in vivo. The protein and mRNA expression levels of CD36 were
increased in the liver tissues of HFD-fed mice and significantly
reduced by hepatocyte-specific Pld1 deficiency (Fig. 3D–F). CD36
expression levels were also significantly higher in the liver tis-
sues of patients with NAFLD than in those of healthy controls
(Fig. 3G and H).
PLD1 inhibition and deficiency decreased the content of lipid
and expression of CD36 in hepatocytes in vitro
To gain insight into PLD1-induced changes in lipid metabolism in
hepatocytes, PLD1-specific inhibitors, VU0155069 (VU01) and
VU0359595 (VU03), were used to interfere with the murine
hepatocyte cell line alpha mouse liver 12 (AML12). The protein
and mRNA expression levels of PLD1 and PLD activity were
significantly increased after oleic acid (OA) stimulation, and the
most obvious increase was observed after 500 lM OA stimula-
tion for 48 h (Fig. 4A–D). Therefore, AML12 cells were incubated
with 500 lM OA for 48 h for subsequent inhibition experiments.
VU01 and VU03 reduced the proportion of CD36+ cells, the mean
fluorescence intensity (MFI) of CD36, and the mRNA levels of
Cd36, which were increased by OA treatment (Fig. 4E–G). LDs
and lipid accumulation were increased in the OA-treated AML12
cells and decreased by inhibition of PLD1 (Fig. 4H–K). VU01 and
VU03 also decreased TG and TC levels in the OA-treated AML12
cells (Fig. 4L and M). To determine the key role of CD36 in PLD1-
mediated lipid accumulation, CD36 overexpression plasmids
were transfected into AML12 cells. The mRNA levels of CD36 and
the proportion of CD36+ cells elevated significantly after trans-
fection and could not be reduced by VU01 (Fig. S4A and B). Oil
Red O and Nile Red staining revealed increased lipid accumula-
tion after overexpression of CD36 in OA-treated AML12 cells,
which could not be decreased by inhibition of PLD1 (Fig. 4N and
O and Fig. S4C and D).

In addition, primary hepatocytes from Pld1(H)-KO and Pld1-
Flox mice were treated with OA to verify the role of PLD1 in lipid
accumulation of hepatocytes. The expression levels of Pld1 and
CD36 increased after OA treatment in Pld1-Flox hepatocytes,
whereas they decreased in Pld1-deficient hepatocytes (Fig. 4P–S).
Moreover, deficiency of PLD1 reduced the elevated levels of LD,
TG, and TC after OA treatment in mouse primary hepatocytes
(Fig. 4T–V). These data suggested that PLD1 plays a major role in
the regulation of CD36-mediated lipid accumulation in
hepatocytes.

Similar results were also found in sodium palmitate (SP)-
treated hepatocytes. The protein and mRNA expression levels of
PLD1 were significantly increased, and PLD1 activity peaked at
20 wk of NCD or HFD feeding. n = 8–10 mice per group. One-way ANOVA with
distribution were used for analysing differences among three or more groups. *p
mice, bp <0.05, bbp < 0.01, Pld1(H)-KO-HFD mice vs. Pld1-Flox-HFDmice. ALT, alanin
HFD, high-fat diet; LDL-C, LDL-cholesterol; NAFLD, non-alcoholic fatty liver dise
tolerance test; PLD1, phospholipase D1; TC, total cholesterol; TG, triglyceride.
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48 h after stimulation with 250 lM SP (Fig. S5A–D). Therefore,
AML12 cells were incubated with 250 lM SP for 48 h for sub-
sequent experiments. The proportion of CD36+ cells, the MFI of
CD36, the mRNA levels of Cd36, LD, TG, and TC, and lipid accu-
mulation were significantly increased in AML12 cell treated with
SP and decreased after incubation with VU01 and VU03
(Fig. S5E–P). SP stimulation increased the proportion of
7AAD-Annexin V+ cells and 7AAD+ Annexin V+ cells, which was
decreased after VU03 treatment (Fig. S5Q–S). Consistently, defi-
ciency of PLD1 significantly decreased the levels of Pld1 mRNA,
CD36 protein and mRNA, TG, TC, and LD in SP-treated Pld1(H)-KO
hepatocytes compared with those in SP-treated Pld1-Flox hepa-
tocytes (Fig. S5T–Y).

PA (a PLD1 product) regulates CD36 expression in hepatocytes
As a key enzyme regulating phospholipid metabolism, hepato-
cyte Pld1 knockout observably decreased the abundance of PA
and lysophosphatidic acid (LPA) (Fig. 5A and B). The levels of
PA32:2/1/0, PA34:2/1, and PA36:2/1 among 13 PA species and
those of LPA16:0 and LPA18:2/1 among 5 LPA species were
significantly decreased by hepatocyte Pld1 knockout (Fig. 5C).
Meanwhile, the content of PA and LPA increased in OA-treated
AML12 cells and decreased by inhibition of PLD1 (Fig. 5D and
E). The levels of PA32:1, PA34:2/1, PA36:2/1, and PA38:6/4/3
among 13 PA species and those of LPA16:0 and LPA18:1/0 among
3 LPA species were significantly decreased by VU01 and VU03
(Fig. 5F). SP treatment also elevated PA and LPA levels, whereas
PLD1 inhibitor VU01 and VU03 downregulated PA and LPA levels,
respectively (Fig. S6A and B). The levels of PA34:1, PA36:2,
PA38:6/4/3, and PA40:6/5 among 13 PA species and those of
LPA18:1 among 3 LPA species were significantly decreased by
VU01 and VU03 (Fig. S6C).

Because PA and LPA are products of PLD1, we explored
whether they regulate CD36 expression. We found that PA, but
not LPA, increased the mRNA expression levels of Cd36 in AML12
cells (Fig. 5G). Meanwhile, CD36 expression, which was reduced
by the inhibition of PLD1, was normalised by PA supplementa-
tion (Fig. 5H). These results suggest that PA, catalysed by PLD1,
plays a role in increasing CD36 expression in hepatocytes.

PA (a PLD1 product) impacts CD36 expression through PPARc
To explore the specific regulatory mechanism by which PA reg-
ulates Cd36 expression, we performed Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway enrichment analysis on the
differentially expressed genes in Pld1(H)-KO-HFD vs. Pld1-Flox-
HFD mice and found that the PPAR signalling pathway occupied
a prominent position (Fig. 6A). Among the genes that were
enriched in the PPAR pathway and differentially expressed in
both Pld1-Flox-HFD mice vs. Pld1-Flox-NCD mice and Pld1(H)-
KO-HFDmice vs. Pld1-Flox-HFD mice, we found Pparg to have the
same change trend as Cd36 (Fig. 6B). Similarly, both mRNA and
protein levels of PPARc were elevated after HFD feeding and
decreased by hepatocyte-specific deficiency of Pld1 (Fig. 6C and
D). In AML12 cells, inhibiting PLD1 using VU01 or VU03
decreased the mRNA expression levels of Pparg, which were
Tukey’s test for normal distribution and the Kruskal–Wallis test for abnormal
<0.05, **p <0.01, ***p <0.001. aaap <0.001, Pld1-Flox-NCD mice vs. Pld1-Flox-HFD
e transaminase; AST, aspartate transaminase; FFA, free fatty acid; GLU, glucose;
ase; NAS, NAFLD activity score; NCD, normal control diet; OGTT, oral glucose
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Fig. 5. PLD1 inhibition or knockdown decreased the content of PA and LPA. The changes of (A) PA and (B) LPA, and (C) heatmap of the different isoforms of PA
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increased by OA or SP treatment (Fig. 6E and Fig. S6D). The mRNA
expression levels of Pparg were also increased in OA-treated
Pld1-Flox hepatocytes, whereas they were decreased in
overexpression. (P) Gene expression levels of Pld1, (Q) representative Western
densitometry, (S) the mRNA expression levels of Cd36, (T) representative immun
nuclei in blue (DAPI), (U) BODIPY fluorescence intensity, and (V) the levels of TG a
n = 3–6 dishes of cells per group. Differences between two groups were compare
abnormal distribution. One-way ANOVA with Tukey’s test for normal distribution
differences among three or more groups. *p <0.05, **p <0.01, ***p <0.001. AML12, a
mean fluorescence intensity; NC, normal control; OA, oleic acid; PLD1, phosph
VU0359595.

JHEP Reports 2023
Pld1(H)-KO hepatocytes (Fig. 6F). PA stimulation could increase
Pparg gene expression in AML12 cells (Fig. 6G). Pparg reportedly
participates in the transcriptional regulation of Cd36, and we also
blot images showing CD36 and GAPDH levels, (R) quantification of CD36 by
ofluorescence staining images of lipid droplet in green (BODIPY, 493/503) and
nd TC in OA-treated primary hepatocytes from Pld1-Flox and Pld1(H)-KO mice.
d using Student’s t test for normal distribution and the Mann–Whitney test for
and the Kruskal–Wallis test for abnormal distribution were used for analysing
lpha mouse liver 12; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; MFI,
olipase D1; TC, total cholesterol; TG, triglyceride; VU01, VU0155069; VU03,
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predicted that there were Pparg transcription factor-binding sites
in the promoter region of Cd36 (Fig. 6H). Cleavage Under Targets
and Tagmentation (CUT&Tag)-PCR showed the presence of CD36
promoter region fragments in the DNA segment to which PPARc
protein binds in the AML12 cells. PA significantly increased the
binding of PPARc to the CD36 promoter region compared with
the normal control group (Fig. 6I). The upregulation of CD36
expression caused by PA was blocked by the PPARc antagonist
GW9662 (Fig. 6J–L).
Discussion
PLD hydrolyses phospholipids into fatty acids and lipophilic
substances. Phospholipases can be divided into four categories
according to their catalytic activity: A, B, C, and D. There are two
main subtypes of PLD in mammals: PLD1 and PLD2.17 PLD2 is
mainly associated with viral infection and Alzheimer’s disease,8

whereas PLD1 regulates LD formation, and the enzyme activity
of PLD1 is very important for the formation of LDs.10,11

PLD1 activity and the localised production of PA are required
for LD growth and accumulation.9 In NIH 3T3 cells, PLD1 is
present in LDs and promotes their formation.10,12 In metastatic
cancer cells, PLD1 promotes LD accumulation.18 Furthermore, PA
(a PLD1 product) is converted to DAG, which is further metab-
olised to either TG or PC, followed by enhanced lipid accumu-
lation in mouse embryonic fibroblasts.19 In addition, the
activation of PLD1 and formation of PA are critical for the as-
sembly and output of very low density lipoproteins in the rat
liver cell line McA-RH7777.20,21 These results suggest that PLD1
is an important regulator of lipid metabolism in various cells.

In our study, hepatocyte Pld1-specific knockout significantly
decreased lipid accumulation in hepatocytes via downregulating
CD36 expression. However, another study showed that Pld1
systemic knockout induced NAFLD by decreasing LD decompo-
sition owing to decreased autophagy.15 It was reported that PLD1
also expressed in HSCs. PLD1 could decrease type I collagen
levels in HSCs via induction of autophagy.22 Thus, systemic
knockout of PLD1 might increase HSC activation and promote
NAFLD development and liver fibrosis, which may partially
explain the discrepancy between Pld1 systemic and hepatocyte-
specific knockout mice. Further studies are needed to clarify the
role of PLD1 in different liver cells during NAFLD development.

Overexpression of fatty acid uptake systems, such as CD36
scavenger receptors, is an important cause of intracellular lipid
accumulation in non-adipose tissues.23 CD36 localisation is
reportedly increased in the plasma membrane of hepatocytes in
patients with non-alcoholic steatohepatitis.24 CD36-mediated
hepatic FFA uptake and chemokine ligand 2-induced inflamma-
tion jointly drive the progression of NAFLD to non-alcoholic
steatohepatitis.25 The rate of fatty acid uptake is controlled by
CD36 on the cell surface, which is mainly regulated by subcel-
lular vesicle circulation from the endosome to the plasma
membrane.26 In our study, CD36 was upregulated in Pld1-Flox-
HFD mice and downregulated in Pld1(H)-KO-HFD mice, consis-
tent with changes in the lipid accumulation phenotype and
NAFLD symptoms. In AML12 cells, the expression levels of CD36
increased after OA and SP treatment and then decreased by PLD1
inhibition. These results suggest that PLD1 may increase hepa-
tocyte lipid accumulation by promoting the CD36 expression.

Lipotoxicity is defined as a condition in which accumulation
of harmful lipids can lead to organelle dysfunction, and cell
injury and death, which are strongly associated with the
JHEP Reports 2023
progression from NAFLD to non-alcoholic steatohepatitis.27

Several lines of evidence indicated that alleviating lipotoxicity
was an effective strategy for preventing or improving NAFLD.28

When in excess, DAG, lysophosphatidylcholine, sphingolipids,
ceramides, FFA, and free cholesterol behave as lipotoxic lipid
species.29,30 These toxic lipids may cause cellular damage
through different mechanisms including the modification of
intracellular organelle function, such as the endoplasmic retic-
ulum and mitochondria, as well as the direct activation of death
receptor signalling pathways.29 In the present study, hepatocyte-
specific Pld1 deficiency significantly decreased hepatic DAG, FFA,
and cholesteryl ester, which may reduce the hepatotoxicity-
induced liver inflammation and fibrosis in HFD-fed mice.

Pld1-specific deletion in hepatocytes could lower mice liver
and body weight but did not affect mice food intake. PLD1, as a
member of the phospholipase family, plays important roles in
regulating hepatocyte lipid metabolism. Hepatocyte lipid meta-
bolism was closely related with plasma lipid level and body
weight. For example, sterol regulatory element binding protein
(SREBP) cleavage-activating protein (Scap)/SREBP pathway is
essential for the synthesis of fatty acids, TGs, and cholesterol in
all organs. Hepatocyte-specific deletion of Scap in ob/ob mice
could block hepatocyte fatty acid synthesis, prevent hepatic
steatosis, and decrease liver weight and body weight.31 Carbo-
hydrate responsive element-binding protein (ChREBP) also reg-
ulates lipogenesis through transcriptional regulation of lipogenic
genes, which significantly increase in ob/ob mice liver. Liver-
specific inhibition of ChREBP improves hepatic steatosis by
specifically decreasing lipogenic rates and also downregulates
liver and bodyweight.32 Therefore, we speculate that hepatic
specific Pld1 knockout could firstly downregulate hepatocyte
lipid metabolism, then alleviate hepatocyte lipid accumulation
and hepatic steatosis, and ultimately lead to liver and body
weight loss.

In this study, we also found that hepatocyte-specific Pld1
knockout in HFD-fed mice could not only decrease lipid accu-
mulation in hepatocytes but also decrease plasma lipids and
body weight. We speculate that Pld1 knockout in hepatocytes
decreases CD36 expression, lowers lipid accumulation in hepa-
tocytes, reduces lipotoxicity, enhances hepatocyte viability and
lipid metabolism functions, and finally reduces plasma lipid
levels. Meanwhile, lipid mass spectrometry analysis also showed
that hepatocyte-specific Pld1 deficiency significantly decreased
hepatic DAG, FFA, and cholesteryl ester, which may also reduce
the hepatotoxicity-induced hepatocyte dysfunction and NAFLD
in HFD-fed mice.

PPARc plays a key role in adipogenesis and is important in a
variety of cellular processes including cell cycle regulation, cell
differentiation, and insulin sensitivity.33 Furthermore, PPARc
targets adiponectin, a spacer between adipocytes, and maintains
its metabolic activity and insulin sensitivity.34 In addition, PPARc
can increase lipid uptake by affecting CD36. For instance,
osteoprotegerin promotes CD36 expression by acting on the
PPAR response element (PPRE) on the CD36 promoter to aggra-
vate liver lipid accumulation in NAFLD.35 Consistent with this
previous study’s finding, we found that PPARc upregulated the
expression of CD36 and led to lipid deposition.

The breakdown of PC by PLD produces PA, an important lipid-
derived secondmessenger that is involved in vesicle transport and
fusion.9 On the one hand, the negatively charged state of PA and
the local accumulation of its negative head group promote the
formation of curved membranes in the lipid bilayer, which is
10vol. 5 j 100726



conducive for the formation of vesicles.36 During nutritional
deprivation, PA recruits perilipin 3 to amplify LDs.13 It is alsoworth
mentioning that PA can be converted to DAG, which is further
metabolised to TAG, followed by enhanced lipid accumulation in
adipose tissue.19 On the other hand, LPA (a downstreamproduct of
PA) stimulates the expression of the PPRE reporter factor and
endogenous PPARc controlling gene Cd36, and inducesmonocytes
lipid accumulation from oxidised LDL.37 Similarly, in the present
study, we found that PA promoted the expression of PPARc and
CD36. Therefore, the mechanism by which PA promotes PPARc
and CD36 expression requires further investigation.

In summary, we found that the expression of PLD1 was
significantly increased in the steatosis livers of mice and humans
JHEP Reports 2023
with NAFLD. Hepatocyte-specific depletion of Pld1 significantly
reduced lipid accumulation in hepatocytes, both in vivo and
in vitro. Pld1(H)-KO mice exhibited significantly lesser weight
gain, lower fasting plasma lipid and GLU levels, and improved
GLU tolerance, insulin sensitivity, and NAFLD. PA may be the key
factor in activating the PPARc/CD36 pathway during hepatocyte
lipid accumulation.

In conclusion, the inhibition of hepatocyte PLD1 exerted
potent protective effects against HFD-induced hepatic steatosis.
The improved outcomes observed were attributable to a reduc-
tion in PPARc/CD36 pathway-mediated lipid accumulation in
hepatocytes. Therefore, PLD1 inhibition may be a new target for
the treatment of hepatic steatosis.
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