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Abstract: Flux enhancers (FEs) have been successfully applied for fouling mitigation in membrane
bioreactors. However, more research is needed to compare and optimise different dosing strategies
to improve the filtration performance, while minimising the use of FEs and preventing overdosing.
Therefore, the goal of this research is to develop an optimised control strategy for FE dosing into
an AnMBR by developing a comprehensive integrated mathematical model. The integrated model
includes filtration, flocculation, and biochemical processes to predict the effect of FE dosing on
sludge filterability and membrane fouling rate in an AnMBR. The biochemical model was based
on an ADM1, modified to include FEs and colloidal material. We developed an empirical model
for the FE-induced flocculation of colloidal material. Various alternate filtration models from the
literature and our own empirical models were implemented, calibrated, and validated; the best
alternatives were selected based on model accuracy and capacity of the model to predict the effect of
varying sludge characteristics on the corresponding output, that is fouling rate or sludge filterability.
The results showed that fouling rate and sludge filterability were satisfactorily predicted by the
selected filtration models. The best integrated model was successfully applied in the simulation
environment to compare three feedback and two feedforward control tools to manipulate FE dosing
to an AnMBR. The modelling results revealed that the most appropriate control tool was a feedback
sludge filterability controller that dosed FEs continuously, referred to as ∆R20_10. Compared to the
other control tools, application of the ∆R20_10 controller resulted in a more stable sludge filterability
and steady fouling rate, when the AnMBR was subject to specific disturbances. The simulation
environment developed in this research was shown to be a useful tool to test strategies for dosing
flux enhancer into AnMBRs.

Keywords: anaerobic membrane bioreactor (AnMBR); control tool; flux enhancer; integrated model;
sludge filterability

1. Introduction

Anaerobic digestion (AD) is a competitive technology for wastewater treatment, whose
main advantages include the conversion of the organic matter into biogas, low sludge
production, and no aeration requirement [1]. Anaerobic membrane bioreactor (AnMBR)
technology combines AD with membrane filtration to add the advantages of producing a
high-quality effluent and to achieving complete solids retention inside the reactor. However,
membrane fouling is one of the main operational challenges of AnMBRs.

The most implemented strategies to mitigate fouling in AnMBRs are [2,3]: (1) high
shear stress near the membrane surface, (2) increased frequency and duration of back-
washing and relaxation, (3) reduced transmembrane flux, and (4) increased frequency of
chemical cleaning. The first strategy is achieved through increased biogas sparging or
crossflow velocity, which are energy intensive processes that cause an increased energy
demand. The second and third strategies decrease the treatment capacity, namely the daily
volume of wastewater treated. The fourth strategy reduces the lifespan of the membranes.
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Alternative fouling mitigation strategies have been reported, such as the use of scouring
agents, dosing flux enhancers (FEs), the use of vibrating/rotating membranes, and ap-
plication of an electric field by using microbial electrolysis cell [3]. Particularly, cationic
polymers have been successfully applied as FE in membrane bioreactors fed with real
wastewater [4–13] and synthetic wastewater [14–20]. However, despite some successful
applications, a proper FE dosing control tool is lacking, and different empirically based
approaches are followed. In most cases, FE dosage to membrane bioreactors follows a
”feedforward dosing” strategy, as defined in Odriozola et al. [13]. Feedforward dosing
does not consider possible disturbances and is based on different assumptions related
to possible FE losses and target optimal FE concentrations, which in effect might lead
to FE underdose or overdose. ”Feedback dosing” might be a good alternative to avoid
underdosing and overdosing because the FE dosage is adjusted based on an input variable
that quantifies the sludge filtration characteristics [21,22]. Therefore, feedback dosing can
reject possible disturbances and does not require the assumptions made in feedforward
dosing. Despite the possible advantages of feedback dosing, to the best of our knowledge,
the only published study that used it was by Alkmim et al. [12], who manually performed
a feedback dosing strategy, using time-to-filter measurements to assess the sludge filtration
properties and dosing a pulse of FEs when the time-to-filter exceeded 200 s−1. The authors
compared feedback and feedforward dosing, which they referred to as corrective and
preventive dosage, respectively. Feedforward dosing caused more stable time-to-filter data
and used a lower amount of FEs than feedback dosing. However, the comparison between
dosing strategies was challenging due to differences in operational conditions. For example,
during the feedforward dosing assessment, sludge was lost due to a leakage that might
have caused FE loss which could explain the higher amount of FE used. Therefore, more
research is needed to compare and optimise different dosing strategies to improve the
filtration performance, while minimising the use of FEs and avoiding overdosing.

Application of a proper FE dosing strategy in membrane bioreactors requires the
presence of reliable input data that activates a control tool. Various researchers have
suggested the application of the online measurement of sludge filtration characteristics as
an input variable [21,22]. Accordingly, in situ measurement of sludge filterability, measured
with the anaerobic Delft filtration characterization method (AnDFCm) mounted in parallel,
have proven to be an appropriate input variable for manipulating FE dosage for fouling
control in a pilot-scale AnMBR [13]. Moreover, a control tool that couples sludge filtration
characteristics measurements (such as filterability) with the membrane filtration process
state variables (such as fouling rate) could identify the actual cause of changes in filtration
performance and decide on the appropriate intervention [13,23], which is not necessarily
restricted to FE dosing.

Comparing various FE dosing strategies using experiments, independent of the scale,
can be expensive and time-consuming. Additionally, dosing strategies should ideally
be compared under identical operational conditions, which is challenging to achieve in
different reactors in parallel or in the same reactor at different moments. A simulation
environment is regarded as an effective tool to test various FE dosing strategies for fouling
control, provided the model structure is commonly accepted. The simulation environment
should have a comprehensive model that can predict the effect of FE dosing on membrane
fouling rate and sludge filterability. However, thus far, such a comprehensive model
has never been presented in the literature. Nevertheless, multiple models with diverse
complexity have been discussed for the different processes involved in membrane biore-
actors, including filtration, biochemical, hydrodynamic, and flocculation models [3,24,25].
These models can be adapted and coupled into a comprehensive integrated model that
describes an AnMBR under FE dosage. The first step towards developing such an inte-
grated model is to identify the variables that are affected by the FE dosage and influence
the filtration performance.

Colloidal material has been consistently identified as a major factor that affects sludge
filterability [26] and reversible fouling in membrane bioreactors [13,27–32]. Colloidal
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material deposited in the cake layer can decrease cake porosity by filling the void space of
the cake. The concentration of colloidal material decreases after dosing cationic polymers
as FEs, while the floc size increases [13,26]. Regarding floc size, larger flocs can form more
porous cakes, reduce the adhesion of the flocs to the membrane, increase the back transport
of flocs from the membrane surface to the bulk liquid, and reduce cake layer thickness
by surface erosion [27,33–35], thus, decreasing membrane fouling. However, the effect
of floc size on membrane fouling is controversial [13]. Floc size can have a substantial
effect on membrane fouling for small flocs, whereas further increasing the size of already
large particles might have a negligible effect on fouling mitigation. Considering the above,
the colloidal material concentration is likely an appropriate state variable to describe the
effect of FE dosing on the membrane fouling rate and sludge filterability, whereas floc
size may not be an appropriate variable. The concentration of particulate material is a
poor indicator of sludge fouling propensity by itself [28]. However, it is a crucial input
variable in filtration models because it affects cake layer formation by particle deposition
over the membrane surface and may play a role in scavenging colloidal material [36].
The concentration of particulate material is affected by biochemical processes (such as
bioconversion, biomass growth, and decay), influent characteristics, and flocculation of
colloidal material. Therefore, to predict the effect of FE dosing on membrane fouling rate
and sludge filterability, an integrated model including filtration with colloidal material
deposition, (FE-induced) flocculation, and biochemical processes is needed.

The IWA anaerobic digestion model No. 1 (ADM1) [37] has been widely applied to
simulate the biochemical processes occurring in anaerobic reactors [3,38,39], including
AnMBRs. Other biochemical models applied in AnMBR include the biological nutrient
removal model No. 2 (BNRM2) [40] and the simple anaerobic model AM2b that incorpo-
rates the kinetics of soluble microbial products (SMP) [41]. Although anaerobic digestion
modelling is a relatively mature field, the kinetics of colloidal material has not yet been in-
corporated. Moreover, the FE could have a detrimental effect on the biological activity [42].
Therefore, to model an FE-dosed AnMBR, the biochemical models should be extended to
incorporate colloidal material and FEs.

The filtration process in membrane bioreactors mostly has been modelled with grey
box models, particularly, by applying the resistance-in-series model, Darcy’s Law, drag
and lift forces, and the Carman–Kozeny equation to predict the membrane performance
(such as fouling rate, transmembrane pressure, and transmembrane flux) based on sludge
characteristics and operating conditions [3,24,25]. Researchers have modelled the reduction
in cake layer porosity, and consequently, the increase in the specific cake resistance (SCR),
caused by the entrapment of colloidal material [43], extracellular polymeric substances
(EPS) [44], SMP [45,46], and submicron material [47]. This could be an appropriate approach
to incorporate the effect of FE dosing on membrane fouling and sludge filterability through
changes in the concentration of colloidal material.

To model the flocculation process, population balance models (PBM) have been widely
applied in chemical engineering to predict the particle size distribution [48]. However,
incorporating PBM in an AnMBR integrated model results in an extremely complex model
with many state variables. Alternatively, a simpler flocculation model that describes the
dynamics of floc size (i.e., mean particle size) can be useful and are sufficient to assess the
necessity of floc size as a linking variable between a biochemical-flocculation model and
filtration models.

The objective of this research is to develop an optimised control strategy for FE dosing
into an AnMBR by developing a comprehensive integrated mathematical model. The
integrated model was calibrated and validated using previously published data from a pilot-
scale AnMBR treating blackwater [13,26]. The integrated model was used as simulation
environment to test five control tools for manipulating FE dosing to an AnMBR. The
developed integrated model includes flocculation, filtration, and biochemical processes to
predict the effect of FE dosing on sludge filterability (as measured with the AnDFCm) and
membrane fouling rate in an AnMBR. The tested control tools were: two feedback sludge
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filterability controllers, two feedforward FE concentration controllers, and one feedback FE
concentration controller.

2. Materials and Methods
2.1. Experimental Data

The models were calibrated and validated using previously published data from a
pilot-scale AnMBR plant treating blackwater from the main office building of the Business
Centre Porto do Molle, Nigrán, Pontevedra, Spain. The experimental data consisted of
monitoring data from the continuous operation of the pilot dosed with FE [13], and FE
dosage-step experiments with grab samples [26]. During the operation of the pilot, a
pulse input of the cationic polymer Adifloc KD451 (Adipap SA, Versailles, France) was
introduced to the bypass line on Day 16 (see [13]). Sludge filterability, based on the
anaerobic Delft filtration characterisation method (AnDFCm) [26], was measured ex situ
during the dosage-step tests [26], and in situ during the pilot operation by connecting
the AnDFCm installation in bypass to the pilot [13]. The output of the AnDFCm is the
additional resistance obtained when 20 L of permeate per m2 of membrane surface area are
produced, denoted as ∆R20; the sludge filterability is inversely related with ∆R20. Further
details about the pilot-scale AnMBR are described in Odriozola et al. [13], and Section
S1 presents complementary information, experimental results, and procedures for data
treatment relevant to this research.

Furthermore, two additional experiments were performed to estimate certain parame-
ter values. The description and results of these experiments are presented in Section S2. In
short, batch flocculation kinetic experiments were performed to estimate the FE adsorption
rate coefficient (kads), and sludge viscosity measurements were performed in the AnDFCm
installation to estimate the parameters of the mixed liquor viscosity model, a and b in
Equation (36), for the AnDFCm filtration model. The dynamic viscosity of the mixed liquor
(µL) was calculated using the experimentally measured pressure drop along the membrane
in the AnDFCm installation [49,50], while sludge samples with different total suspended
solids (TSS) concentrations were used.

2.2. General Model Description and Approach

The required submodels for developing the control tool for an optimised FE dosing
strategy are overviewed in Figure 1. The main outputs of the integrated model are the
AnMBR membrane fouling rate and the sludge filterability expressed as ∆R20. The inte-
grated model couples a biochemical-flocculation model with two filtration models: one
for the AnMBR membrane module and one for AnDFCm installation membrane. The
biochemical-flocculation model predicts the sludge characteristics that are used as input
in both filtration models. For the AnMBR and AnDFCm filtration models, we compared
several alternate models to select the best-fitting ones.

The AnMBR filtration process was modelled using two alternate approaches: (1) FR_RIS
model and (2) empirical FR model. In the FR_RIS model, the fouling rate (FR) is calculated
as the change in transmembrane pressure (TMP) over time during each filtration cycle
(dTMP/dt). The TMP is calculated by combining three submodels: resistance-in-series (RIS),
deposition, and SCR. The deposition submodel is an ordinary differential equation system
to describe the deposition of colloidal and particulate material onto the membrane. The
SCR submodel is an equation to calculate the SCR based on the amount and characteristics
of the material deposited onto the membrane. We compared 28 alternate FR_RIS models
that result from all possible combinations among: four alternate deposition submodels
(Section 2.4.3), seven alternate SCR submodels (Section 2.4.2), and one RIS submodel
(Section 2.4.1). The empirical FR model is an algebraic equation to calculate FR directly
from the operational variables and mixed liquor properties, we proposed six alternate
empirical FR models (Section 2.5). Therefore, 34 alternate AnMBR filtration models were
compared, i.e., 28 FR_RIS and 6 empirical FR models.
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In the AnDFCm filtration model the ∆R20 is the resistance of the cake layer (Rc)
after 1200 s of continuous filtration under the operational conditions of the AnDFCm. Rc
is calculated by combining deposition and SCR submodels. We compared 21 alternate
AnDFCm models (Section 2.6) that result from combinations of three deposition and seven
SCR alternate submodels.

Figure 1. Modelling approach scheme. Between square brackets is the number of compared alternate
models to select the most appropriate model. Abbreviations: ADM1, anaerobic digestion model
No. 1; AnDFCm, anaerobic Delft filtration characterization method; RIS, resistance-in-series; SCR,
specific cake resistance; TMP, transmembrane pressure; D1a, D1b, D1c, D2, and D3 are alternate
deposition submodels; αc,1, αc,1p, αc,2, αc,2p, αc,3, αc,3p, and αc,4 are alternate SCR submodels; and FR1
to FR6 are alternate empirical FR models.

2.3. Biochemical-Flocculation Model

The biochemical-flocculation model is an amended ADM1 [37], modified to include
the following processes caused by FE dosing: adsorption of FE onto particulate material,
flocculation of colloidal material, and change in mean particle size as a result of flocculation.
The model includes three new components as follows: inert colloidal material (CI), FE in
the bulk liquid (soluble, Sfe), and adsorbed FE (Xfe). Section S3 displays the scheme of the
modified ADM1 and the stoichiometric (Petersen) matrix and process rate equations.

The modelled FE is a cationic polymer that interacts with the negatively charged
surface of particulate and colloidal material. The adsorption of FE onto particulate material
is described with the pseudo-first order model [51] in Equation (1), the FE adsorption
onto particulate material promoted the flocculation of colloidal material as described in
Equation (2):

ρ23 = kads(Xfe,e − Xfe), (1)

ρ24 = Yfe,C kads(Xfe,e − Xfe)
CI/iCOD,CI

cX + cC

XI

XI + 1× 10−6 , (2)

where kads is the adsorption rate coefficient; Xfe,e is the adsorbed concentration of FE after
equilibrium; Xfe is the concentration of FE adsorbed onto particulate material; Yfe,C is
the yield of colloidal material flocculated per unit of FE adsorbed onto the particulate
material; CI is the concentration of colloidal inert; XI is the concentration of particulate
inert; iCOD,CI is the theoretical chemical oxygen demand (COD) for CI; and cC and cX are
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the total concentration of colloidal and particulate material, respectively, expressed as
suspended solids, and calculated as follows:

cC = ∑i Ci/iCOD,i, (3)

cX = ∑i Xi/iCOD,i, (4)

where iCOD,i is the theoretical chemical oxygen demand for component i.
Through Equation (2) the model considers the deflocculation of XI into CI when

the concentration of FE decreased, and thus, the last term in Equation (2) was intro-
duced to avoid negative CI values when XI approaches zero and there is no material to
be deflocculated.

To calculate Xfe,e, the Langmuir adsorption isotherm in Equation (5), which describes
the equilibrium conditions, is combined with Equation (6), which is the mass balance of FE
inside the reactor at equilibrium conditions:

Xfe,e = qm,ads cX
KL,ads Sfe,e

1 + KL,ads Sfe,e
, (5)

Sfe,e = (cfe − Xfe,e), (6)

where qm,ads is the maximum adsorption capacity corresponding to monolayer coverage,
KL,ads is the Langmuir affinity coefficient, Sfe,e is the concentration of FE in the bulk liquid
after equilibrium, and cfe is the total concentration of FE inside the reactor.

Hydrolysis of decayed biomass has been reported as the slowest process in anaerobic
digestion [52]. Thus, we modified the ADM1 approach and decoupled the degradation
rates of the decayed biomass and of the particulate material of the influent. For this, the
model incorporates the disintegration of decayed biomass as the rate limiting process in
biomass degradation, whereas the particulate material of the influent directly hydrolyses
(without disintegration).

The following additional modifications and assumptions in ADM1 were made:
(1) removal of ammoniacal nitrogen inhibition of acetoclastic methanogenesis, because it
is negligible in the pH range 7.0–7.5 and at total nitrogen concentrations in the permeate
of 80–200 mgN L−1, as measured in the pilot-scale AnMBR [53]; (2) inclusion of a non-
competitive inhibition of acetoclastic methanogenesis by FE (Ife,ac) [42]; and (3) inclusion
of pH as an input of the model instead of performing the ion balance because pH was
measured online by the supervisory control and data acquisition (SCADA) system.

Our model assumes that all soluble components pass through the membrane and
reach the permeate, whereas the colloidal and particulate components are retained by
the membrane and remain inside the reactor. Equation (7) gives the mass balances of
component i in the liquid phase, and Equation (8) the mass balances of component i in the
gas phases:

dci
dt

= Ei − fi,WS
ciQWS

VL
− fi,P

ciQP

VL
+

1
tconv

∑j=[1−23] υi,jρj, (7)

dci,G

dt
= − ci,GQG

VG
+

VL

tconv VG
∑

j=[19−21]
υi,jρj, (8)

where Ei is the input function of component i; fi,P is the fraction of component i that passes
through the membrane and reaches the permeate ( fi,P = 0 for colloidal and particulate
components and fi,P = 1 for soluble components); fi,WS is the fraction of component i
that leaves the reactor with the sludge waste ( fi,WS = 1 for all components); υi,j is the
stoichiometric coefficient of component i in process j and ρj the rate of process j; tconv the
time conversion factor (86,400 s d−1); ci,G is the concentration of component i in the gas
phase; VL is the total mixed liquor volume; and VG the volume of the gas phase in the
reactor. Ei was calculated with the concentration of component i in the influent (ci,Inf),
Equation (9).
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The FE was added to the reactor in a separate flow, which increased the concentration
of FE in bulk liquid (Sfe ≡ S13):

Ei =

{ ci,Inf QInf
VL

, i = [1, 12] ∪ [14, 26]
.

mfe
VL

, i = 13
. (9)

In the pilot-scale AnMBR (described in Section S1), the mean particle diameter (dp) was
almost constant throughout the operational period without dosing FE. We referred to this
mean size as the mean particle diameter at stable operation (dp,St). Moreover, immediately
after dosing FE to the pilot, dp increased, and then it decreased continuously until it
reached dp,St. Therefore, we proposed the empirical model in Equation (10) to describe the
dp dynamics in the pilot AnMBR:

ddp

dt
=

1
tconv

(
kfloc,fe

dXfe
dt

+
(
dp,St − dp

)
kfloc

)
, (10)

where kfloc is the empirical flocculation-deflocculation rate that represents aggregation
and breakage, and kfloc,fe is the FE-induced flocculation yield. The first term represents
the immediate increase after FE dosing, where dp changes linearly with the adsorbed
FE concentration, as experimentally observed in dosage-step tests with grab sludge sam-
ples [26]. The second term of the equation represents the tendency of dp to reach dp,St in the
pilot-scale AnMBR.

2.4. AnMBR Filtration: Alternate FR_RIS Models

The AnMBR FR_RIS filtration models predict the cake layer formation by attachment
and detachment of particulate material onto the membrane, and the SCR (αc) by entrapment
of colloidal material in the cake layer. The model output is fouling rate (FR) calculated with
a linear regression model using the simulated TMP, Equation (S.5) in Section S1.

2.4.1. Resistance-In-Series (RIS) Submodel

The TMP was calculated by Darcy’s law, as follows:

TMP = JµRt, (11)

where Rt is the total filtration resistance, µ is the dynamic viscosity of the permeate, and J
is the transmembrane flux. The permeate viscosity was assumed to be equal to pure water
viscosity and calculated at the measured temperature (T, K) with the following empirical
relationship [54]:

µ = 0.001 exp
(

0.580− 2.520 θ + 0.909 θ2 − 0.264 θ3
)

, with θ =
3.661 (T − 273.1)

273.1
. (12)

Although no chemical cleaning was performed in the pilot-scale AnMBR during
2 years of operation, no irreversible fouling was observed. Therefore, the irreversible
fouling resistance was neglected, and Rt was calculated with the following RIS submodel:

Rt = Rm + Rc, (13)

where Rm is the intrinsic resistance of the membrane and Rc is the cake-layer resistance. Rc
is the product between the mass of particulate material deposited per membrane area (ωX)
and the SCR (αc), as follows:

Rc = ωXαc. (14)

2.4.2. Alternate Specific Cake Resistance (SCR) Submodels

Seven alternate SCR submodels were compared. In the first submodel, referred to
as αc,1, the SCR was calculated with Equation (15) which combines the Carman–Kozeny
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equation for flow through a bed of spheres [55] with Darcy’s Law and the thickness of the
cake layer as δc = ωX/(ρX(1− εc)).

αc,1 =
kCK (1− εc)

ρX d2
p εc3 , (15)

where kCK is the proportionality Carman–Kozeny coefficient (which includes the shape
factor), εc is the cake layer porosity, ρX is the density of particulate material deposited onto
the membrane, and dp is the mean diameter of the deposited particles which was assumed
equal to the mean diameter of the particles in the bulk liquid. The latter assumption neglects
the selectivity towards the deposition of smaller particles, which has been previously
described [56]. However, this assumption was regarded as sufficient in this first modelling
approach to assess the necessity of incorporating floc size as a linking variable between
biochemical-flocculation and filtration models. The effect of the smaller particles deposited
onto the membrane was accounted for by incorporating colloidal material as a state variable.

The colloidal material entrapped in the cake layer decreases the cake layer porosity
(εc) as follows [43]:

εc = εc0 − (1− εc0)
ωC ρX

ρC ωX
, (16)

where ρC and ωC are the density and mass per unit of area of colloidal material deposited
on the membrane, respectively.

Several authors have reported the compression of the cake layer caused by TMP,
which might cause deformation of soft sludge flocs and structural rearrangement of
particles [57–61]. Therefore, we define the SCR submodels αc,1p as the extended versions of
αc,1 that includes cake compression. The SCR of the compressed cake layer at the operating
pressure (αc,1p) is calculated using the SCR at zero pressure (αc,1), the pressure drop over
the cake (∆Pc), and the pressure needed to double the specific resistance (Pa), as follows:

αc,p = αc

(
1 +

∆Pc

Pa

)
. (17)

By Darcy’s law ∆Pc = JµωXαc,p, and thus, combining Darcy’s law with Equation (17)
the following equation was derived:

αc,1p =
αc,1(

1− JµωXαc,1
Pa

) . (18)

The SCR submodel αc,2, was the model proposed by Wu et al. [43], presented in
Equation (19), which does not include the dependency of dp. Analogous to αc,1, αc,2 was
extended into αc,2p, as shown in Table 1:

αc,2 =
kc (1− εc)

2

ρX εc3(1− εc0)
, (19)

where kc is a cake resistant coefficient and εc0 is the cake layer porosity without colloidal
material.

Moreover, Cho et al. [44] developed an empirical equation to calculate SCR based on
the concentration of extracellular polymeric substances, total suspended solids, and TMP.
Several researchers have successfully applied this equation or slightly modified versions in
aerobic MBRs [45,47,62,63]. Furthermore, Mannina, Suh and collaborators [62,63] modified
Cho’s model to exclude the TMP dependency by using the TMP coefficient Pb. We included
the following three SCR submodels based on Cho’s equation: αc,3, αc,3p, and αc,4p. The
former, αc,3, corresponds to the equation presented by Mannina, Suh and collaborators,
Equation (20); and αc,3p is the compressible version of αc,3, presented in Table 1. Then, αc,4p
is an adapted version of Cho’s original equation, where the ratio EPS/TSS was substituted
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by ωC/ωX, presented in Equation (21). The model αc,4p already includes cake compression
because it is TMP dependent:

αc,3 =
Pb
µ2

(
ζ1 + ζ2

(
1− exp

(
−ζ3

ωC

ωX

))ζ4
)

, (20)

αc,4p =
TMP

µ2

(
ζ1 + ζ2

(
1− exp

(
−ζ3

ωC

ωX

))ζ4
)

, (21)

where ζ1, ζ2, ζ3, and ζ4 are empirical coefficients. In αc,4p, the SCR was calculated combining
Equations (11), (13), (14), and (21), as follows:

αc,4p = Rm

 µ

J
(

ζ1 + ζ2

(
1− exp

(
−ζ3

ωC
ωX

))ζ4
) −ωX


−1

. (22)

Table 1. Specific cake resistance (SCR, αc) submodels and the effects accounted for in each submodel.

SCR Submodel Equation
Effects Considered

Colloidal Material Particle Size Compression, TMP

αc,1
kCK (1−εc)
ρX d2

p εc
3 X X

αc,1p
αc,1(

1− JµωXαc,1
Pa

) X X X

αc,2
kc (1−εc)

2

ρXεc
3(1−εc0)

X

αc,2p
αc,2(

1− JµωXαc,2
Pa

) X X

αc,3 Pb
µ2

(
ζ1 + ζ2

(
1− exp

(
−ζ3

ωC
ωX

))ζ4
)

X

αc,3p
αc,3(

1− JµωXαc,3
Pa

) X X

αc,4p Rm

 µ

J
(

ζ1+ζ2

(
1−exp

(
−ζ3

ωC
ωX

))ζ4
) −ωX

−1
X X

2.4.3. Alternate Deposition Submodels

Two modelling approaches were compared to describe the cake layer formation by
deposition of particulate material on the membrane surface. The first approach, further
called “Deposition Submodel 1 (D1)”, was developed by Robles et al. [58] to describe the
filtration process in a submerged AnMBR. The second approach, “Deposition Submodel
2 (D2)”, was developed by Li and Wang [64] and applied by different researchers in
aerobic MBRs [43,45,61–63,65]. The deposition of colloidal material in the cake layer was
based on the approach of Wu et al. [43]. Table 2 shows the stoichiometric coefficients and
the kinetic expressions for both deposition submodels, and the extensions for colloidal
material deposition.

Deposition Submodel 1 (D1) includes two processes related to particulate material.
Process 1 is the attachment of particulate material onto the membrane promoted by the flow
of permeate and as a function of the concentration of particulate material in the bulk liquid
(cX), Equation (23), where J20 is the 20 ◦C normalised transmembrane flux. Process 2 is the
detachment of particulate material promoted by the shear stress caused near the membrane
surface by biogas sparging in the membrane tank, Equation (25). Robles et al. [58] also
included the particulate material detachment during backflushing which was not included
in our model since the pilot-scale AnMBR did not operate with backflushing.
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Table 2. Stoichiometric coefficients and kinetic expressions for material deposition onto the membrane
in alternate deposition submodels (D1 and D2).

Component i→
Process j ↓

ωX
Deposited
Particulate

ωC
Deposited
Colloidal

cX
Particulate

in Bulk
Liquid

cC
Colloidal in
Bulk Liquid

Deposition Submodel 1 (D1)
(Drag Forces)

Deposition Submodel
2 (D2)

(Drag and Lift Forces)

1 Attachment of
particulate material 1 −1 J20 cX (23) 24 J

24 J + Cd dp G JcX (24)

2
Detachment of

particulate material
by biogas sparging

−1 1 qm,MS
ωX

KS,c/Am + ωX
IMS

uG
HMT

ωX (25) βST G ωX
γVF + ωX

ωX (26)

3 Attachment of
colloidal material 1 −1 J20 cC (27) fC,c J cC (28)

4
Detachment of

colloidal material by
biogas sparging

−1 1 qm,MS
ωX

KS,c/Am + ωX
IMS

uG
HMT

ωC (29) βST G ωX
γVF + ωX

ωC (30)

Robles et al. [58] modelled Process 2 (detachment of particulate material) as a half-
saturation switching function, Equation (25), where qm,MS is the maximum membrane
scouring velocity, KS,c is the half-saturation coefficient for cake mass during membrane
scouring, Am is the membrane surface area, uG is the gas superficial velocity in the AnMBR
membrane tank, and HMT is the liquid level in membrane tank. Furthermore, based on
experimental observation, they included a sigmoid inhibition function (IMS) to account for
the impact of filtering at conditions above and below critical levels, Equation (31) in Table 3,
where KF is an adjustable parameter representing the fouling rate when J20 approaches
zero; γ0, γ1, and γ2 are parameters representing the influence of filtering capacity, biogas
sparging, and particulate material on the fouling rate, respectively.

Table 3. Sigmoid inhibition function (IMS) equations for alternate deposition submodels (D1a, D1b,
and D1c).

Deposition Submodel IMS Equation

D1a IMS = (1 + FR)−1 with FR = KFeJ20(γ0 − γ1
uG

HMT
+ γ2cX) (31)

D1b IMS = (1 + FR)−1 with FR = KFeJ20(γ0 − γ1
uG

HMT
+ γ2cX + γ3cC) (32)

D1c IMS = 1 (33)

Different equations to calculate IMS were developed, summarised in Table 3, to be
included in Deposition Submodel D1. Depostion Submodel D1a is the original model by
Robles et al. [58], D1b is an extension to account for the influence of colloidal material with
the parameter γ3. D1c is a simplified submodel that eliminates the impact of filtering at
conditions above and below critical levels (i.e., IMS = 1).

Robles’ model [58] was extended to incorporate the deposition of colloidal material on
the membrane surface. Analogous to the attachment of particulate material, the attachment
of colloidal material to the membrane (Process 3) was promoted by the permeate flow
and the concentration of colloidal material in the bulk liquid (cC), Equation (27). The
detachment of colloidal material from the membrane (Process 4), Equation (29), was caused
by the detachment of the particulate material weighed by the ratio of colloidal to total
material deposited.

Deposition Submodel 2 (D2) describes the attachment of particulate material (Process
1) based on two competing forces, namely attraction drag from the permeate flow and
lifting force caused by the shear stress near the membrane surface. The kinetic expression
of Process 1 is in Equation (24), where Cd is the drag coefficient, G is the apparent shear
rate, and J is the transmembrane flux (at the operating temperature). The detachment of
particulate material, Process 2, was calculated with Equation (26), where γ is the compres-
sion coefficient, VF is the volume of permeate produced within the filtration time tF with
VF = JtF, and βST is a lumped parameter with βST = β(1− KST) where β is the erosion rate
coefficient of the cake layer and KST is the stickiness coefficient.
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The apparent shear rate, G, was calculated based on the uG, and the density (ρL) and
dynamic viscosity (µL) of the mixed liquor, as follows:

G =

√
ρL g uG

µL
. (34)

We assumed that ρL is equal to the density of water (ρW) at the operational temperature
T (K), The parameters of the quadratic function in Equation (35) were optimised to fit the
ρW versus T data [66], with a coefficient of determination (R2) of 0.9997:

ρW = −0.0033 T2 − 0.1048 T + 1001.5. (35)

The viscosity µL was a function of the concentration of solids in the bulk liquid (TSS)
and the viscosity of water at T, as follows [67]:

µL = a µW eb TSS, (36)

where a and b are parameters, with a = 1.05 and b = 0.08.
In Deposition Submodel 2, the attachment and detachment of colloidal material to

the membrane was modelled following Wu et al. [43]. The attachment (Process 3) was
calculated with Equation (33), where fC,c is the fraction of colloidal material entrapped in
the cake layer. The detachment (Process 4) was caused by detachment of the cake layer,
calculated with Equation (35).

2.5. AnMBR Filtration: Alternate Empirical FR Models

The empirical FR models are algebraic equations to calculate FR directly from the
operational variables and mixed liquor properties, summarised in Table 4. The first FR
model, FR1, is the one proposed by Robles et al. [58] for IMS calculation and extended for
colloidal material, presented in Equation (32). This model was further modified into FR2
by eliminating the effect of cX, because the concentration of particulate material is a poor
indicator of biomass fouling propensity by itself [28].

Table 4. Alternate empirical FR models.

FR Model IMSEquation

1 FR = KFeJ20(γ0−γ1
uG

HMT
+γ2cX+γ3cC) (32)

2 FR = KFeJ20(γ0−γ1
uG

HMT
+γ3cC) (37)

3 FR = fconv KF u−γG
G eJ20(γ0+γ3cC) (38)

4 FR = KFeJ20(γ0−γ1
uG

HMT
+γ2cX+γ3cC−γ4dp) (39)

5 FR = KFeJ20(γ0−γ1
uG

HMT
+γ3cC−γ4dp) (40)

6 FR = fconv KF u−γG
G eJ20(γ0+γ3cC−γ4dp) (41)

Based on the gas-step experiments in the pilot-scale AnMBR described in Section S1,
the FR was proportional to u−γG

G , where γG is a parameter, this was incorporated in FR3.
The conversion factor fconv was introduced to achieve similar FR values as the model FR2
as follows: fconv = uG

γG , where uG is the mean gas velocity in the pilot-scale AnMBR,
uG = 0.003 m s−1.

As discussed in Odriozola et al. [13], it is not clear if the floc size influences membrane
fouling. Therefore, we compared empirical FR models including and excluding mean
particle size, dp, as an input variable. The empirical models FR1, FR2, and FR3 were
extended into FR4, FR5, and FR6, respectively, that included dp.

2.6. AnDFCm Filtration: Alternate Models

The ∆R20, which is inversely related with sludge filterability, is the additional re-
sistance obtained when a specific permeate volume (VF) of 20 L per m2 of membrane
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area is produced in the AnDFCm installation. The ∆R20 was measured at 60 L m−2 h−1

(1.67 × 10−5 m3 m−2 s−1) transmembrane flux (JAnDFCm) and 1.5 m s−1 crossflow velocity
(uL,AnDFCm). At 60 L m−2 h−1 flux, the final filtration time to obtain 20 L m−2 of permeate
is 1200 s. Therefore, the AnDFCm filtration models predicted ∆R20 as Rc after 1200 s of
continuous filtration under the operational conditions of the AnDFCm starting with a clean
membrane, meaning the initial conditions are wC = 0 and wX = 0, thereby, initial Rc = 0.

The cake layer resistance, Rc, was calculated with Equation (14), and combining the
alternate SCR submodels described in Section 2.4.2 and the alternate deposition submodels
in Section 2.4.3, with the following modifications:

• The gas superficial velocity in the AnMBR membrane tank (uG) was replaced by the
crossflow velocity in the AnDFCm membrane tube (uL,AnDFCm = 1.5 m s−1);

• The transmembrane flux was J = JAnDFCm (1.67 × 10−5 m3 m−2 s−1) and
J20 = JAnDFCm µ/µ20;

• There were no relaxation cycles (continuous filtration);
• The parameters of the mixed liquor viscosity model, a and b in Equation (36), were

estimated based on the viscosity measurement performed in the AnDFCm installation
with sludge samples with different TSS, presented in Section S2;

• Deposition Submodels D1a and D1b were not used because they were equal to D1c
for the AnDFCm installations; the superficial velocity in the AnDFCm installation
(uL,AnDFCm = 1.5 m s−1) was three orders of magnitude higher than in the AnMBR
(0.5 × 10−3 < uG < 5.7 × 10−3 m s−1), and thus IMS ∼= 1 in Equations (31) and (32).

The AnDFCm installation operates in continuous filtration mode and at fixed trans-
membrane flux and crossflow velocity. Thus, in addition to D2 and D1c, we propose a
simplified deposition submodel, referred to as “Deposition Submodel 3” (D3), as follows:

ωX = fX,c VF cX, (42)

ωC = fC,c VF cC, (43)

where fX,c and fC,c are the fractions of particulate and colloidal materials deposited onto the
membrane, respectively. These fractions represent the balance between the different forces
acting over the particles. When fX,c and fC,c both equal one, all the material is deposited
in the membrane, analogous to dead-end filtration. Deposition Submodel 3 consisted of
algebraic equations instead of ordinary differential equations (ODE), which simplified
the resolution and computational cost considerably. Deposition Submodels D1c, D2, and
D3 were coupled with the 7 alternate SCR submodels in Table 1, obtaining 21 alternate
AnDFCm models to compare.

2.7. Model Implementation and Parameter Values

The ODE of the biochemical-flocculation model was solved with the built-in ODE
solver ode15s in Matlab® R2019b, using a timestep of 0.01 d (864 s). The ODE of the
deposition submodels were solved using ode45 in Matlab® R2019b to obtain ωC and ωX as
a function of time. The timestep was set sufficiently low, 10 s, to capture the operational
stages (filtration and relaxation) in the pilot-scale AnMBR and avoid numerical problems.
Subsequently, the SCR was calculated applying the equations in Table 1.

Most parameter values were taken from the literature [37,43,45,52,58,63,64,68–82] or
were estimated based on experimental data and different assumptions, as described in
Section S4.

2.8. Model Calibration and Validation

The biochemical-flocculation model, the 34 alternate AnMBR filtration models, and
the 21 alternate AnDFCm filtration models were calibrated separately. The calibration
procedure, detailed in Section S5, consisted of the following steps: (1) the subset contain-
ing only influential parameters (θI) was selected using global sensitivity analysis (GSA),
(2) identifiability analysis from θI was used to select a new subset θI I that can be reliably
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estimated from the given experimental data, (3) the parameters in θI I were estimated,
(4) θI I I was defined with the parameters contained in θI and not in θI I , and (5) the pa-
rameters in θI I I were estimated. The sample size for GSA was selected by convergence
analysis [83]. The quality of the estimators θ̂ was evaluated based on the relative error
(σθ/θ̂) as follows: below 0.1 good, above 0.5 poor [84], and between 0.1 and 0.5 moderate.
During model validation, the predictive capacity of the calibrated models was quantified
with statistical indicators, presented in Section S6, and was assessed visually with plots
comparing experimental and simulated values.

The parameters related to the flocculation kinetic process in the biochemical-flocculation
model, namely the subset θ = {qm,ads, KL,ads, kads, Yfe,C, kfloc,fe}, were optimised with the
submicron COD (csCOD) and particle size measured in the dosage-step experiments de-
scribed in Section 2.1. The experimental particle size was incorporated in the model as
the geometric mean diameter dp [85]. Subsequently, the remaining adjustable parameters
in the biochemical-flocculation model were optimised using the long-term measurements
of colloidal COD (cCOD), TSS, and dp in the pilot-scale AnMBR. The mean blackwater
characteristics values were used as inputs for model implementation. The same dataset was
used for calibration and validation of the long-term prediction, and thus, the biochemical-
flocculation model requires further validation with an independent dataset from an inde-
pendent operational period of the pilot or from another AnMBR.

The AnMBR filtration model was calibrated using eight datasets from the operation
of the pilot-scale AnMBR, whereby each dataset covered an 8-hour period. These eight
calibration datasets were selected to capture changes in the following operational con-
ditions: gas sparging, mean particle size, and concentration of colloidal and particulate
material. The model was validated by predicting the entire operational period of the pilot.
However, the validation should be improved by applying the model to an independent
operational period of the pilot or to another AnMBR, but this data was not available during
our research.

The AnDFCm model was calibrated using in situ ∆R20 measurement in the pilot
AnMBR immediately after FE dosing and ex situ ∆R20 measurement during the dosage-
step tests performed with grab samples from the pilot AnMBR. The model was validated
using long-term in situ measurements of ∆R20 measured in the pilot-scale AnMBR.

2.9. Control Tools for Flux Enhancer Dosage

We proposed and compared different feedforward and feedback control tools to
manipulate the FE mass flow rate fed to the reactor (

.
mfe), as summarised in Table 5. The

control tool FB_∆R20_10 is a feedback loop to control ∆R20 to a target setpoint (∆R20,sp);
∆R20,sp of 10× 1012 m−1 is an intermediate value between the pilot-scale AnMBR operation
before and immediately after FE dosing. The control tool FB_∆R20_8–12 is similar to
the latter, but ∆R20 is maintained inside a target range instead of to a specific value.
FB_∆R20_8–12 starts dosing FE (on) when ∆R20 is above 12× 1012 m−1 and stops (off) when
∆R20 is below 8 × 1012 m−1, thereby, causing periodic FE pulses instead of a continuous
dosage (as in FB_∆R20_10).

The feedforward control tool FF_QWS is analogous to the mostly applied FE dosing
strategy reported in the literature, that is, an initial FE pulse dosage that is followed by
periodic additions to compensate for the loss of FE with sludge withdrawal and biodegrada-
tion [13], with the objective to maintain a certain concentration of FE inside the reactor. The
FE is not biodegradable in the proposed model, therefore, FF_QWS does not compensate for
FE loss by biodegradation. Furthermore, an alternative dosing strategy used in literature is
a step of FE on the influent [86,87], which was implemented in the control tool FF_QInf.
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Table 5. Control tools to manipulate the mass flow rate of flux enhancer (
.

mfe) to an AnMBR.

Reference Type of Control Measured Variable Controlled Variable
.

mfe Calculation

FB_∆R20_10 Feedback, proportional ∆R20 ∆R20 1.6 × 10−7 (∆R20 − ∆R20,sp
)

FB_∆R20_8–12 Feedback, on-off ∆R20 ∆R20 5 × 10−6

FB_ cfe Feedback, proportional cfe cfe 1 × 10−3 (cfe,sp − cfe
)

FF_ QWS Feedforward, pulse + proportional 1 QWS cfe QWS fXfe,WS cfe,sp
FF_ QInf Feedforward, proportional QInf cfe Yfe,Inf QInf
No_FE No control NA NA 0

1 Initial pulse dosage to achieve the setpoint cfe,sp followed by continuous additions to compensate for the loss of
flux enhancer with sludge withdrawal.

The simulation without FE dosing, No_FE, was included to assess the improvement
achieved when FE is added to the reactor by the control tools. Moreover, the feedback cfe
control tool FB_cfe was included to compare with FF_QWS and FF_QInf, whose controlled
variable is also cfe. Nevertheless, to apply FB_cfe in practice, a method to measure cfe
should be developed.

The feedback control tools were manually tuned to achieve a slow response (low
.

mfe)
to avoid overdosing. The FE concentration setpoint (cfe,sp) was 8.7 × 10−3 kgCOD m−3,
which is equal to the concentration needed to achieve a ∆R20 of 10 × 1012 m−1 at the
beginning of the simulated operational period. For FF_QInf, the ratio of FE to influent
flow (Yfe,Inf) was 7.23 × 10−4 kgCOD m−3, calculated as the ratio between the cumulative
masses of FE and influent fed to the reactor during the first 100-day period simulated with
FB_∆R20_10.

The control tools were implemented and tested in Simulink, Matlab® 2019b, by using
the integrated model composed by the calibrated biochemical-flocculation model, and the
best alternates of the calibrated AnMBR and AnDFCm filtration models. The implemen-
tation included a feedback TSS controller which manipulated QWS to sustain the TSS at a
fixed setpoint (TSSsp). A constant mixed liquor volume was assumed, whereby, QInf was
calculated with the mass balance in Equation (S.4) with ∆VL = 0; and Qfe =

.
mfe/cfe,stock,

where cfe,stock is the concentration of the stock solution fed to the reactor (30 kgCOD m−3).
The model inputs were: T, pH, J20, uG, and concentration of ammonium (NH4BW) and

alkalinity (AlkBW) in the blackwater, and were assumed constant and equal to the mean
values in the pilot-scale AnMBR (Section S1). The total and submicron blackwater COD
fluctuated inside the range of the pilot; the input was generated with the “uniform random
number” block from Simulink as shown in Section S7.

The fraction of components i in the waste sludge, fi,WS, were estimated based on the
sludge withdrawal made on Day 123, where 31% of the mixed liquor volume was removed
causing a 62% decrease in TSS and 7% decrease in csCOD. Therefore, fi,WS was assumed as
2.0 for all particulate material ( fX,WS), and 0.22 for colloidal material ( fC,WS).

Furthermore, the robustness of the control tools was tested by applying step distur-
bances in TSSsp and fC,WS. The TSSsp were 9.6, 5.5, and 16.0 kg m−3 corresponding to the
mean, minimum, and maximum TSS in the pilot; the steps on TSSsp were performed on
Days 100 and 200. The initial fC,WS was 0.22 and increased to 1 on Day 300, owing to a
better mix before wastage.

3. Results and Discussion
3.1. Biochemical-Flocculation Model

The calibration results are detailed in Section S8. Figure 2 shows the experimental data
and model predictions with the estimated parameters. The model predicted a sharp cCOD
decrease and dp increase caused by FE dosing on Day 16. Then, cCOD slowly increased
over time due to the accumulation of colloidal inerts coming from the influent, decayed
biomass, and deflocculation. The latter was caused by the loss of unbonded FE (Sfe) with
the permeate flow that lowered the equilibrium concentration Xfe,e causing desorption of
FE from the particulate material (i.e., ρ23 < 0), displayed in Figure S9B, and concomitantly
deflocculation (i.e., ρ24 < 0).
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The predicted dp decrease, after the sharp increase on Day 16, was overpronounced
as compared with the experimental observations. To improve the predictive capacity, we
substitute Equation (10) with the modified Equation (44), where the stable mean particle
size was proportional to the ratio between cfe and the total concentration of suspended
material (cX + cC) inside the reactor, with a proportionality parameter Yfloc,fe:

ddp

dt
=

1
tconv

(
kfloc,fe

dXfe
dt

+

(
Yfloc,fe

(
cfe

cX + cC

)
dp,St − dp

)
kfloc

)
. (44)

The parameters kfloc and Yfloc,fe were optimised to fit the experimental floc size; the
optimal values for kfloc and Yfloc,fe were 0.34 d−1 and 46.9 kg kgCOD−1 with σθ/θ̂ of 0.28
and 0.35, respectively. The modified model presented an improved accuracy to predict dp as
compared with the original model, evidenced by the lower mean absolute percentage error
(MAPE) in Table S12, that is, 4.2 and 7.1 for the modified and original models, respectively.
Accordingly, Figure 2A shows that the modified model in Equation (44) fitted better to the
experimental values than the original model in Equation (10).

Figure 2. Long-term biochemical-flocculation model calibration. Sludge characteristics during
operational period of pilot AnMBR plant dosed with flux enhancer on day 16: (A) mean particle
diameter; (B) total suspended solids; (C) colloidal COD.

The model predicted a continuous TSS increase, shown in Figure 2A, caused by the
accumulation of inert material (Figure S9A) coming from the influent and decaying biomass
because the reactor was operated without sludge wastage. Because the model considered
constant influent composition, the fluctuations in TSS were caused by fluctuations of the
influent flow rate and of the temperature and pH of the mixed liquor (which affect the
conversion rates). However, in the pilot-scale AnMBR, the fluctuations in the solids content
were affected by variations in the blackwater composition, which was highly variable
throughout the operational period [13]. Therefore, the predicted TSS deviated from the
experimental values, likely due to the lack of an exact characterisation of the influent.
Additionally, the applied physicochemical characterization was not sufficient to detect all
the fluctuations in the exact blackwater composition. Therefore, a more comprehensive and
frequent blackwater characterization using flow-proportional sampling should be done to
predict the exact TSS dynamics.
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3.2. AnMBR Filtration Model

The calibration results are detailed in Section S9. The predictive capacity of the
calibrated models was assessed by analysing the predictions during the entire operation of
the pilot-scale AnMBR, shown in Figure 3 for the empirical FR models and in Figure 4 for
the FR_RIS models that included Carman–Kozeny based SCR submodels. The y-axis was
limited between 0 and 60 for better visualization and discussion; Section S9 Figures S15–S23
display the individual plots for each model without imposed limits. The models that
included the SCR submodels αc,3, αc,3p, or αc,4 were not further analysed because they
could not be satisfactorily calibrated with the procedure described in Section 2.8, and thus,
were unable to predict the representative data used for calibration. The results are shown
in Section S9.

In Figure 3, the empirical models FR1 and FR2 had identical predictions during the
entire operation of the pilot-scale AnMBR; the only difference between these models was
that FR1 included cX and FR2 did not. Apparently, cX had no influence on FR prediction
in our case and could, therefore, be removed from the model. The same conclusion was
derived after comparing FR4 and FR5.

Figure 3. Validation of the alternate AnMBR empirical fouling rate (FR) models which (A) exclude
and (B) include floc size as input variable. The grey vertical areas represent the representative dataset
(iD1 to iD8 from left to right) used for model calibration. Imposed limits between 0 and 60 in the
y-axis.

In general terms, all the FR_RIS models in Figure 4 and empirical FR models in Figure 3
predicted satisfactorily the effect of cC on the fouling rate. During the period without FE
(0–16 d) the experimental and predicted FR values were considerably higher than the FR
after FE dosing (after Day 16). Nevertheless, during the initial period (0–16 d), the empirical
FR models considerably underpredicted the FR at high uG (periods 4.5–7 and 12–15 days),
which is further explained below. The deposition submodels based on Robles et al. [58], that
is, D1a, D1b, and D1c, presented similar behaviour, and D1b was slightly more sensitive
to cC than D1a and D1c because in D1b cC affects the deposition of particulate material
through IMS.

The lack of online gas flow measurements is a limitation for model calibration and
validation, especially for the empirical FR models that are highly sensitive to uG. For
example, the biggest deviation between the experimental data and the predicted values was
between Days 12 and 15 where the reactor operated at a low liquid level in the membrane
tank (HMT) causing a high simulated uG [13]. However, the simulated uG during this period
could not be confirmed with experimental data, therefore, we could not ensure that the
input variable uG was correct or if the actual values were lower, and the model could have
predicted the FR accurately. Similarly, in the period 34.8–36.8 d the simulated uG was 8 to
36% lower than the experimental (manually recorded) uG which caused the overpredicted
FR values. Therefore, to improve model calibration and validation the biogas should be
monitored online to provide a reliable input variable.
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Figure 4. Validation of the alternate FR_RIS AnMBR filtration models combining the different depo-
sition submodels (D1a, D1b, D1c, and D2) with the Carman–Kozeny based specific cake resistance
submodels: (A) αc,1; (B) αc,1p; (C) αc,2; (D) αc,2p. The grey-vertical areas represent the representative
dataset (iD1 to iD8 from left to right) used for model calibration. Imposed limits between 0 and 60 in
the y-axis.

Similarly, the use of grab samples for determining the input variables for sludge
characterization limited model calibration and validation. This was particularly true for
the fluctuating sludge characteristics that were highly influential in the model, such as
cC, which was calculated as the difference between the measured csCOD and permeate
COD (pCOD). The pCOD was relatively stable during the reactor operation, however,
csCOD fluctuated considerably (particularly before FE dosing on day 16) and had only few
datapoints. For model implementation, we linearly interpolated between measurements
resulting in cC with sharp fluctuations and peaks that caused fluctuations in the simulated
FR, but the true values of cC between grab samples could not be confirmed, hampering
proper model validation.

The FR_RIS models overpredicted the fouling rate at high cC (>0.5 kgCOD m−3), and
the overprediction was higher for D2. From the Robles et al. [58] based FR_RIS models,
D1c αc,1p and D1c αc,1, had the lowest fouling rate overpredictions, and D1c αc,1p was
slightly better than D1c αc,1. The models that combined the Depostiion Submodel D2
with a Carman–Kozeny-based SCR submodel (i.e., αc,1, αc,1p, αc,2, and αc,2p) presented
instabilities or pronounced peaks at high cC (shown in Figure S1D), which was attributed
to the considerably low estimated εc0 of 0.12–0.17 (Table S15). When colloidal material
accumulated in the cake, the porosity (εc) was reduced below εc0, resulting in values
close to zero causing an overpronounced increase in SCR because of the term: αc ∝ εc

−3

(Table 1). The low εc0 value in D2 was estimated because this deposition submodel predicted
approximately 200 times less material deposition onto the membrane surface than the
deposition submodels based on Robles et al. [58], and thus, the SCR increased (by decreasing
the porosity) to reach similar Rc values. To elucidate which modelling approach was more
accurate, the amount of particulate and colloidal material deposited should be measured,
which was unfortunately not possible in our research.

The models that included floc size as input variable (Figures 3B and 4A,B) improved
the FR prediction at large floc size (i.e., operational period 17–30 days) as compared with
the models that did not include floc size (Figures 3A and 4C,D). These results suggest that
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floc size had a direct impact on FR and should be included as a state variable in a model
that predicts the effect of FE on FR.

During days 37–39, the reactor was operated at considerably low uG causing a sharp
fouling rate increase despite the low cC. The empirical FR models predicted this behaviour
satisfactorily and only slightly underestimated the fouling rate. Additionally, the empirical
FR models adequately predicted the fouling rate increase caused by the uG decrease during
Day 1 in which cC was high. Contrarily, all FR_RIS models predicted only a slight or
no increase in fouling rate during Days 37–39, thus, substantially underestimating the
fouling rate. Nevertheless, some FR_RIS models (namely the ones with αc,1p, αc,2p, or D2)
could predict the fouling rate increase during Day 1. The Deposition Submodel D2, that
considered drag and lift forces, was slightly more sensitive to uG than the submodels that
considered only drag forces (D1a, D1b, and D1c) because, in D2, uG affects the attachment
and detachment of particulate material (through G), whereas, in the other submodels,
only the detachment is affected by uG. In summary, at high cC, the effect of low uG on
fouling rate was satisfactorily predicted by all the empirical FR models and by the FR_RIS
models that included either the SCR submodels with cake compression (αc,1p and αc,2p) or
Deposition Submodel D2; whereas at low cC, only the empirical FR models could predict
the effect of low uG on fouling rate.

The reactor was not intentionally operated at high uG; however, during some periods,
HMT decreased due to influent shortage which increased the simulated uG [13]. However,
the experimental uG was measured a few times during those periods: the experimental uG
on Day 14 was 8% lower than the calculated value; on Day 7 the calculated and experimental
values were equal. Thus, we analysed the prediction at high uG on Day 7. All the empirical
FR models and the FR_RIS models that combined Deposition Submodels D1a, D1b, or
D1c with SCR submodels with cake compression (αc,1p or αc,2p) satisfactorily predicted the
fouling rate at high uG, whereas the models that included SCR submodels without cake
compression (αc,1 or αc,2) or the Deposition Submodel D2, overpredicted the fouling rate.
Particularly, for D2, the fouling rate was substantially high, because the cC was elevated
and caused instabilities in the model, as explained above.

3.3. AnDFCm Filtration Model

Figure 5 compares the experimental and predicted long-term ∆R20 of the pilot-scale An-
MBR sludge for the alternate models without cake compression; Figure S27, in Section S11,
shows the predictions of the alternate models with cake compression.

Figure S27 suggested that the model with D3 could predict the experimental ∆R20
when combined with cake compression SCR submodels. However, as explained in Section S11,
the models combining D3 with αc,1p, αc,2p, or αc,3p, in fact, did not describe a compressible
cake. Therefore, all the models that included cake compression were unable to predict the
experimental ∆R20. Accordingly, the shape of the filtration curve obtained when filtering
different anaerobic sludge samples in the AnDFCm installation suggested that the cake
layer formed was mostly non-compressible. As further discussed in Section S13, the cake
compressibility analysis was done based on the possible hypothetical filtration curves
previously defined [50,88,89].

The alternate AnDFCm filtration models without cake compression, shown in Figure 5,
satisfactorily predicted the filterability improvement (i.e., ∆R20 decrease) caused by dosing
FE on Day 16. During the period without FE (0–16 d), the experimental and predicted
∆R20 values were considerably higher than the ∆R20 after FE dosing (after Day 16) for the
models with αc,1 or αc,2. However, for the models with αc,3, the difference between these
periods was less clear because the models predicted relatively high ∆R20 in the period
20–35 d, which was caused by small fluctuations in cC and cX.
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(B) αc,2; (C) αc,3. The grey area represents the in situ data used for model calibration.

Section S10 shows the sensitivity of the models to cX and cC inside the operational
range of the pilot. Sludge was withdrawn from the pilot on Day 123 causing a drop in cX
from 14 to 5.5 kg m−3, whereas cC and ∆R20 were almost unaltered. Figure 5 shows that
D3 αc,2 was the only model that accurately predicted this behaviour because it had only
moderate sensitivity to cX, as illustrated in Section S10. The models that included αc,1, αc,3,
or D2 overpredicted the ∆R20 drop after sludge withdrawal because models with αc,1 or
D2 were too sensitive to cX and, with αc,3 were too sensitive to cC/cX. The high sensitivity
of αc,1 and D2 to cX also caused the overprediction when cX was high (85–125 d). Similarly,
D1c αc,2 had an elevated sensitivity to cX, but with an opposite effect on ∆R20, that is, a
higher cX caused a lower ∆R20, consequently, D1c αc,2 overpredicted ∆R20 at low cX (after
sludge withdrawal) and underpredicted ∆R20 at high cX (85–125 d).

Opposite to the AnMBR filtration models, the incorporation of dp as input variable
in the AnDFCm filtration models worsened the ∆R20 prediction. During the operational
period at large floc size (17–25 days), the models with αc,2 (without dp) accurately predicted
the experimental ∆R20, whereas the models with αc,1 (with dp) underpredicted ∆R20. Addi-
tionally, the models with αc,1 predicted peaks in ∆R20 around Days 60, 94, and 120, caused
by small dp reductions; these ∆R20 peaks were not observed experimentally. These results
suggested that floc size might not have a direct impact on sludge filterability and could be
excluded as state variable in the AnDFCm filtration models for ∆R20 prediction. The negli-
gible effect of floc size on sludge filterability might be caused by the absence of relaxation
cycles in the AnDFCm, as previously proposed in Section 4.1.2 in Odriozola et al. [13].
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3.4. Model Limitation, Applicability, and Further Development

The calibrated biochemical-flocculation model satisfactorily predicted the dynamics
of dp and cCOD in the pilot-scale AnMBR dosed with FE. Nevertheless, a more frequent
and comprehensive influent characterization is needed to improve model calibration and
validation to accurately predict the fluctuations in TSS, cX, and cC. Additionally, the same
dataset was used for calibration and validation, and thus, the model requires further
validation with an independent dataset from an independent operational period of the
pilot or from another AnMBR.

The biochemical-flocculation model included only inert colloidal material, the model
could be further extended to incorporate biodegradable colloidal components consisting of
proteins, carbohydrates, lipids, humic substances, etc. Furthermore, particle size prediction
could be improved, for example, by incorporating a population balance model in the
biochemical-flocculation model to predict the particle size distribution [48]. This would
increase the complexity of the model by increasing the amount of state variables and
parameters, but it might also increase the accuracy of the model.

From the alternate AnMBR filtration models, the FR_RIS that included Carman–
Kozeny based SCR submodels and all the proposed empirical FR models satisfactorily
predicted the effect of cC on fouling rate. Nevertheless, the empirical FR models might have
underpredicted and the FR_RIS overpredicted FR at high cC. Furthermore, all the empirical
FR models and none of the FR_RIS models predicted the effect of the low uG on the
fouling rate when the reactor was operated at low cC. Therefore, we selected one empirical
and one FR_RIS model for the simulation environment to cover a predicted fouling rate
range. Nevertheless, the calibration of the alternate AnMBR filtration models should be
further improved by online gas monitoring and applying more intensive monitoring of
grab samples, particularly for csCOD which fluctuated and highly affected the model.
Additionally, the validation should be improved by applying the alternate models to an
independent dataset.

We selected the empirical FR model FR6 because it included dp as input variable,
which improved the prediction, and better predicted FR at high uG as compared with FR4
and FR5. Additionally, FR6 was the alternate empirical FR model with the highest accuracy,
as evidenced by the lowest MAPE (Table S18). From the FR_RIS models, D1c αc,1p and
D1c αc,1 had the lowest FR overpredictions at high cC. In Section S10, D1c αc,1p was more
sensitive to uG and less sensitive to cX than D1c αc,1, as experimentally observed; therefore,
we selected model D1c αc,1p for the simulation environment. The accuracy of D1c αc,1p was
one of the lowest, together with D1a αc,1p and D1b αc,1p, as shown by the lowest MAPE
values in Table S18.

From the AnDFCm filtration models, the best alternate model to predict sludge fil-
terability was D3 αc,2 because it had limited sensitivity to cX as experimentally observed,
and it satisfactorily predicted the experimental ∆R20, including the ∆R20 decrease after FE
dosing and the small change in ∆R20 value after sludge withdrawal. Together with D2 αc,2,
D3 αc,2 had the lowest MAPE (Table S23), and thus, the highest accuracy.

The simulation environment developed in this research provides a tool to test strate-
gies for dosing FE in AnMBRs. The integrated AnMBR model used in the simulation
environment was developed, calibrated, and validated under specific conditions, that is,
using the FE Adifloc KD451 in a specific pilot-scale AnMBR. To use the simulation environ-
ment under different conditions, the integrated model should be initially validated under
those conditions.

3.5. Control Tools for Dosing Flux Enhancer

The integrated model was used as a simulation environment to test the various control
tools presented in Table 5, for manipulating FE dosing to the pilot-scale AnMBR. The
Simulink® implementation is available in Simulink model S1, Supplementary Materials.
The simulation environment included the biochemical-flocculation model described in
Section 2.3, but with the mean particle size dynamics from Equation (44). As previously
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explained, the sludge filterability was predicted as ∆R20 with the AnDFCm filtration model
D3 αc,2; the fouling rate was predicted with the empirical FR model FR6 and the FR_RIS
model D1c αc,1p.

The results in Figure 6 show that all control tools substantially improved reactor
performance by decreasing ∆R20 and membrane fouling as compared with the reactor
without FE dosing (No_FE). The decrease was caused by FE-induced flocculation which
reduced the concentration of colloidal material and increased the floc size.

The total mass of FE added in the 400-day simulated period varied between the differ-
ent control tools, the lowest and highest amounts were 0.25 and 0.46 kg for FF_QWS and
FB_∆R20_8–12, respectively. Considering the base FE price given by the supplier of Adifloc
KD451 of 6 € kg−1, the FE cost was between 1.37 and 2.50 € y−1, or 0.49 and 0.89 € m−3 y−1,
which is negligible. Nevertheless, the costs of FE dosing can vary considerable for different
AnMBRs [26].

The feedback ∆R20 control tool FB_∆R20_8–12 was the tool that required the most
FE due to the higher loss of FE with the permeate, shown in Figure 6I. This was because
high amounts of FE were dosed in a short period, elevating the concentration of unbonded
FE (Sfe) which passed through the membrane and left the reactor with the permeate flow.
Additionally, as expected, FB_∆R20_8–12 caused less stable filterability and fouling rate
than FB_∆R20_10. Accordingly, continuous dosing the FE MPE50 to a pilot MBR caused
more stable time-to-filter values and used less FE than applying periodic pulses; the pulses
were applied whenever the time-to-filter was 200 s−1 [12]. These strategies were analogous
to FF_QWS and FB_∆R20_8–12, respectively.

Figure 6. Simulated pilot-scale AnMBR behaviour with different feedback (FB) and feedforward
(FF) control tools for manipulating the flux enhancer (FE) dosage. Compared variables: (A) Fouling
rate with empirical model FR6; (B) fouling rate with RIS model D1c αc,1p; (C) sludge filterability
expressed as ∆R20; (D) mean particle diameter; (E) colloidal material concentration; (F) particulate
material concentration; (G) total FE concentration inside the reactor; (H) cumulative mass of FE dosed;
(I) cumulative mass of FE removed with permeate flow. The vertical lines indicate applied distur-
bances on: TSS setpoint (dotted) and fC,WS (continuous).

We assumed cfe for FB_∆R20_10 in Figure 6G as the optimal FE dosage required to
sustain a good and stable sludge filterability inside the reactor (Dopt). This dosage varied
between 1 and 27 mgCOD L−1 during the simulated period due to changes in sludge
characteristics. Consequently, the cfe control tool (namely FB_cfe, FF_QWS, and FF_QInf),
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which targeted a specific cfe,sp of 8.7 mgCOD L−1, under- or overdosed FE during certain
periods. For example, at high cX (250–400 d) more FE was required to achieve similar cC
reductions, because the FE was adsorbed onto the particulate material, thereby, decreasing
its availability for colloidal material flocculation. Here, the cfe control tools underdosed FE
causing an increased ∆R20 and fouling rate as compared with FB_∆R20_10. Conversely, at
low cX (100–200 d), the FE required was lowered, and the cfe control tools overdosed FE
increasing the FE concentration in the permeate and using unnecessary FE.

4. Conclusions

In this research, a comprehensive integrated model was developed and applied to test
and optimise the dosing strategy of flux enhancer to an AnMBR. The integrated model
was composed of the following models: biochemical-flocculation, AnMBR filtration, and
AnDFCm filtration. These models were developed, calibrated, and validated separately,
using experimental data from a pilot-scale AnMBR. The biochemical-flocculation model
satisfactorily predicted the dynamics of mean particle diameter and colloidal material
concentration. Nevertheless, the long-term model prediction requires further validation.
For the filtration models, several alternate models were compared, and the best alternatives
were selected based on model accuracy and capacity of the model to predict the effect of
varying sludge characteristics on the corresponding output, that is, fouling rate or ∆R20.
The selected model to predict sludge filterability was the AnDFCm filtration model D3
αc,2. To predict fouling rate, the selected models were the empirical FR model FR6 and the
FR_RIS model D1c αc,1p, which covered a predicted fouling rate range. The concentration of
colloidal material was an appropriate linking variable between the biochemical-flocculation
models and filtration models for fouling rate and ∆R20 prediction, whereas the mean
particle diameter was only appropriate for fouling rate prediction, but it worsened ∆R20
prediction. To improve model calibration and validation, better and additional input data
is required, particularly, online gas flow measurements and intensive and comprehensive
monitoring of sludge and blackwater characteristics.

The integrated calibrated model was used as a simulation environment to optimise
the flux enhancer dosing strategy in a pilot-scale AnMBR. The preferred control tool to
manipulate flux enhancer dosing was the feedback ∆R20 proportional controller, referred
to as ∆R20_10. Furthermore, continuous flux enhancer dosing performed better than
periodically dosing flux enhancer in the form of pulses. Continuous dosing decreased
permeate contamination by flux enhancer, required a lower amount of flux enhancer, and
achieved more stable sludge filterability and fouling rate.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/membranes12020151/s1, Section S1: Supplementary pilot-scale AnMBR experimental data,
Section S2: Supplementary experiments, Section S3: Supplementary material for the biochemical-
flocculation model, Section S4: Parameter values, Section S5: Model calibration procedure, Section S6:
Statistical indicators representing model accuracy, Section S7: Simulated influent characteristics and
applied disturbances, Section S8: Calibration and validation of the biochemical-flocculation model,
Section S9: Calibration and validation of alternate AnMBR filtration models, Section S10: Effect of
sludge characteristics on fouling rate predictions, Section S11: Calibration and validation of alternate
AnDFCm filtration models, Section S12: Effect of sludge characteristics on filterability predictions,
Section S13: Cake layer compression, Section S14: Nomenclature, Simulink Model S1: Simulink®

implementation of control tools for flux enhancer dosing to the pilot-scale AnMBR.
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