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Abstract

Inhibition of host protein functions using established drugs produces a promising antiviral effect with excellent safety profiles,
decreased incidence of resistant variants and favorable balance of costs and risks. Genomic methods have produced a large number
of robust host factors, providing candidates for identification of antiviral drug targets. However, there is a lack of global perspectives
and systematic prioritization of known virus-targeted host proteins (VTHPs) and drug targets. There is also a need for host-directed
repositioned antivirals. Here, we integrated 6140 VTHPs and grouped viral infection modes from a new perspective of enriched
pathways of VTHPs. Clarifying the superiority of nonessential membrane and hub VTHPs as potential ideal targets for repositioned
antivirals, we proposed 543 candidate VTHPs. We then presented a large-scale drug–virus network (DVN) based on matching these
VTHPs and drug targets. We predicted possible indications for 703 approved drugs against 35 viruses and explored their potential
as broad-spectrum antivirals. In vitro and in vivo tests validated the efficacy of bosutinib, maraviroc and dextromethorphan against
human herpesvirus 1 (HHV-1), hepatitis B virus (HBV) and influenza A virus (IAV). Their drug synergy with clinically used antivirals
was evaluated and confirmed. The results proved that low-dose dextromethorphan is better than high-dose in both single and
combined treatments. This study provides a comprehensive landscape and optimization strategy for druggable VTHPs, constructing
an innovative and potent pipeline to discover novel antiviral host proteins and repositioned drugs, which may facilitate their delivery
to clinical application in translational medicine to combat fatal and spreading viral infections.
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Introduction
Unexpected regional outbreaks of acute viral infections
and the increasing number of chronic viral infections
worldwide are still one of the major threats to public
health, causing millions of deaths each year [1–4]. The
sudden outbreak and global spread of corona virus dis-
ease 2019 (COVID-19) is one of the greatest threats world-
wide and has caused severe social and economic costs [5].
However, there is no effective treatment or vaccine for
many of the highly infectious and pathogenic viruses.

The past 30 years have witnessed extraordinary
progress in antiviral drug development. Since 1990, a
total of 84 new drugs have been officially approved for
clinical antiviral therapies. However, they are only used

in the treatment of nine viruses [6] and lack structure
diversity, which greatly limits the pipeline of antivirals
with new pharmacological mechanisms. Traditional
antiviral drug development paradigm focuses on target-
ing conserved viral genes whose protein products are
essential for viral survival or replication. It has major
drawbacks including relatively small genomes of viruses
providing a limited number of available targets, and
constant emergence of drug-resistant variants.

As the importance of host cell functions in viral
pathogenicity is increasingly recognized, knowledge of
virus–host protein interactions continues to accumulate.
These resources may help identify novel molecular tar-
gets for antiviral drug discovery and explore mechanisms
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of virus–host interactome [7, 8]. Sufficient evidence
shows that drug repositioning, using known small-
molecule compounds to target (multi) functional host
proteins has excellent safety profiles [9] and promising
antiviral effects. It may provide a higher barrier to
the development of resistance, as host proteins do
not normally mutate in response to therapies [10].
Accordingly, more antiviral drug discovery initiatives
are incorporating this attractive approach because it
reduces costs and risks of early drug development
[11] and expedites the approval of new antiviral indi-
cations for old drugs [12]. Current drug repositioning
methods include computational approaches, biological
experimental approaches and their combination [13].
Computational approaches can be divided into different
groups, that is drug-centric, target-based, knowledge-
based, signature-based and pathway/network-based
methods [14]. Machine learning-based prediction models
and frameworks were established in drug discovery
using structures and molecular properties of compounds
[15–17]. Network analysis-based workflows were also
developed to predict potential drug-target interactions,
which provided clues for drug repositioning [18–20].
Successful examples include the indications of Gleevec
(Abl tyrosine kinase inhibitor) for poxvirus infection
[21], U0126 (MEK kinase inhibitor) for influenza virus
infection [22], FTI-277 (farnesyltransferase inhibitor) for
hepatitis delta virus (HDV) infection [23] and combina-
tion of decitabine and gemcitabine (2 antimetabolites)
for human immunodeficiency virus (HIV) infection
[24]. Recently, computational approaches proposed
repositioned drug candidates niacin [25], chloroquine
[26, 27], ribavirin and arbidol [28, 29] against COVID-
19. Phosphoproteomic analyses also identified 87 Food
and Drug Administration (FDA)-approved drugs for the
treatment of COVID-19 [30].

On the other hand, many studies focused on a particu-
lar viral species or family, and meta-analyses of the host
factor sets collected from discrete researches empha-
sized a low level of congruity. Moreover, in many cases,
the identified candidate host targets were not immedi-
ately tested by known inhibitors to prove their effec-
tiveness and assess their repositioning potential [4, 31,
32]. This fails to answer a key question, that is, whether
the resulting bioinformatic short list of host factors con-
tains suitable candidates for antiviral drug development.
Therefore, it is necessary to combine host factor opti-
mization with experimental validation to address the
great challenge of moving from systematic evaluation of
all host factor data to comprehensive interpretation of
their significance and feasibility as antiviral drug targets,
to provide promising repositioned drugs for preclinical
validation.

In this study, we used this strategy to perform a large-
scale landscape investigation. First, we established a sys-
tematic overview and statistic of known virus–host pro-
tein relationships to provide a global view of human
cellular processes that are controlled by viruses, respond

to and finally affect viral pathogenicity. Then, we built
a network of drug–virus relationships by matching all
known specific viruses and approved drugs based on
their shared host factors. Instead of examining a sin-
gle virus or drug, we focused on the overall integra-
tion and prediction across all the available drugs and
viral pathogens. Immediate cytological and animal tests
were conducted for some of the candidates. In sum-
mary, we verified that the repositioned drugs bosutinib,
maraviroc and dextromethorphan were effective against
human herpesvirus 1 (HHV-1), hepatitis B virus (HBV) and
influenza A virus (IAV), respectively. We also simulated
their effects in combination with antivirals in clinical use
today, proving that this strategy can efficiently uncover
new host-directed antiviral uses for approved drugs.

Results
Virus-targeted host proteins (VTHPs) can
distinguish different viral infections
Virus–host interactome data were collected from VirHost-
Net and VirusMentha databases, which provided com-
prehensive and standard data of high quality [7]. A total
of 6140 virus-targeted host proteins (VTHPs) have been
reported for 151 viruses, including 3 ssDNA viruses,
53 dsDNA viruses, 67 ssRNA viruses, 5 dsRNA viruses
and 23 retro-transcribing viruses (Website Table 1; all
website tables and datasets are available in http://www.
idrug.net.cn/data/Website/index.html). These viruses
were named according to the rules of International
Committee on Taxonomy of Viruses (ICTV, https://ictv.
global/taxonomy/). As shown in Figure 1A, the average
number of VTHPs for 151 viruses was 103, and the VTHPs
were less than 70 for 116 viruses (76.82%). Notably,
the top three ranked viruses with most VTHPs were
influenza A virus H1N1 subtype (IAV H1N1, 2271), human
immunodeficiency virus 1 (HIV1, 1191) and human
herpesvirus 4 (HHV-4, 1108).

In total, these viruses and proteins created 15 583
virus–host protein interactions (Website Table 1). As
shown in Figure 1B, the numbers of VTHPs targeted
by different numbers of viruses had exponential dis-
tribution. There were 3087 (50.28%) VTHPs targeted
by single viruses. It should be noted that 15 VTHPs
were targeted by >15 viruses, including EEF1A1 (25),
HSPA5 (24), TUBA1C (23) etc. We found that highly
targeted VTHPs were prevailingly cytoskeleton proteins,
cell transcription regulation-related proteins, energy
metabolism-related proteins and ubiquitin-regulated
proteins.

In order to clarify functional relationship between
VTHPs in different viral infections, we performed
signaling pathway enrichment analyses on 3053 VTHPs
targeted by at least two viruses. We found that the most
enriched signaling pathways included viral carcinogene-
sis (127, q-value = 6.46e−34), Epstein–Barr virus infection
(122, q-value = 2.53e−30), ribosome (93, q-value = 4.44e−23),
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Figure 1. Statistics and enrichment analyses of identified virus-targeted host proteins (VTHPs). (A) Distribution of numbers of VTHPs for viruses in
Baltimore groups. The red dotted line refers to the average. AAV2, HHV-4, IAV H1N1 and HIV1 refer to adeno-associated dependoparvovirus A, human
herpesvirus 4, influenza A virus H1N1 subtype and human immunodeficiency virus 1, respectively. (B) Distribution of numbers of VTHPs targeted by
different numbers of viruses. (C) Enriched signaling pathways of VTHPs targeted by at least two viruses according to Kyoto Encyclopedia of Genes and
Genomes (KEGG). (D) Clustering of 35 viruses with >70 identified VTHPs according to typical enriched signaling pathways of their VTHPs. The hot map
was generated by R package pheatmap and colored according to logarithmic P-value of enrichment score of each virus.

protein processing in endoplasmic reticulum (97, q-
value = 1.15e−22) and spliceosome (83, q-value = 1.62e−21)
(Figure 1C, Website Table 2).

Pathway enrichment analyses were further performed
using 5956 VTHPs targeted by 35 viruses that had
>70 identified VTHPs. Based on typical enrichment
of their VTHPs, these viruses can be classified into
four groups (Figure 1D, Table S1 available online at
http://bib.oxfordjournals.org/). The VTHPs of 10 viruses,
including severe acute respiratory syndrome-related
coronavirus (SARS-CoV), lymphocytic choriomeningitis
mammarenavirus (LCMV) and dengue virus (DENV), are
not enriched in any cancer-related pathways. They are

defined as cancer pathway unrelated viruses (CPUV).
IAV H1N1, alphapapillomavirus 10 and Macaca mulatta
polyomavirus 1 (SV40) are clustered together as protein
metabolism-related viruses (PMRV). As their VTHPs are
enriched in pathways of cell cycle and apoptosis, 10
viruses including hepatitis C virus (HCV), HIV1 and
alphapapillomavirus 7 are clustered together. They
belong to the cell cycle and apoptosis-related viruses
(CARV). As other carcinogenic pathway-related viruses
(OCPRV), 12 viruses including influenza A virus H3N2
subtype (IAV H3N2), Murid herpesvirus 4 (MuHV-4) and
measles virus (MV) are defined. Classification from
the perspective of VTHPs is different from traditional
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principles. The results highly indicate that VTHP-based
antiviral target discovery and drug repositioning require
further systematic optimization.

Optimization of druggable VTHPs provides
primary candidate targets
In order to evaluate repositioning potential of VTHPs
as drug targets, we integrated and investigated the
approved/experimental human drug–target relationship
in DrugBank database. For the 35 viruses mentioned
above, 1149 VTHPs have been proved to be known drug
targets (defined as druggable VTHPs), accounting for
only 19.29% of their total VTHPs (Website Table 3). The
average proportion of druggable VTHPs for the 35 viruses
is 25.83% (Figure S1A and sheet of ‘35 viruses’ in Table S2
available online at http://bib.oxfordjournals.org/). The
frequencies and average proportions of druggable
VTHPs in the 4 groups of viruses are different. The
highest proportion was obtained in CPUV (27.33%,
sheet of ‘4 groups’ in Table S2 available online at
http://bib.oxfordjournals.org/). These limited druggable
VTHPs still need to be prioritized. Functionally signif-
icant proteins need to be screened out as candidate
targets for repositioned antiviral drugs.

Essential gene-encoded proteins (EGEPs) in druggable
VTHPs

Wang et al. identified 1878 essential genes in more than
20 000 ones in human genome, which have been proved
crucial for cell survival and knockout of them can lead
to direct cell death [33, 34]. It is noteworthy that viruses
may hijack these EGEPs, leading to severe or lethal
symptoms. Drugs that directly target them may cause
serious side effects or specific toxicity [35]. Therefore,
we examined the enrichment of EGEPs in known drug
targets and VTHPs of the 35 viruses. We found that
10.35% of the investigated drug targets were EGEPs (P-
value = 1.87 × 10−8) whereas 16.67% of VTHPs were EGEPs
(P-value = 8.86 × 10−185). As shown in Figure S1B, avail-
able online at http://bib.oxfordjournals.org/, this ratio is
still much lower than that in druggable VTHPs of the 35
viruses (29.30% on average). The top two viruses for most
EGEPs are LCMV (54.93%) and Zaire Ebola virus (ZEBOV,
52.94%). Both of them have been proved pernicious and
virulent with high fatality rates [36–39]. Meanwhile,
vaccinia virus (VacV, 10.53%), MuHV-4 (9.76%) and HDV
(0) had the lowest proportions of EGEPs and caused
persistent, moderate and mild infections [40–42]. In
conclusion, EGEPs are not suitable for drug repositioning.

Membrane proteins in druggable VTHPs

Membrane proteins are important determinants of viral
infections and potential appropriate drug targets for
effective blocking of viral entry and subsequent signal
transduction [43, 44]. Drug–membrane interactions
are also significant in medicinal chemistry because
compounds enter cells via membrane proteins. There-
fore, we examined enrichment of membrane proteins

(including plasma membrane, organelle membrane and
endoplasmic reticulum membrane proteins) in known
drug targets and druggable VTHPs for the 35 viruses.

It is shown that drug targets were significantly
enriched in membrane proteins (55.01%, P-value = 2.63 ×
10−62). The proportion of membrane proteins in drug-
gable VTHPs was 52.22% (P-value = 6.69 × 10−17). The
average proportion of membrane proteins in druggable
VTHPs of the 35 viruses was 52.94%. Proportions of mem-
brane proteins in five viruses are above 70% (Figure S1C
available online at http://bib.oxfordjournals.org/). There-
fore, membrane proteins are ideal targets for developing
repositioned antiviral therapeutics.

Hub proteins in druggable VTHPs

In human protein–protein interaction (PPI) network,
functionally crucial proteins as hubs tend to participate
in more regulations by interacting with more proteins
and play important roles in maintaining the network
structure. Thus, identification of hub proteins may assist
in prioritizing druggable VTHPs as more effective targets.

We constructed a PPI network based on BioGrid
database and determined regulatory importance of
functional proteins according to their degrees. Using
329 (upper 1% quantile) as threshold, we obtained hub
proteins. We found that 2.77% of known drug targets
were hubs (P-value = 5.05 × 10−24) and it was compa-
rable to that in VTHPs (2.50%, P-value = 1.18 × 10−56).
We then investigated druggable VTHPs and found
that the proportion of hub proteins was 6.09% (P-
value = 3.28 × 10−43). As shown in Figure S1D, available
online at http://bib.oxfordjournals.org/, an average of
15.44% of the druggable VTHPs of the 35 viruses were
hub proteins. Human herpesvirus 5 (HHV-5, 32.26%)
and sindbis virus (SINV, 30.56%) had proportions of hub
proteins above 30%. Hub proteins in druggable VTHPs are
potential targets for developing antiviral therapeutics in
drug repositioning.

Therefore, we proposed three selection principles for
screening suitable VTHPs in antiviral drug reposition-
ing as follows: (1) they should have been proved to be
druggable, and (2) they should not be EGEPs, but (3)
they should be membrane or/and hub proteins. In total,
we obtained 209 EGEPs and 940 nonessential druggable
VTHPs for the 35 viruses (Figure 2). Among the latter,
520 (55.32%) were membrane proteins and 48 (5.11%)
were hub proteins. There are 25 VTHPs being both mem-
brane and hub proteins. These 543 nonessential drug-
gable membrane or hub proteins are most promising for
predicting host-directed repositioned antivirals, which
are defined as candidate VTHPs.

Predicting repositioned host-directed antiviral
drugs based on optimized VTHPs
We determined the selection criteria for candidate
repositioned drugs according to those of VTHPs. Their
targets should contain one or more membrane or/and
hub protein(s), which are druggable but not EGEPs.
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Figure 2. Venn diagram showing distinction and overlap of essential gene-encoded proteins (EGEPs, purple area), membrane proteins (green area)
and hub proteins (yellow area) in druggable virus-targeted host proteins (VTHPs). The red number refers to nonessential druggable VTHPs being both
membrane and hub proteins.

Through statistics, we found that optimized druggable
VTHPs of the 35 viruses could be targeted by 2786
small-molecule compounds. Specifically, approved drugs
with more favorable toxicity profiles and recognized
effectiveness can greatly reduce preclinical evaluations,
representing a preponderant class of drugs for reposi-
tioning. Thus, we selected 703 approved drugs targeting
428 candidate VTHPs of the 35 viruses to construct a
drug–virus network (DVN) (Figure 3A, Website Table 4).
It indicated relationship and attributes of these viruses
and the possible drugs which were established through
the repositioning strategy that VTHPs of some viruses
were also targets of specific drugs. In DVN, there are
a total of 3003 drug-virus connections. As shown in
Figure 3B, each virus is connected to 87 drugs on average.
Alphapapillomavirus 7, 9 and 10 are connected to 300,
264 and 250 drugs, respectively, showing the highest
repositioning potential.

Moreover, we tried to determine types of repo-
sitioned drugs according to Anatomical Therapeu-
tic Chemical (ATC) classification codes (Figure 3C,
sheet of ‘ATC codes’ in Table S3 available online at
http://bib.oxfordjournals.org/). Codes are available for
588 drugs. Among them 178 are used in the nervous
system showing 906 connections with 29 viruses. We
also found 60 for the alimentary tract and metabolism
showing 279 connections with 31 viruses. It suggests
that drugs originally developed for the nervous system

have the highest antiviral repositioning potential. Types
of repositioned drugs for these viruses vary greatly
(Table S3 available online at http://bib.oxfordjournals.
org/).

We further evaluated possible antiviral spectrums
of repositioned drugs by counting numbers of their
connected viruses. As shown in Figure 3D, 239 (34.00%)
drugs show a single connection with a single virus, pre-
senting specific repositioning relationships. For example,
the antiinflammatory agent fluticasone propionate is
repositioned for anti-IAV H3N2 for sharing the host
target PLA2G4A. In addition, 112 (15.93%) drugs were
connected with 2 viruses whereas 10 to 100 drugs were
connected with 3 to 11 viruses, accounting for 47.08% of
all predicted drugs. Eighteen drugs were connected with
more than 14 viruses. Highly connected drugs included
copper (31), fostamatinib disodium (29), artenimol (28),
zinc acetate (28) and acetylsalicylic acid (28). They hold
greater potential to be developed as broad-spectrum
antivirals. They are all multitarget drugs repositioned
for different viruses through targeting different VTHPs.

Repositioning relationship between a drug and a
virus was established by sharing one or more candidate
VTHP(s). Therefore, the 3003 drug–virus connections
increase to 4138 drug–VTHP–virus connections if we
calculate multitarget drugs repositioned for specific
viruses by targeting more than 1 VTHPs. As a result,
all viruses except classical swine fever virus (CSFV) and
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Figure 3. Drug-virus network (DVN) and statistics on 35 viruses with >70 identified virus-targeted host proteins (VTHPs) and their predicted potential
repositioned drugs. (A) DVN showing possible therapeutic relations among the 35 viruses and 703 approved drugs. A link was placed between a drug
and a virus if they shared at least 1 of the 543 candidate VTHPs. Circles represent viruses which are differentially colored according to their Baltimore
groups. Squares represent drugs which are differentially colored according to their ATC classification codes. Sizes of circles (viruses) are proportional to
numbers of their related drugs whereas sizes of squares (drugs) are proportional to numbers of their identified protein targets according to DrugBank
database. (B) Statistics on numbers of predicted repositioned approved drugs for the 35 viruses. (C) Proportional distribution of different types of predicted
repositioned drugs according to ATC classification codes. (D) Statistics on numbers of predicted repositioned approved drugs with respect to numbers
of viruses. (E) Statistics on numbers of multi-VTHP-targeted repositioned drugs for the 35 viruses. (F) Heatmap presenting numbers of candidate VTHPs
shared by drug–virus pairs. Viruses are listed in rows and drugs are listed in columns. Color blocks indicate numbers of shared candidate VTHPs. Details
of ATC codes in A and C are shown under ATC codes in Table S3 available online at http://bib.oxfordjournals.org/.
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ZEBOV were connected to at least 1 repositioned drug
by sharing two or more VTHPs. As shown in Figure 3E,
average number of multi-VTHP-targeted repositioned
drugs for the 35 viruses was 14. IAV H1N1 (53), HIV1
(46) and alphapapillomavirus 9 (46) were the top three
viruses with most multi-VTHP-targeted repositioned
drugs. Statistically, there were 117 drugs repositioned
for 33 viruses by sharing more than 1 VTHPs, which are
displayed in a heatmap (Figure 3F). It indicated that the
predicted potential broad-spectrum antivirals copper
and fostamatinib disodium shared most candidate
VTHPs (21) with IAV H1N1 and HHV-4, respectively.

Preclinical validation of host-directed
repositioned drugs for antiviral treatments
To further evaluate our optimization strategy and feasi-
bility of DVN for antiviral repositioning, we selected HHV-
1, HBV and IAV to validate potential of candidate VTHPs
and predicted drugs. HHV-1, HBV and IAV are represen-
tative viruses from different Baltimore groups and clus-
ters of enriched VTHPs. Approved host-directed agents
against them are currently rare [45, 46]. We extracted a
subnetwork for each virus and chose commercially avail-
able drugs. Candidates targeted at least 1 nonessential
druggable membrane or/and hub protein while controls
targeted EGEPs or nonessential, nonmembrane, nonhub
VTHPs. We first tested their cytotoxicity and then effi-
cacy at noncytotoxic concentrations. The most potent
drugs were further evaluated in combination therapy
with commercially available antivirals.

HHV-1 and bosutinib

We identified 227 drugs for anti-HHV-1 repositioning
based on 38 candidate VTHPs (Figure 4A), of which 7 were
selected for test. In addition, eight drugs targeting EGEPs
and nonessential noncandidate VTHPs were used as con-
trols. As shown in Figure 4B, these drugs showed varied
toxicities on African green monkey kidney cells (Vero)
and the half-toxic concentrations (TC50) ranged from
11.9 to 362.4 μg/ml. Under nontoxic concentrations, their
anti-HHV-1 efficacy was evaluated by the cytopathic
effect (CPE). Isoprenaline (half-inhibitory concentrations,
IC50 = 88.8 μg/ml) and bosutinib (IC50 = 7.0 μg/ml) showed
significant inhibitory effect on CPE. Notably, the Bcr-
Abl kinase inhibitor bosutinib showed the strongest
inhibitory effect. Its treatment index (TI, 3.61) was higher
than that of isoprenaline (2.69).

Using the Loewe additivity model, we assessed the
efficacy of combination therapy of bosutinib with acy-
clovir (ACV), a clinically effective anti-HHV-1 drug. Syn-
ergy scores were calculated to accurately indicate syn-
ergism (>0) and antagonism (<0). As shown in Figure 4C,
drug antagonism was observed over a wide concentration
range of the two drugs, resulting in a negative average
synergy score of −18.59.

HBV and maraviroc

We predicted 54 drugs for anti-HBV repositioning
based on 16 candidate VTHPs (Figure 5A). We selected

four drugs targeting candidate VTHPs and five drugs
targeting nonessential noncandidate VTHPs for further
investigation. As shown in Figure 5B, these drugs showed
varied toxicities on hepatoma cell line HepG2.2.15
transfected with HBV genome, and the TC50 ranged from
14.0 to 928.4 μg/ml. Under nontoxic concentrations,
their anti-HBV efficacy was evaluated by determining
surface antigen of HBV (HBsAg) and hepatitis B e-antigen
(HBeAg) in culture medium. There were four drugs
showing significant inhibitory effect on secretion of
HBsAg. IC50 was calculated for maraviroc (80.2 μg/ml),
melatonin (151.9 μg/ml), etodolac (18.9 μg/ml) and
resveratrol (20.4 μg/ml). Notably, maraviroc showed a
strong inhibitory effect on HBsAg at various concen-
trations (Figure 5C) and a TI of 11.10, which was much
higher than those of the other three. Meanwhile, four
drugs showed weak inhibitory effect on HBeAg, namely
acitretin, alitretinoin, etodolac and resveratrol (data not
shown). However, their effect was limited at nontoxic
concentrations.

We then assessed inhibitory effect of maraviroc on
HBsAg, HBeAg and HBV replication in a time-course
manner to determine its anti-HBV activity with limited
toxicity (Figure 5D). At all 4 concentrations, maraviroc
increased HBsAg inhibition in a time-dependent manner.
However, the most significant inhibitory effect on HBeAg
and HBV-DNA appeared on D3 of treatment regardless of
concentrations. These results indicated that maraviroc
at single doses could elicit consistent inhibitory effect on
HBsAg.

We further explored the efficacy of combined treat-
ment of maraviroc and lamivudine, a clinically effective
nonnucleoside reverse transcriptase inhibitor of HBV in
a nine-day treatment and evaluated drug synergy using
the Loewe additivity model. As shown in Figure 5E (left
lane), drug synergy on HBsAg inhibition was demon-
strated over a specific concentration range only on D3.
Antagonism was observed over a robust concentration
range, resulting in negative average synergy scores at
all three time points. Similarly, in the middle lane, drug
synergy on HBeAg inhibition was observed over a specific
concentration range on D3 and D6. Regarding HBV-DNA
inhibition in the right lane, drug synergy could only
be observed in a limited range. Strong antagonism was
demonstrated on D3 and D9, and the average synergy
score dropped to −44.405 on D9.

IAV and dextromethorphan

We noticed that 393 drugs were predicted for anti-IAV
H1N1 repositioning based on 138 candidate VTHPs, and
80 for anti-IAV H3N2 repositioning based on 19 candidate
VTHPs (Figure 6A). There were 61 potential candidates
to treat both subtypes. In total, we selected 19 drugs
for test against IAV H1N1 (Figure 6B). Dexamethasone,
resveratrol, bosutinib, cyclosporine and probucol were
also tested against IAV H3N2. They showed various
toxicities on the Madin–Darby canine kidney (MDCK)
cells and the TC50 ranged from 0.305 to 1029.3 μg/ml. At
nontoxic concentrations, the anti-IAV H1N1 and H3N2
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Figure 4. Prediction and verification of potential repositioned antihuman herpesvirus 1 (HHV-1) drugs, of which bosutinib turned to be the most
promising one. (A) Drug–target–virus network of HHV-1. HHV-1 was connected to all candidate virus-targeted host proteins (VTHPs). A link was
placed between a drug and a VTHP if the VTHP has been reported to be 1 of the known targets of the drug according to DrugBank database.
Squares represent drugs which are differentially colored according to their ATC classification codes (ATC codes in Table S3 available online at
http://bib.oxfordjournals.org/). Sizes of circles (VTHPs) are proportional to numbers of their connected drugs and those of squares (drugs) are
proportional to numbers of their identified protein targets according to DrugBank database. (B) Half-toxic concentrations (TC50) of 15 tested drugs
and half inhibitory concentrations (IC50) of 2 of them showing significant inhibitory effect on cytopathic effect (CPE) under nontoxic concentrations. We
found four drugs targeting candidate membrane VTHPs including amitriptyline hydrochloride, clodronate disodium, dextromethorphan hydriodide
and temazepam acetate. We also selected valproic acid targeting candidate hub VTHPs. Acetylsalicylic acid and bosutinib target both membrane
and hub VTHPs. Meanwhile, we used cladribine, colchicine, vinblastine sulfate, vincristine sulfate, vinorelbin, homoharringtonine, cyclosporine and
isoprenaline that target essential gene-encoded proteins (EGEPs) or/and nonessential noncandidate VTHPs as controls. TC50 and IC50 were obtained from
triplicates and representative of two independent experiments. (C) Synergy effect of bosutinib and acyclovir (ACV) determined using Loewe additivity
model with R package SynergyFinder. Synergy scores were evaluated according to dose–response relationships of the two drugs applied respectively or
simultaneously. Colors in the landscape indicate synergy scores of the combinations with different concentrations of the two drugs. Red areas (synergy
score > 0) represent drug synergy while green ones (synergy score < 0) represent drug antagonism. Absolute values indicate intensity of drug synergy or
antagonism. Average synergy score was calculated with the dose matrixes.

efficacy of the drugs were evaluated by determining
CPE upon 10 tissue culture infectious dose 50 (TCID50)
of viral infection. As a result, six and three tested drugs
exhibited CPE inhibitory effect in IAV H1N1 and H3N2

infection, respectively, and their CPE inhibition (CPEI)
was obtained. Notably, dextromethorphan (25 μg/ml,
CPEIH1N1% = 37.5%, CPEIH3N2% = 25%), dexamethasone
(100 μg/ml, CPEIH1N1% = 25%, CPEIH3N2% = 12.5%) and
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Figure 5. Prediction and verification of potential repositioned antihepatitis B virus (HBV) drugs, of which maraviroc turned to be the most promising
one. (A) Drug–target–virus network of HBV. HBV was connected to all candidate virus-targeted host proteins (VTHPs). A link was placed between a drug
and a VTHP if the VTHP has been reported to be 1 of the known targets of the drug according to DrugBank database. Squares represent drugs which
are differentially colored according to their Anatomical Therapeutic Chemical (ATC) classification codes (ATC codes in Table S3 available online at
http://bib.oxfordjournals.org/). Sizes of circles (VTHPs) are proportional to numbers of connected drugs and those of squares (drugs) are proportional to
numbers of their identified protein targets according to DrugBank database. (B) Half-toxic concentrations (TC50) of nine tested drugs and half inhibitory
concentrations (IC50) of four of them showing significant inhibitory effect under nontoxic concentrations. We selected maraviroc and melatonin targeting
candidate membrane VTHPs. Acetylsalicylic acid and resveratrol targeted both membrane and hub VTHPs. Adapalene, bexarotene, acitretin, alitretinoin
and etodolac targeting nonessential noncandidate VTHPs were used as controls. (C) Inhibitory effect on secretion of HBsAg of the four drugs with respect
to their logarithmic concentrations. (D) Inhibitory effect on secretion of HBsAg, HbeAg and HBV replication of maraviroc in different concentrations
with respect to days of treatment. HBsAg inhibition increases to 13.99%, 27.38%, 33.39% and 51.27% for the four concentrations of maraviroc on
D9, respectively. HBeAg inhibitions at concentrations of 25–100 μg/ml grow in the first 3 days of treatment, followed by a decline. HbeAg inhibition
decreases to 0 on D9 at 100 μg/ml and on D6 at lower concentrations. Note that on D3 maraviroc at the highest concentration (100 μg/ml) shows 10.53%
and 38.13% inhibitions on HBeAg and HBV replication, respectively. (E) Synergy effect of maraviroc and lamivudine analyzed using Loewe additivity
model with R package SynergyFinder. Synergy scores were evaluated according to dose–response relationships of the two drugs applied respectively or
simultaneously. Colors in the landscapes indicate synergy scores of the combinations with different concentrations of the two drugs. Red areas (synergy
score > 0) represent drug synergy while green ones (synergy score < 0) represent drug antagonism. Absolute values indicate intensity of drug synergy or
antagonism. Average synergy scores were calculated with the dose matrixes. Data of in vitro tests were obtained from triplicates and representative of
two independent experiments.

resveratrol (12.5 μg/ml, CPEIH1N1% = 25%, CPEIH3N2% =
12.5%) showed CPEI upon both subtypes. However, IC50

was only calculated for dextromethorphan (22.2 μg/ml)
and atomoxetine (44.4 μg/ml) after IAV H1N1 infection.
Other drugs could not be evaluated due to their low
efficacy.

We compared the inhibitory effect of dextromethor-
phan and atomoxetine combined with oseltamivir in
both short-term high-dose (48 h, 100 TCID50) and long-
term low-dose (72 h, 10 TCID50) infection modes in sil-
ico on CPEI (Figure 6C). Robust drug synergy for dex-
tromethorphan + oseltamivir in short-term high-dose
mode was observed over a wide concentration range,
with an average synergy score of 0.814. An even higher
average synergy score was obtained in long-term low-
dose mode. However, antagonism was observed for ato-
moxetine + oseltamivir over a full tested concentration
range in both modes, and their average synergy scores
were negative.

Dose–response experiments were performed to inves-
tigate protection of dextromethorphan + oseltamivir
against IAV H1N1 in a murine model. Mice infected
with a lethal dose of virus showed severe clinical
manifestations on D3 after infection. We found that
62.5% of the infected mice that received the placebo
died on D6, and mice in most of treatment groups had
higher survival rates. Notably, 12.5% of the mice in dex-
tromethorphan + oseltamivir (15 mg/kg/d + 15 mg/kg/d)
group survived to D11 after infection. It was also
noteworthy that no matter in single or combined
treatments higher doses (30 and 60 mg/kg/d) of dex-
tromethorphan were less effective than a lower dose
(15 mg/kg/d). By D9 all mice taking placebo died
whereas mice taking oseltamivir (15 mg/kg/d) and dex-
tromethorphan + oseltamivir (15 mg/kg/d + 15 mg/kg/d)
had the survival rates of 37.5% and 50.0%, respectively
(Figure 6D). Body weights of infected mice in both control
and treatment groups kept decreasing from D3 and
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Figure 6. Prediction and verification of potential repositioned anti-influenza A virus (IAV) drugs, of which dextromethorphan turned to be the most
promising one. (A) Drug–target–virus network of IAV H1N1 and H3N2. The two subtypes of IAV were connected to their candidate virus-targeted
host proteins (VTHPs). A link was placed between a drug and a VTHP if the VTHP has been reported to be one of the known targets of the drug
according to DrugBank database. Squares represent drugs which are differentially colored according to their ATC classification codes (ATC codes
in Table S3 available online at http://bib.oxfordjournals.org/). Sizes of circles (VTHPs) are proportional to numbers of connected drugs and those of
squares (drugs) are proportional to numbers of their identified protein targets according to DrugBank database. (B) Half-toxic concentrations (TC50) of
19 tested drugs and half inhibitory concentrations (IC50) of dextromethorphan and atomoxetine showing significant cytopathic effect (CPE) inhibitory
effect under nontoxic concentrations. Among them dextromethorphan targets candidate membrane VTHPs PGRMC1, RAC1 and CYBA against IAV H1N1.
Dexamethasone targets membrane VTHP ANXA1 against both subtypes. Bosutinib targets both membrane and hub VTHP SRC against IAV H1N1 and
essential gene-encoded protein (EGEP) BCR against IAV H3N2. Cyclosporine and probucol are controls targeting nonessential noncandidate VTHPs PPIA
and CES1, respectively, against both subtypes. (C) Landscapes representing predicted synergy effect of atomoxetine and dextromethorphan combined
with oseltamivir analyzed by R package SynergyFinder based on the Loewe additivity model. Synergy scores were evaluated according to dose–response
relationships of the two drugs applied respectively or simultaneously. Colors in the landscapes indicate synergy scores of the combinations with different
concentrations of the two drugs. Red areas (synergy score > 0) represent drug synergy while green ones (synergy score < 0) represent drug antagonism.
Absolute values indicate intensity of drug synergy or antagonism. Average synergy scores were calculated with the dose matrixes. (D) Survival of IAV
H1N1-infected mice with respect to time post infection. (E) Body weights of IAV H1N1-infected mice with respect to time post infection. (F) Lung injury
scores (left), lung indexes (middle) and protein concentrations (right) of IAV H1N1-infected mice treated with different doses of dextromethorphan,
oseltamivir and their combinations. Data were obtained from triplicates and representative of two independent experiments.
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sustained at low levels until the end of the experiment
(Figure 6E). The treatments failed to restore the weights
to the normal level. In addition, oseltamivir (15 mg/kg/d)
alone or in combination with dextromethorphan could
relieve lung injury induced by viruses. Pathology exami-
nations showed that dextromethorphan + oseltamivir at
all three doses significantly decreased lung injury scores
(Figure 6F, left). Only dextromethorphan + oseltamivir
(15 mg/kg/d + 15 mg/kg/d) significantly decreased lung
index (0.017, Figure 6F, middle) and protein concen-
tration in lungs (7522.13, Figure 6F, right), which were
0.007 and 6484.80 in model group, respectively. These
results indicated that dextromethorphan + oseltamivir
(15 mg/kg/d + 15 mg/kg/d) prolonged survival time of
mice and ameliorated pathological changes in lungs
caused by viral infection. This combination demon-
strated potent therapeutic effect against IAV H1N1 in
vivo, and it is superior to single or combined treatments
of dextromethorphan at higher doses.

Discussion
The prevailing paradigm for drug discovery, including
antivirals, is extremely time-consuming, expensive and
risky [47]. Drug repositioning reduces the time and cost
and advances delivery of new drugs to patients in urgent
need [48]. In addition to economic considerations, host-
directed antiviral strategy aims to enhance protective
responses of hosts, reduce severe inflammation and bal-
ance immune reactions [49]. It has been proved to be
especially attractive for the fast development of antivi-
ral therapeutics in control of severe or acute infectious
disease outbreaks such as COVID-19.

In general, candidate VTHPs and therefrom reposi-
tioned drugs in this study were screened out through
four steps. First, druggable VTHPs had a priority and
leading role for their larger probabilities of being poten-
tial repositioned drug targets, providing a broad space
for host-directed drug development. Next, we ruled out
EGEPs from druggable VTHPs so that repositioned drugs
would not cause critical adverse drug reactions. Then,
we indicated that membrane and hub proteins tended
to be ideal targets for antiviral repositioning. It is pos-
sible that membrane proteins are more potential candi-
dates for they outnumber hub proteins by more than 10
times (520/48). Finally, DVN was constructed based on a
comprehensive investigation of drug–virus interactions.
We emphasized potency of optimized targets and their
corresponding repositioned drugs by comparing them
with drugs targeting essential or nonessential noncan-
didate VTHPs. We found that drugs for the nervous sys-
tem had the greatest promise in antiviral reposition-
ing strategy. Copper and fostamatinib disodium were
likely to be potential broad-spectrum antivirals. However,
their interactions with different viruses were compli-
cated and inconsistent, implying further exploration and
deeper insights into broad-spectrum antivirals discov-
ery. We extracted subnetworks from DVN and selected

potential repositioned drugs bosutinib against HHV-1,
maraviroc against HBV and dextromethorphan against
IAV for tests. The following results were obtained from
the in vitro tests: (1) The representative optimized repo-
sitioned drugs including bosutinib, maraviroc and dex-
tromethorphan showed evident antiviral effect. Mem-
brane VTHPs were found in all the three viruses. (2) Tar-
geting hub VTHPs also inhibited proliferation of viruses
in many cases. (3) Repositioned drugs related to viruses
via nonessential noncandidate VTHPs tended to show
weak inhibitory effect on the pathogens. (4) Compounds
targeting EGEPs showed stronger cell toxicity, implying
more serious adverse drug reactions. In addition, we
found that lower doses of dextromethorphan were more
efficient in inhibiting IAV replication than higher doses.
Notably, most drug–virus connections shared multitar-
gets and these multi-VTHP-targeted repositioned drugs
may be considered to have greater chances as antivirals.

Our results demonstrated that this comprehensive
computational pipeline significantly expanded drug
candidate repertoires beyond virus-directed strategy. The
set of membrane and hub VTHPs offers crucial clues
for drug candidate prioritization. Excluding EGEPs and
prioritizing membrane and hub VTHPs will increase
success rates in drug target identification and antiviral
development, which highlights the superiority and sig-
nificance of our strategy. Besides, the network analyses in
this study further supported use of PPI during candidate
prioritization in identifying important host factors as
potential therapeutic targets.

It is well recognized that host-directed therapy should
be a synergistic complement to canonical antivirals and
become indispensable [50]. Combined strategies of host-
directed drugs and existing ones, or drugs with various
targets provide greater prospects and will play more
important roles in infectious disease treatment as they
could improve the efficacy at lower doses. It is worth
noting that drug combination is one of the hot topics
and has been extensively studied for their potential
efficiency in treatment of COVID-19 [51–53]. We therefore
evaluated combined therapies and observed synergistic
effect of drug combinations tested on three different
viruses. For dextromethorphan against IAV in vivo, the
combination with oseltamivir showed apparent antiviral
effect at lower dosages of dextromethorphan with fewer
side effects. Robust drug synergy was found in both
short-term high-dose and long-term low-dose modes in
wider concentration ranges. However, the combination
of bosutinib with ACV against HHV-1 exhibited drug syn-
ergy only in a limited concentration range whereas drug
antagonism was observed widely. Similarly, anti-HBV
combination of maraviroc and lamivudine also showed
synergistic effect in specific and limited concentration
ranges. Results of combined therapies of predicted host-
directed antivirals and existed ones were inferred to be
complicated and unpredictable, which suggested careful
consideration and balancing. Moreover, possible drug–
drug interactions and the resulting adverse effects [54]



12 | Xie et al.

should also be considered. Future treatment regimens
with appropriate collocation of virus-directed and host-
directed multitarget drugs would provide the best
possible combinations.

More work is still needed in the identification and
verification of potential host-directed antiviral targets
and repositioned drugs. In future work, network con-
struction will evolve with rapid accumulation of data
on host factors and drug targets. Information from a
large number of reports and databases extracted by text
mining using intelligent computational methods should
also be integrated for heterogenous consideration [55–
58]. Additional network analyses would be performed in
DVN. Another significant topic is development of broad-
spectrum antivirals. Identification of host cell factors
and pathways that are commonly used by different
viruses may lead to the discovery of new broad-spectrum
antivirals. Overall, although the efficacy of candidate
drugs still needs further validation, the systematic
analyses and prioritization of host-directed targets and
the repositioning strategy in this study have shown
potent predictive power for target and drug discovery
as an integral component in small-molecule antiviral
drug research and development.

Methods and materials
Data source and data preprocessing
We collected 22 278 and 10 692 Virus-host PPIs (VH-PPIs)
from VirHostNet and VirusMentha databases, respec-
tively (Website Dataset 1). The data of VH-PPIs were pre-
processed in three steps. First, redundant PPIs reported
by the same literature were integrated. Second, items of
viruses without definitions in taxonomy were removed.
Third, two bacteriophages were removed. The final VH-
PPI data contained a total of 28 849 nonredundant PPIs
(Website Table 1). We also obtained 13 441 drug–target
relations among 4773 approved/experimental drugs and
2672 target proteins in human from DrugBank database
(Website Dataset 2).

EGEPs were collected from the research of Wang
et al. [33] according to the recommended threshold. We
scanned and screened Gene Ontology (GO) database and
proteins encoded by genes in the cellular component
terms ‘membrane’, ‘plasma membrane’, ‘endoplasmic
reticulum membrane’ and ‘organelle membrane’ were
defined as membrane proteins in this study. Human PPI
network was constructed according to data from BioGrid
database. We considered proteins whose degrees ranked
the upper 1% quantile in the network as hub proteins.

In this study, we used Target Uniprot ID as the identi-
fier for host factors and drug targets.

Clustering of virus-targeted host proteins
(VTHPs) based on pathway enrichment analyses
Pathway enrichment analyses of VTHPs were performed
based on Kyoto Encyclopedia of Genes and Genomes
(KEGG), which provides tools for understanding and
representation of biological systems and processes. We

established four clusters including CPUV, CARV, PMRV
and OCPRV according to three criteria: (1) whether a
virus could be enriched in cancer-related pathways,
(2) whether a virus could be enriched in cell cycle
and apoptosis-related pathways, and (3) whether a
virus could be enriched in protein metabolism-related
pathways. R package ClusterProfiler for biological term
classification and enrichment analysis of proteins
was used.

Enrichment analyses in optimization of
druggable VTHPs
Enrichment analyses of EGEPs, membrane and hub
proteins were conducted by hypergeometric test using
‘phyper’ and ‘fisher.test’ functions in R package stats. A P-
value of <0.05 indicates a significant difference between
druggable essential, membrane, hub VTHPs and other
proteins.

Construction of drug-virus network (DVN)
The shared candidate VTHPs were the basis of connec-
tions between viruses and known drugs. A connection
was established between a drug and a virus if at least
one of the drug targets has been proved to be VTHP(s) of
the virus (Website Table 4). The DVN was visualized and
illustrated using the Cytoscape software (Figure 3A).

Simulation and evaluation of synergy effect
Synergy effects of combinations of predicted and clini-
cally used drugs were measured using the R package Syn-
ergyFinder based on the Loewe additivity model, which
has been proved to be an easy and flexible approach
in drug combination studies [59]. If the combined effect
is greater than addition of the expected effect of each
drug, the response is synergy (synergy score > 0) whereas
antagonism is concluded when the combination pro-
duces less than expected effect (synergy score < 0).

Antiviral activity tests against HHV-1
HHV-1 SM44 strain was obtained from the Beijing
Institute of Biological Products Co., Ltd. Vero cells were
purchased from National Collection of Authenticated
Cell Cultures (NCACC, GNO10, passage 93), China. The
cells were cultured in Dulbecco’s modified Eagle’s
medium (DMEM, Invitrogen) supplemented with 10%
(vol/vol) fetal bovine serum (Gibco), 2 mM glutamine,
100 unit/ml penicillin and 100 μg/ml streptomycin at
37◦C in 5% CO2.

Vero cells were inoculated in 96-well plates, cultured
to semiconfluence and infected with HHV-1 (100 TCID50).
We removed the HHV-1 solution after 2 h and replaced it
with serial dilutions of the predicted and control com-
pounds. The plates were incubated at 37◦C for 3 days.
Antiviral activity (IC50) was used to evaluate the effect of
tested drugs using CPE reduction on D3. It was observed
using a Leica EL6000 microscope (Leica Microsystems,
Germany) [60].

Cytotoxicity (TC50) of the compounds was determined
by MTT assay. Monolayer cells were washed twice with
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serum-free DMEM. The culture medium containing dif-
ferent concentrations of the tested drugs was added, and
the cells were incubated at 37◦C in 5% CO2 for 48 h. Cell
viability was observed and expressed as optical density
[61, 62]. Absorbance was read at 570 nm by spectropho-
tometry using a microplate reader (BioTeK Instruments,
USA). MTT cell proliferation and cytotoxicity assay kit
(C0009M, Beyotime, Shanghai, China) was used.

A treatment index (TI) value was defined as the ratio of
TC50/IC50. At least three independent experiments were
conducted.

Antiviral activity tests against HBV
The HBV-expressing stable cell line HepG2.2.15 (passage
32) [63] was provided by Yumei Wen, Fudan University,
China and cultured in the same condition as Vero cells.

The cells were treated with the tested drugs at serial
dilutions, and the culture medium was changed every
3 days. On D3, D6 and D9, the culture supernatants
were collected for analyses of viral proteins (HBsAg and
HBeAg) and HBV-DNA. The viral proteins were detected
using ELISA kits (Shanghai Kehua Bio-engineering Co.,
Ltd., Shanghai, China). HBV-DNA in culture supernatants
was detected by quantitative PCR (qPCR) (Table S4 avail-
able online at http://bib.oxfordjournals.org/). The qPCR
analysis was performed using SYBR Premix Ex Taq™
(TaKaRa) and the StepOne Plus real-time PCR system
(Thermo Fisher Scientific) and the thermocycling param-
eters were set as follows: maintained at 95◦C for 5 min,
followed by 40 cycles of 95◦C for 15 s and 60◦C for
1 min. TC50 of tested drugs was determined by MTT assay.
At least three biological and technical replicates were
performed to allow accurate quantification by statistical
analyses.

Antiviral activity tests against IAV
For in vitro tests, IAV H1N1 A/PR/8/34 (VR-95) and H3N2
A/Hong Kong/8/68 (VR-1679) from American type culture
collection (ATCC) were used. MDCK cells (NCACC, GNO23,
passage 27) were maintained in the same condition as
Vero cells. They were infected with 10 TCID50 of the virus
strain for 2 h and treated with the tested drugs at serial
dilutions. IC50 and TC50 were evaluated by CPE reduction
and MTT assay, respectively. Each measurement was per-
formed in triplicate.

For in vivo tests, the highly virulent and mouse-
adapted IAV H1N1 A/FM/1/47 (VR-97, ATCC) was used.
It was supplied by Shanghai Center for Disease Control
and Prevention (Shanghai, China) and stored in aliquots
at −70◦C. Male BALB/c mice (16–18 g, 6–8 weeks)
from the Shanghai SLACCAS Laboratory Animal Co.,
Ltd. (Shanghai, China) were housed under a specific
pathogen-free (SPF) condition, and sterile water and
standard mouse chow were provided. All experimental
protocols were approved by the Animal Experiment
Committee in Fudan University (Shanghai, China).

Mice were randomly divided into nine groups: nor-
mal control group, virus control group, oseltamivir

group (15 mg/kg), dextromethorphan groups (15, 30,
60 mg/kg) and dextromethorphan + oseltamivir groups
(15 mg/kg + 15 mg/kg, 30 mg/kg + 15 mg/kg, 60 mg/kg +
15 mg/kg). All mice except the control were anesthetized
under 1% pentobarbital and infected intranasally (i.n.)
with 10 LD50 (equal to 2.1 × 103 PFU) of IAV H1N1 in
30 μl inoculum volume per mouse. Mice were treated
with different doses of dextromethorphan, oseltamivir or
their combinations by gavage once daily for 5 days 48 h
after infection. The mice were monitored for survival and
body weight loss for 11 days. On the 12th day, all mice
were sacrificed and lungs were collected and weighed.
Lung injury score was evaluated by hyperemic and
parenchymal lesion, and lung index was calculated as
the ratio of average lung weight to average body weight
to indicate edema and inflammation of lungs. Protein
concentration was determined by BCA assay (P0010,
Beyotime, Shanghai, China).

Statistical analyses
All statistical analyses were performed using GraphPad
Prism for Windows (Version 6.0) and expressed as
mean ± SD. Survival of mice was analyzed by the Gehan–
Breslow–Wilcoxon test. Other experimental data were
evaluated by a two-tailed Student’s t-test or one-way
ANOVA followed by Bonferroni’s test. In all cases,
probability levels less than 0.05 (P < 0.05) were considered
to indicate statistical significance.

Key Points

• We performed a comprehensive investigation of VTHPs
and proposed a new classification of viral infections
based on enriched signaling pathways of VTHPs.

• We have optimized druggable VTHPs and concluded that
nonessential membrane and hub proteins are potential
ideal targets for development of host-directed reposi-
tioned antiviral therapeutics.

• We constructed DVN and analyzed antiviral reposition-
ing potential of approved drugs. The in vitro and in
vivo tests confirmed the predicted bosutinib against
HHV-1, maraviroc against HBV and dextromethorphan
against IAV.

• Our work revealed new rules in viruses, VTHPs and
known drugs, and proposed promising candidate targets
and compounds for further clinical studies, providing
an innovative and powerful approach for drug discovery
based on host-directed repositioning strategy.

Supplementary data
Supplementary data are available online at https://
academic.oup.com/bib.
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