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Telomeres are nucleprotein structures that cap the chromosomal ends, conferring
genomic stability. Alterations in telomere maintenance and function are associated with
tumorigenesis. In chronic lymphocytic leukemia (CLL), telomere length is an independent
prognostic factor and short telomeres are associated with adverse outcome. Though
telomere length associations have been suggested to be only a passive reflection of the
cell’s replication history, here, based on published findings, we suggest a more dynamic
role of telomere dysfunction in shaping the disease course. Different members of the
shelterin complex, which form the telomere structure have deregulated expression and
POT1 is recurrently mutated in about 3.5% of CLL. In addition, cases with short telomeres
have higher telomerase (TERT) expression and activity. TERT activation and shelterin
deregulation thus may be pivotal in maintaining the minimal telomere length necessary to
sustain survival and proliferation of CLL cells. On the other hand, activation of DNA
damage response and repair signaling at dysfunctional telomeres coupled with
checkpoint deregulation, leads to terminal fusions and genomic complexity. In
summary, multiple components of the telomere system are affected and they play an
important role in CLL pathogenesis, progression, and clonal evolution. However,
processes leading to shelterin deregulation as well as cel l intr insic and
microenvironmental factors underlying TERT activation are poorly understood. The
present review comprehensively summarizes the complex interplay of telomere
dysfunction in CLL and underline the mechanisms that are yet to be deciphered.

Keywords: chronic lymphocytic leukemia, telomere dysfunction, telomerase activation, genomic complexity,
prognostic factor, clonal evolution
INTRODUCTION

Telomeres are repetitive DNA sequences at the ends of the chromosomes that play a pivotal role in
maintaining genomic stability by capping and protecting the ends from degradation and fusions.
Maintenance of telomere length is a key for immortalization in cancers. In chronic lymphocytic
leukemia (CLL), telomere length has been identified as an independent prognostic factor in various
studies. In addition, the deregulation of different telomere components has a profound influence on
the CLL pathomechanisms. The present review is thus aimed at summarizing the clinical and
biological aspects of telomere shortening, mutations and deregulated expression of telomere
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associated genes, and mechanisms that are important for
telomerase activation in CLL, to pave way for a deeper
understanding of telomere dysfunction in CLL pathogenesis.
TELOMERES—STRUCTURE AND
FUNCTION

All eukaryotic chromosomes have specialized nucleo-protein
structures called telomeres which cap the ends. The nucleic
acid component of the telomeres comprises of long tracts of
DNA repeat sequences, ending with a 3’ single stranded DNA
overhang. In mammals, the telomere sequences consist of
TTAGGG hexamers, repeated many kilo bases in length (1). In
somatic cells, a part of the DNA sequence is lost at the ends of the
chromosomes during each cell division due to the end-
replication problem (2, 3). The telomeres at the chromosomal
ends thus serve as buffer preventing loss of vital genetic
information. The telomeric repeats are associated with a six-
subunit protein complex called shelterin consisting of TRF1,
TRF2, TIN2, TPP1, POT1, and RAP1. TRF1 and TRF2 bind
directly to the double stranded telomere sequence and POT1
binds to the 3’ single stranded overhang. TIN2 and TPP1 link
TRF1 and TRF2 and POT1 while RAP1 binds solely to TRF2 (4).
The 3’ telomere overhang at the chromosomal ends loops to
form the T-loop by strand invasion. The T-loop structure along
with the shelterin prevents the chromosomal ends from being
recognized as DNA damage, conferring genomic stability (5).

In stem cells, germ cells, and in various cancers, the telomere
length is maintained, most commonly by the reverse transcriptase
enzyme, telomerase (TERT). It is an RNA-dependent DNA
polymerase that uses the telomerase RNA component (TERC) as
a template to synthesize the telomeric DNA (1). Thus in somatic
cells that lack telomerase expression, telomere shortening beyond a
critical length activate the senescence checkpoints, beyond which
the cells cannot proliferate in the absence of an active telomere
length maintenance mechanism. Activation of telomerase is
considered as one of the hallmarks of malignant transformation
(6). In addition, certain neoplasms undergo telomerase-
independent alternative lengthening of telomeres (ALT), a
recombination dependent pathway that utilizes telomeres of
adjacent chromosomes as template for elongation and
maintenance of critical telomere length (7, 8). In CLL,
deregulations of various components of the telomere machinery
such as length of telomeres, telomerase, and shelterin expression,
and recurrent, activating POT1mutations point to a global telomere
dysfunction that plays an important role in disease pathogenesis
and evolution.
TELOMERE DYSFUNCTION AND
TUMORIGENESIS

The primary role of telomeres is to confer genomic stability. The
shelterin complex shields the telomeres from activation of the
Frontiers in Oncology | www.frontiersin.org 2
DNA damage response signaling at the telomeres. In particular,
TRF2 of the sheltein complex is important to prevent activation
of the ATM (9) and subsequently non-homologous end joining
(NHEJ) (10, 11) while POT1 suppresses ATR signaling (12)
activation at the telomeres. Critical telomere shortening leads to
uncapping of the ends and activation of senescence checkpoints.
This is an important tumor suppressor mechanism that
functions to eliminate potentially harmful, pre-malignant clones.

Progressive shortening of telomeres by knocking out Terc and
crossing through generations G1 to G6 by knocking out Terc led
to increased incidences of spontaneous malignancies and
decreased stress response and survival (13). Dysfunctional
telomeres lead to intra or inter chromosomal end fusions
resulting in the formation of dicentric chromosomes that
undergo breakage at the anaphase. This phenomenon is known
as breakage-fusion-bridge (BFB) cycle which leads to genomic
complexity. Evidences of such BFB events were found in many
different cancer types (14, 15). Using murine models it was
further demonstrated that loss of checkpoint genes such as TP53
along with telomere dysfunction led to development of cancers
due to non-reciprocal translocations caused by BFB events (16).

Of note, length of telomeres within a cell substantially varies
between the different chromosomes and it was identified that the
presence of one or more critically short telomeres and not the
average telomere length dictates cellular senescence versus
proliferation (17). Though the activation of telomerase or ALT
mediated telomere maintenance is important for cellular
immortalization and cancer, a large study with 18,430 samples
from tumor and normal tissues from 31 different cancer types
identified telomere length of the tumor tissue to be shorter than
the corresponding normal tissue in majority of the cancer types
(18). In line with this, numerous studies on telomere length
associations have shown that CLL tumors have significantly
shorter telomere length but higher telomerase expression and
activity compared to normal B-cells. Thus in cancers, the
genomic instability associated with telomere dysfunction may
promote selection of fit clones which bypass the senescence
checkpoints promoting tumorigenesis while activation of
telomerase or ALT serves to maintain the minimal telomere
length to overcome senescence and sustain cell survival.
METHODOLOGY FOR ANALYSIS OF
TELOMERE LENGTH IN CLINICAL
SAMPLES

Various techniques have been used for the assessment of
telomere length in CLL. Telomere length analyzed by telomere
restriction fragment (TRF) analysis is considered to be the gold
standard. The method includes the process of using a restriction
enzyme that does not detect the telomere repeat sequence to
digest the non-telomeric DNA, followed by resolution on a gel
and southern hybridization (19, 20). Even though the method is
highly reproducible, TRF analysis of telomere length has many
limitations. Telomere length analyzed using TRF may
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Jebaraj and Stilgenbauer Telomere Dysfunction in CLL
substantially vary depending on the restriction enzymes used to
digest the non-telomeric DNA (21). Additionally, TRF method is
not capable of reliably analyzing very short telomeres due to the
requirement of hybridization with a probe. The method is low
throughput and requires micrograms of DNA. Since the
restriction enzymes might not effectively digest the telomere-
associated sequences (TAS) that are adjacent to the telomeres,
the method usually overestimates the telomere length of a sample
(22). Over the years, newer and high-throughput methods for
estimation of telomere length were developed, which made
analysis of larger patient cohorts easier.

Fluorescence in situ hybridization (FISH) using fluorescence
labelled (CCCTAA)n telomere binding probes are used for
analyzing telomere length, where the intensity of the signal
directly corresponds to the length of the telomere sequence in
a given sample. The method when coupled with chromosomal
banding is a valuable tool for analyzing telomere length of
individual chromosomes. FISH based telomere length
measurements could be made high-throughput by using flow
cytometry (flow-FISH) (23). Another advantage of flow-FISH is
that it can be used to analyze telomere lengths of different cell
sub-populations within a given sample by using cell-type
specific antibodies.

However, the most widely used technique for telomere length
measurement is by qPCR, based on a method devised by
Cawthon et al. (24). In brief, qPCR technology is used to
detect the amount of telomere sequences per sample (T) by
using a telomere specific primer and normalizing it with a single
copy gene (S) to obtain the average telomere length per cell. The
method could be used for relative estimation (T/S ratio) or for
absolute telomere length analysis when used with telomere and
single copy gene standards (22). The drawbacks of the TRF, flow-
FISH, and qPCR based methods is that they provide a mean
telomere length of the sample under analysis and not the
chromosome specific telomere length. Therefore, to understand
telomere length of specific chromosomes with high resolution,
the single telomere length amplification (STELA) assay was
developed (25). This PCR based method includes ligation of a
linker sequence called telorette to the 5’ end of the complementary
C-rich strand, followed by amplification of the telomere of a
specific strand using telorette and chromosome or allele specific
primers. The PCR products are analyzed by Southern blotting
or qPCR.

In addition to the above methods that were used for telomere
length analysis in CLL, newer techniques have been developed
for analyzing different aspects of telomere length. The STELA
PCR is capable of analyzing critically short telomeres only on a
subset of chromosomes such as XpYp that have unique
subtelomeric sequences suitable for designing chromosome
specific primers. This limitation was overcome by the universal
STELA method (U-STELA) (26). The technique involves
digesting the DNA using the enzymes MseI and NdeI that do
not digest the telomeric repeats, followed by ligating adapters
complementary to the overhangs created by these enzymes. The
non-telomeric parts of the genome that have these adapters on
both the ends form a pan-handle like structure due to
Frontiers in Oncology | www.frontiersin.org 3
complementarity between the ends, suppressing PCR
amplification. On the other hand, the telomeic sequences have
a digested 5’ end and a 3’ G rich overhang that is not processed
by the enzymes. Ligation of telorette to the 3’ overhang allows
specific amplification of telomeres of all chromosomes. This
method is useful for genome-wide analysis of the distribution
of critically short telomeres.

The STELA and U-STELA, though highly sensitive, they are
biased towards detection of short telomeres (<8kb). The method
was further improved and the telomere shortest length assay
(TeSLA) was developed (27). In TeSLA, an adapter (TeSLA-T) is
first added to the G rich 3’ overhang, followed by the use of
restriction enzymes BfaI, CviAII, MseI, NdeI to digest the non-
telomeric DNA as well as the non-canonical sub-telomeric DNA
and to generate 5’ AT and TA overhangs. The 5’ ends of the
digested DNA are then dephosphorylated to prevent re-ligation
of the ends. Double stranded DNA adapters with phosphorylated
5’ AT and TA overhangs containing C3 spacers are tagged to the
digested ends. Telomeres are then amplified using a primer pair
specific for the TeSLA-T and 5’ AT/TA adapters. TeSLA allows
high resolution analysis of the distribution of <1 to 18 kb
long telomeres.

Novel approaches for telomere assessment such as using
CRISPR/Cas9 RNA-directed nickase system to specifically label
telomeres followed by high throughput imaging using nano
channel array have also been developed. This technique
permits mapping and analysis of individual telomeres based on
subtelomere repeat elements (SRE) and unique sequences in the
chromosomes. Recently, another method for telomere length
measurement by molecular combing or DNA fiber analysis was
reported (28) where cells were embedded in agarose plugs
followed by protein digestion to obtain unsheared DNA. The
DNA was then solubilized and stretched on cover slips with a
constant stretching factor of 2kb/µM. Telomeres were analyzed
using a telomere specific PNA probe and the DNA is
counterstained to validate the terminal location of the
telomeres in the chromosomes. Fluorescence microscopy is used
to obtain the distribution of telomere lengths within a sample. The
method is reported to be sensitive for estimation of telomere lengths
of <1 to >80 kb. In CLL, the dynamics of telomere length
distribution in cases with stable and progressive disease is not well
defined. The above mentioned novel methods may be valuable in
monitoring changes in telomere length landscape within a given
case over time and its contribution to clonal diversification, genomic
complexity, and disease evolution.

Due to the wide range of methods used for telomere length
analysis, the comparability of telomere lengths analyzed in
different CLL studies are limited. Moreover, while TRF and
STELA based methods have greater reproducibility, qPCR and
FISH based methods need to be very carefully and extensively
optimized to limit batch effects (29). One of the methods to
improve the use of telomere length as comparable biomarker
would be to have a standardized set of control samples with
telomere length estimated by TRF, included in every batch of
FISH or qPCR based analyses to detect and normalize for batch
variations and to convert the measured relative (T/S ratios or
January 2021 | Volume 10 | Article 612665
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relative fluorescence units) telomere length as absolute (TRF)
values in kilo bases (kb).
TELOMERE LENGTH ASSOCIATIONS
AND PROGNOSTIC IMPACT OF
TELOMERE LENGTH IN CHRONIC
LYMPHOCYTIC LEUKEMIA

Early studies on telomere length associations in CLL using TRF
analysis of relatively small patient cohorts (n = 58 and n = 61)
(30, 31) suggested an association of short telomere length with
advanced disease stages, presence of the poor prognostic
unmutated IGHV and inferior overall survival (30).
Subsequent studies using TRF (31, 32), flow-FISH (33), and q-
PCR (34) identified associations of short telomere length with
other adverse disease features such as CD38 and ZAP70
expression (35) or lymphocyte doubling time (33). Analysis of
telomere length associations with genomic aberration subgroups
consistently showed significant association of short telomeres
with the poor prognostic, deletion 17p (17p-) and deletion 11q
(11q-) while long telomere length was found in cases with
deletion 13q (13q-) (36–42). Of note, TP53 and ATM which
are critical checkpoint genes activated upon telomere shortening
and dysfunction are found in the minimally deleted regions of
17p- and 11q-, respectively. Deletion of these genes therefore
permits these tumor cell clones to undergo further telomere
shortening compared to non-17p-/11q-, without activating cell
death pathways. In line with this, short telomere length was
found to be associated with the presence of mutations in TP53
(37, 40, 41, 43) and ATM (41, 43, 44). Cases with 17p- or TP53
mutation but long telomere length were found to have mutated
IGHV (40, 43).

Among the recurrently mutated genes in CLL, SF3B1 was
found to be associated with short telomere length across different
studies (37, 40, 43, 45). For NOTCH1 mutations, some reports
suggested an association (37) while others found no association
(40, 43) with telomere length. Additionally, Beta-2 microglobulin
(ß2M) and serum thymidine kinase (s-TK) levels were also found
to be significantly associated with telomere length in CLL.
Overall, the presence of short telomere length was found to be
significantly associated with various other poor prognostic
clinical and genetic characteristics in CLL which translates into
an inferior survival compared to those with longer telomere
length. Despite this strong association with other disease
features, telomere length was found to be an independent
prognostic factor in different patient cohorts (35, 36, 39, 40,
42, 43, 46). Accordingly, telomere length was shown to identify
poor or favorable risk patients within established prognostic
subgroups defined by e.g. IGHV, 17p- and 11q-. Overall, the
findings suggest telomere length to be a very important
prognostic factor in CLL that could be instrumental for risk
stratification as well as monitoring and early detection of changes
in clonality. The prognostic impact of telomere length in CLL has
so far been established only in chemo or chemo-immunotherapy
Frontiers in Oncology | www.frontiersin.org 4
based trials and it would be interesting to study the telomere
length associations in the context of novel therapy.
TELOMERE LENGTH AND GENOMIC
COMPLEXITY

Critical shortening of telomere length, de-protection at telomeres
along with loss of checkpoint genes leads to development of
genetic lesions and tumorigenesis (16). In CLL, various studies
have analyzed the impact of telomere dysfunction on genomic
complexity. Early indicators of telomere dysfunction is the
formation of DNA damage foci at the telomeres called
telomere dysfunction induced foci (TIF) (47). CLL cells were
found to exhibit TIF as detected by the localization of gamma
H2AX and 53BP1 at the telomeres. In addition, an increase in
abnormalities such as telomere deletion/doublets and terminal
duplications were observed in TIF+ CLLs (48).

Activation of DNA damage response and DNA repair
signaling at the telomeres lead to telomeric fusions. In CLL
using STELA method, frequency of telomeric fusion events were
found to increase with advancing disease stage and 58% of the
Binet C stage had critically eroded telomeres and fusions. Cases
having telomeric fusions also showed large scale genomic
rearrangements at the telomeric regions (49), reminiscent of
genomic complexity due to BFB cycles in telomeres at crisis (16).
Subsequently, by analysis of large patient cohort (n = 321), the
XpYp telomere length of 2.26 kb was defined as the mean length
at which fusions occur (50).

Different studies analyzed the correlation of telomere length
with genomic complexity, either by conventional FISH or by
SNP array analysis. The analyses showed significant association
of short telomeres with presence of two or more aberrations
(FISH) (36, 38, 51) or with higher number of copy number
alterations (CNAs) (37, 40). Of interest, we observed progressive
shortening of telomere length with increase in number of copy
number variations (CNVs) (40). Additionally, short telomeres in
CLL were also found to be associated with increase in uni-
parental disomy (UDP) and chromothripsis (52). The strong
association of telomere shortening with terminal fusions and
genomic complexity highlights the central role played by
telomere dysfunction in clonal diversification and disease
evolution in CLL.
TELOMERE LENGTH ASSOCIATIONS—
CAUSE OR CONSEQUENCE?

The associations of short telomeres with various adverse
prognostic markers such as unmutated IGHV, and TP53/ATM
mutations, 17p-, 11q- could be explained as a direct outcome or
“consequence” of increased proliferation of the cells harboring
these high risk features (53). This is supported by the fact that
telomere length in serially sampled CLL samples show
January 2021 | Volume 10 | Article 612665
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shortening, despite the presence of active telomerase (33, 40). In
addition, Röth et al. identified shorter telomere length of naïve
and memory T-cells from patients with more aggressive ZAP-
70+/CD38+ CLL which may be due to increased proliferation and
expansion of T-cells in this CLL subtype (54). These findings
show that at least in part, the distribution of telomere length
among the different CLL subgroups is a direct consequence of
their proliferation capacity (Figure 1).

On the other hand, telomere length could be considered to
play a more active biological role in CLL by being a “cause” for
clonal diversification and disease progression. The strong
association of telomere length with mutation status of IGHV
has been documented across all the studies, owing to differences
in the cell of origin. Mutated IGHV CLLs are considered to
Frontiers in Oncology | www.frontiersin.org 5
develop from CD5(+), CD27(+), post-germinal center (GC) B-
cell subsets (55), where a robust telomerase activation and
elongation of telomere length is known to occur during the GC
reaction (56). The non-GC origin of the unmutated IGHV CLL
thus may explain the strong association of this subtype with short
telomere length.

Telomere shortening has been shown to be a tumor
suppressive mechanism, where cells with telomere length
shorter than a threshold undergo DNA damage checkpoint
activation, stalling further telomere shortening and controlling
cell proliferation (17). In CLL cells with unmutated IGHV, the
presence of short telomere length may exert a strong selection
pressure for loss of checkpoint genes such as TP53 or ATM
which would eventually allow for further telomere shortening
FIGURE 1 | Telomere dysfunction as a consequence: In CLL, the poor risk disease features such as unmutated IGHV, presence of deletion 17p (17p-), deletion 11q
(11q-) are shown to be associated with short telomere length while the favorable prognostic subgroups such as mutated IGHV and deletion 13q (13q-) are
associated with longer telomeres. It could therefore be considered that telomere length associations are a direct outcome of the proliferation capacity of the different
CLL subgroups.
January 2021 | Volume 10 | Article 612665
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and cell proliferation. This notion is supported by study on
temporal association of genomic alterations in CLL, where 17p-/
TP53mutations and 11q-/ATMmutations were found to be later
events in CLL pathogenesis (57). Moreover, we observed in a
large clinical trial cohort (n = 620) that cases with 17p- and 11q-
had the shortest telomere length across the different genomic
aberration subgroups and interestingly, these cases had very
short telomeres even when these aberrations were observed in
only a small fraction of the tumor bulk. The finding suggested
that critical telomere shortening in these cases could precede
acquisition of these high-risk aberrations (40). High resolution
analysis of genomic fusions in cases with dysfunctional telomeres
showed complex inter/intra chromosomal and terminal fusions
Frontiers in Oncology | www.frontiersin.org 6
involving the telomere loci in all of the samples analyzed (n = 9).
Strikingly, the telomere fusions also included the loci recurrently
altered in CLL (58).

Therefore, even though telomere shortening and its
association with poor prognostic features could be a
consequence or outcome of these poor risk characteristics,
recent findings indicate a dynamic role of dysfunctional
telomeres in shaping the disease course. Critical telomere
shortening confers selection pressure to acquire poor-risk
variants and increases disease heterogeneity due to genomic
fusion events involving dysfunctional telomeres thereby
promoting disease progression and treatment resistance in
conjunction with clonal evolution (Figure 2).
FIGURE 2 | Telomere dysfunction as a cause: CLL with mutated IGHV undergo telomerase activation during the germinal center (GC) reaction leading to telomere
elongation. These long telomere length cases follow an indolent disease course and rarely acquire poor-risk features. On the contrary, unmutated IGHV CLL which
have poly reactive BCRs undergo progressive telomere shortening with increasing cell proliferation. Critical telomere shortening leads to activation of DNA damage
signaling at the telomeres indicated by the presence of telomere dysfunction induced foci (TIF). Persistent DNA damage at the telomeres may lead to selection of
clones with dysfunctional checkpoints (e.g. TP53 or ATM loss). The presence of very short telomere length together with absence of checkpoint genes causes
telomere fusions, breakage-fusion-bridge (BFB) cycles, eventually leading to heterogeneity and clonal evolution. Thus according to this hypothesis, telomere length
which is defined very early in pathogenesis based on cell of origin plays an active role in disease evolution and progression.
January 2021 | Volume 10 | Article 612665
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TELOMERASE EXPRESSION AND ITS
RELATION TO DISEASE FEATURES

Activation of the enzyme telomerase is considered as one of the
hallmarks of malignant transformation (6) and is pivotal for
sustaining cell proliferation. The predominant mechanism of
TERT activation in human cancers is by acquisition of TERT
promoter mutations. In contrast, such mutations are rarely
reported in CLL. Ten percent of cancers that do not depend on
telomerase depend on ALT mechanism (59). However, a study on
the presence of C-Circles and extra chromosomal telomeric
repeats (ECTR) which are hallmarks of ALT did not reveal the
presence of ALT driven telomere maintenance in CLL (60).

Telomerase activity and/or expression in CLL has been
studied across various cohorts. Initially, higher telomerase
activity was found to be associated with advanced disease
stages and progressive disease (30, 61). Telomerase activity was
found to have an inverse correlation with telomere length (33,
62) and higher telomerase expression was associated with other
poor-risk disease features and was described as a prognostic
factor in CLL (42, 63, 64). Thus, intriguingly, unmutated IGHV
CLLs, despite the absence of GC mediated TERT activation and
telomere lengthening, these cases have short telomeres but high
telomerase expression and activity (65). This indicates that the
high TERT expression in unmutated IGHV CLL is therefore
crucial for the maintaining the critical telomere length to ensure
cell survival and proliferation. However, in contrast to mutated
IGHV CLL, processes underlying the high telomerase expression
and activity in unmutated IGHV CLL are not well defined.
TUMOR MICROENVIRONMENT AND
TELOMERE DYSFUNCTION

With the absence of the classical oncogenic promoter TERT
mutations in CLL, the mechanisms underlying its activation are
poorly understood. Genome wide association studies repeatedly
identified TERT as one among the susceptibility loci for risk of
CLL (66, 67). Studies to identify SNPs in TERT and TERC
associated with CLL identified the minor rs35033501 TERT
variant (68), as well as the SNPs rs10936599 in TERC and
rs2736100 in TERT (69) and presence of longer telomere
length to be associated with CLL. Though shortening of
telomere length in CLL is well characterized to be an adverse
prognostic factor it should therefore be noted that telomerase
activation and telomere lengthening constitute an important
phase in malignant transformation. Also, in cases with poor
risk features and rapid disease progression, constant lengthening
of telomeres by telomerase is the key to sustain cell survival to
counteract telomere loss due to proliferation.

CLLs with unmutated IGHV are known to have a poly-
reactive/auto-reactive BCR in contrast to that of mutated IGHV.
Apart from this, the CLL BCRs can also signal through cell-
autonomous signaling (70, 71). These findings, along with the
clinical success of the BCR signaling inhibitors such as ibrutinib
Frontiers in Oncology | www.frontiersin.org 7
and acalabrutinib (72, 73), highlight the importance of BCR
signaling for survival and proliferation of CLL cells. BCR along
with activation of co-receptors, drives various downstream
mechanisms such as activation of PI3K/AKT, NF-kB (74) and
MAPK (75) that dictate proliferation, homing and guide
interaction with other cells in the microenvironment. Of
importance, Damle et al. showed (76) that stimulation of BCR
using multivalent BCR ligand, dextran conjugated anti-m mAb
HB57 (HB57-dex) or bivalent F(ab′)2 goat anti-m antibody led to
an increase in telomerase activity, predominantly in CLLs with
unmutated IGHV. This BCR driven activation of TERT was
accompanied by an induction of cell proliferation. They also
identified that the TERT activation was mediated by PI3K/AKT
signaling, as the use of a PI3K inhibitor abrogated the BCR
mediated TERT activation. Another study identified higher
TERT and TERC expression and activity in SF3B1 mutated CLL,
however the underlying mechanism is not well understood (77).

The tumor microenvironment mediated signaling are known to
contribute to activation of TERT in different cancers. In breast
cancer, STAT3 was found to activate telomerase expression by
binding to the TERT promotor (78). In CLL, a constitutive
activation of JAK2/STAT3 signaling has been reported (79) and it
would therefore be interesting to understand its role in the
regulation of TERT in CLL. Another factor that may be of
interest for driving TERT activation in CLL is hypoxia. HIF-1a
plays an important role in interaction of CLL cells and the
microenvironment (80). HIF-1a (81) as well as the levels of
hypoxia (82) are known to regulate the expression and activity of
telomerase and impact telomere length. Similarly, the Wnt/ß-
catenin pathway is a direct regulator of TERT (83) which could
be of relevance in the context of CLL. Overall, various pathways that
are active in CLL are described to play a role in TERT activation and
investigations on the relevance of these mechanisms in regulation of
telomerase in CLL may therefore have therapeutic relevance.
MUTATIONS AND DEREGULATED
EXPRESSION OF TELOMERE-RELATED
GENES IN CHRONIC LYMPHOCYTIC
LEUKEMIA

Different components of the telomere system are found to be
mutated or deregulated in CLL. Among the recurrently mutated
genes, POT1 mutations have been reported in about 3.5% of the
cases. It is the first telomere structural component known to be
mutated in human cancers. POT1mutations in CLL occur in the
OB1 and OB2 domains that alters its binding to the 3’ telomeric
tail, leading to de-protection of the ends and genomic instability.
In cell line models, loss of POT1 function led to aberrant
lengthening of telomeres (84). Thus POT1 mutations were
associated with complex karyotype and are independent
prognostic factors for overall survival in CLL (85).

Whole exome sequencing of 66 familial CLLs revealed the
presence of germline deactivating POT1 mutations in four
families as well as in the sheltering components adrenocortical
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dysplasia homolog (ACD, in two families) and telomeric repeat
binding factor 2 (TERF2IP, three families) (86). These telomere
component mutations are therefore important pre-disposing
factors for CLL, highlighting the important role of telomere
dysfunction in CLL pathogenesis. In addition, expression
analysis of telomere related genes in different CLL cohorts
have identified deregulation of various telomere components.
One study identified a significant downregulation of Dyskerin,
TRF1, hRAP1, POT1, hEST1A, MRE11, RAD50, and KU80 while
TPP1 and RPA1 were upregulated compared to normal B-cells
(87). Another study reported a downregulation of TIN2 and
ACD in a subset of CLLs which correlated with increase in TIF,
indicating telomere dysfunction (88). Also, downregulation of
the telomere components POT1, TIN2, TPP1, and high TERT
were found to be associated with adverse outcome (89). The
shelterin components play a very important role by tightly
regulating access of telomerase to the telomeres. Though the
mechanisms underlying deregulation of the shelterin components
in CLL is unknown, it could be presumed that the downregulation
of these genes would promote access of TERT to the telomeres,
which would be crucial in maintaining the critical telomere length
to sustain cell survival. However, this deregulated expression of
the shelterin components also result in uncapping of the ends and
increase in DNA damage signaling and DNA repair, leading to
fusion and genomic complexity.
TELOMERES AND TELOMERASE
TARGETED CANCER THERAPIES

Since telomere maintenance is one of the key features of cancers,
the telomere system has been considered an attractive target for
cancer therapy. Accordingly, therapeutic agents targeting various
components of telomeres and the different maintenance
mechanisms have been developed and studied across cancers.
One of the first inhibitors of telomerase to have progressed to
clinical trials is imetelstat. It is a synthetic lipid conjugated 13-mer
oligonucleotide that competitively binds to hTR, thereby inhibiting
telomerase function (90). In vitro analysis showed that the drug
sensitized primary CLL cells to fludarabine (91). Imetelstat is
currently being investigated in phase 2 and 3 trials for various
solid tumors and hematological malignancies as a single agent or in
combination therapies. Small molecule inhibitors of telomerase
such as BIBR1532 are currently under pre-clinical evolution (92).
Recently, a covalent telomerase inhibitor (NU-1) that targets the
catalytic active site of telomerase has been developed (93). The
main disadvantage of telomerase inhibitors is the necessity for
continuous long term treatment to impede telomere maintenance
and critically shorten the telomere length. Moreover, long term
treatment with telomerase inhibitors may additionally affect the
function of germ cells and stem cells that express telomerase.

Another class of molecules that affect telomerase activity
include nucleoside analogs such as 6-thio-2’-deoxyguanosine
(6dG), didanosine (ddITP), azidothymidine (AZT-TP), and 5-
fluro-2’deoxyuridine (5-FdU). These compounds when
incorporated at the telomeric ends by telomerase leads to chain
Frontiers in Oncology | www.frontiersin.org 8
termination and uncapping of the telomeric ends (94).
Uncapping by nucleoside analogs prevents binding of the
shelterin complex, thereby activating DDR. Unlike telomerase
inhibitors, treatment with nucleoside analogs leads to rapid
induction of cell death irrespective of the telomere length.
Similarly, compounds such as telomestatin which are G-
quadruplex stabilizers lead to impaired telomere maintenance
by telomerase thereby inducing DDR and cell death (95, 96).

Though limited clinical progress has been achieved with
inhibitors of telomerase, various telomere based immunotherapies
are successfully being evaluated in clinical trials for different
malignancies. Since telomerase is one of the most commonly
expressed tumor associated antigen, different methods are being
employed to activate adaptive immune responses against
telomerase. TERT peptide vaccines such as INO-1400
(NCT02960594—solid tumors), GV1001 (NCT04032067—Benign
Prostatic Hyperplasia), UCPVax (NCT04263051—non-small cell
lung cancer), and GX301 (97) are currently being tested in clinical
trials for cancer therapy. Of note, DNA vaccine encoding hTERT is
being evaluated in a phase 2 study for CLL (NCT03265717).
Additionally, adoptive transfer of dendritic cells expressing TERT
mRNA (GRNVAC1—NCT00510133) is being studied for the
treatment of AML. Another interesting therapeutic approach
includes the use of oncolytic adenovirus that replicates under the
control of hTERT promoter thereby specifically targeting the tumor
cells. The oncolytic adenovirus based therapy telomelysin (OBP-
301) is currently being studied for the treatment of a wide range of
solid cancers across 6 different clinical trials.

In summary, though the direct inhibition of telomerase has
shown limited success, hTERT based immunotherapy are rapidly
gaining importance for the treatment of a wide range of tumor
entities. In CLL, the novel agents such as ibrutinib and
venetoclax have achieved tremendous clinical success however,
treatment of Richter transformation has still proved to be
challenging. Since Richter syndrome is a highly proliferative
tumor type, they might have a greater dependency on telomerase
than CLL and hence the novel TERT based immunotherapies
either as single agents or in combination with checkpoint
inhibitors maybe of interest.
CONCLUSION

The relation between telomeres and CLL is complex. Though a
large amount of effort has been put forward in understanding the
prognostic relevance of telomere length and telomerase, various
other aspects such as mechanisms underlying telomerase
activation and molecular alterations leading to deregulation of
telomere maintenance system still needs to be understood. In
summary, deregulations of the different components of the
telomere system play important roles at specific phases of CLL
pathogenesis and progression. A deeper understanding of these
mechanisms is vital for the development of therapeutics options
for targeting these disease features, especially in patients that
turn refractory to novel agents, or as combination treatments to
improve efficacy or in the treatment of Richter transformation.
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