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Glycolysis‑related gene expression 
profiling serves as a novel 
prognosis risk predictor for human 
hepatocellular carcinoma
Lingyu Zhang1,3, Yu Li2,3, Yibei Dai1, Danhua Wang1, Xuchu Wang1, Ying Cao1, Weiwei Liu1* & 
Zhihua Tao1*

Metabolic pattern reconstruction is an important factor in tumor progression. Metabolism of tumor 
cells is characterized by abnormal increase in anaerobic glycolysis, regardless of high oxygen 
concentration, resulting in a significant accumulation of energy from glucose sources. These 
changes promotes rapid cell proliferation and tumor growth, which is further referenced a process 
known as the Warburg effect. The current study reconstructed the metabolic pattern in progression 
of cancer to identify genetic changes specific in cancer cells. A total of 12 common types of solid 
tumors were included in the current study. Gene set enrichment analysis (GSEA) was performed to 
analyze 9 glycolysis‑related gene sets, which are implicated in the glycolysis process. Univariate and 
multivariate analyses were used to identify independent prognostic variables for construction of a 
nomogram based on clinicopathological characteristics and a glycolysis‑related gene prognostic index 
(GRGPI). The prognostic model based on glycolysis genes showed high area under the curve (AUC) in 
LIHC (Liver hepatocellular carcinoma). The findings of the current study showed that 8 genes (AURKA, 
CDK1, CENPA, DEPDC1, HMMR, KIF20A, PFKFB4, STMN1) were correlated with overall survival (OS) 
and recurrence‑free survival (RFS). Further analysis showed that the prediction model accurately 
distinguished between high‑ and low‑risk cancer patients among patients in different clusters in 
LIHC. A nomogram with a well‑fitted calibration curve based on gene expression profiles and clinical 
characteristics showed good discrimination based on internal and external cohorts. These findings 
indicate that changes in expression level of metabolic genes implicated in glycolysis can contribute to 
reconstruction of tumor‑related microenvironment.
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BCLC  Barcelona Clinic Liver Cancer
DCA  Decision curve analysis

Cells undergo changes in energy metabolism patterns for biosynthesis, depending on cell function and avail-
ability of metabolites. In addition to oxidative phosphorylation of glucose, other metabolic pathways, including 
lipid, nucleotide, and amino acid metabolism can provide energy to meet the biosynthetic requirements for cell 
growth and  proliferation1,2. Energy metabolism pattern of tumor cells shows significant differences, compared 
with oxidative phosphorylation (OXPHOS) in normal cells. Energy metabolism is reprogrammed in tumor cells, 
in a process known as Warburg effect to maintain survival and meet the high demand for synthesis of biologi-
cal  macromolecules3–5. Warburg effect represents change in glucose utilization by tumor cells from oxidative 
phosphorylation to glycolysis, which is now acknowledged as a major feature hallmark of  tumors6,7. This change 
in energy metabolism is determined by complex factors, including pressure on tumor microenvironment and 
genetic  changes8–11. Enhanced glycolysis of tumor cells is mainly promoted by increased expression or activity 
of key glycolysis  enzymes12. Previous studies have explored agents that target tumors by inhibiting activity of 
key enzymes in the tumor glycolysis pathway. In addition, studies report that specific inhibition of glycolysis is 
associated with significant tumor suppression, and induces cell death. Glycolytic key enzymes such as hexoki-
nase 2 (HK2), phosphofructosidase (PFK), and M2-type acetone kinase (PKM2) are tumor markers, and their 
expression and activity can affect tumor glycolysis, which in turn affects proliferation of tumor  cells13–17. However, 
studies have not explored glycolytic-related factors in refining stratification and management of cancer patients. 
Early diagnosis and personalized treatment can effectively improve survival of cancer patients. Histopathology 
analysis can be used to predict prognosis and outcome of cancer patients. However, patients with the same pathol-
ogy present with different prognoses owing to different molecular subtypes thus limiting use of histopathological 
 characteristics18,19. Advances in high-throughput nucleotide sequencing technology in the recent years enables 
better understanding of the dynamic changes in tumor cells at the molecular level. A single gene cannot accu-
rately predict the outcome of cancer patients. However, several biomarker combinations can improve sensitivity 
and specificity of patient outcomes. Multiple biomarkers that are highly correlated with survival and prognosis 
can identify high-risk patients, ameliorate poor prognosis of cancer patients, and can be used for development 
of effective intervention therapy.

Gene set enrichment analysis (GSEA) is used in genomic research to identify potential biological mecha-
nisms implicated in disease. In the current study, a gene signature was developed through GSEA analysis, based 
on genes implicated in glycolytic metabolic pathways. Tumor glycolysis metabolic patterns of 12 cancer types 
(Bladder Urothelial Carcinoma, BLCA; Breast invasive carcinoma, BRCA; Colon adenocarcinoma, COAD; Head 
and Neck squamous cell carcinoma, HNSC; Kidney renal clear cell carcinoma, KIRC; Kidney renal papillary 
cell carcinoma; KIRP; Liver hepatocellular carcinoma; LIHC; Lung adenocarcinoma, LUAD; Lung squamous 
cell carcinoma, LUSC; Ovarian serous cystadenocarcinoma, OV; Prostate adenocarcinoma, PRAD; Thyroid 
carcinoma, THCA), were explored through a comprehensive analysis of genome and transcriptome profiles of 
TCGA dataset. A GRGPI signature was developed for LIHC and multiple risk characteristics that can effectively 
predict prognosis of patients were determined. The findings showed that glycolysis-related risk characteristics 
can be used to identify patients with poor outcomes in high-risk group. In addition, Cox multivariate hazard 
ratio analysis showed that the risk score performed better compared with other clinical variable in evaluating 
patient prognosis.

Materials and methods
Gene expression profiles and patient clinical information. Transcriptome expression profiles were 
obtained from multiple data repositories, including The Cancer Genome Atlas Program (TCGA, https:// portal. 
gdc. cancer. gov/), International Cancer Genome Consortium (ICGC, http:// www. icgc. org) database, and Gene 
Expression Omnibus (GEO, http:// www. ncbi. nlm. nih. gov/ geo/) database. Datasets with insufficient sample size 
(< 200) or missing clinical information were excluded. The raw counts were transformed into transcripts per 
kilobase million (TPM) values for subsequent analysis.

Gene set enrichment analysis. Molecular Signatures Database (MSigDB) was used to identify gene sets 
and specific biological processes that are significantly differentially expressed in different groups. Analysis using 
MSigDB resulted in a statistically significant improvement in connectivity between data expression pattern and 
biological processes, ignoring the clear differential gene  threshold20. A total of 9 gene sets associated with gly-
colysis processes including glycolytic fermentation, glycolytic process, hallmark glycolysis, glycolysis gluconeo-
genesis, module 306, reactome glycolysis, and reactome regulation of glycolysis by fructose-2-6 bisphosphate 
metabolism, were retrieved from MsigDB. Permutations were performed 1000 times for each gene set. Normal-
ized enrichment scores (NES) and FDR values were used to explore enriched pathways in each phenotype. GSEA 
was performed to explore differences in glycolysis-related gene sets between tumor tissues and matched normal 
tissues. P value and FDR value at < 0.05 were set as the threshold.

Construction of risk prediction model and statistical analysis. Univariate Cox regression models 
were constructed to explore the statistical relationships between mRNA expression levels and RFS or OS. A linear 
regression model with a stepwise forward method was used to predict significant variations between variables, 
with the beta value (β) from univariate Cox regression analysis as the weighting  factor21. Multivariable logistic 
regression analysis was performed after the LASSO (least absolute shrinkage and selection operator) analysis, 
which simultaneously selects the variables and penalizes the model coefficients for  overoptimism22. Multivariate 
analysis was performed using the Cox proportional hazards (Cox-PH) model to identify independent predictors 
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of survival. Covariates with a P value < 0.05 were used for subsequent risk prediction model construction based 
on multivariate analyses results. Standardized risk score was calculated using the formula shown below:

Patients with complete clinicopathological characteristics were divided into a high- and a low-risk group, 
based on the median value of the risk score. Kaplan–Meier curves wee generated to compare differences in 
survival probability in low- and high-risk groups. Log-rank test P < 0.05 was conducted to explore significance 
of survival time differences. All these analyses were performed packages in R version 3.6.123. P value less than 
0.05 denoted statistical significance.

Immunohistochemistry (IHC) analysis. Immunohistochemical slides and relative clinical pathology 
information were retrieved from the Human Protein Atlas database (Ensembl version: 92.38) (HPA, https:// 
www. prote inatl as. org/)24. Immunohistochemical staining results were evaluated by two independent patholo-
gists, based on the integrated index by multiplying the intensity by the proportion of immunopositive cells of 
interest.

Weighted gene co‐expression network analysis. To explore transcriptomic differences between HCC 
subgroups, weighted gene co-expression analysis was performed based on the unique characteristics of the sub-
groups to identify potential functional modules that can characterize biological functions of each subgroup. 
The optimal soft threshold parameter β (β = 7) was used to construct a scale-free co-expression network. Subse-
quently, genes with the same expression pattern based on Pearson’s coefficient were concentrated into specific 
gene modules. The top 2 modules that had the strongest association with subgroups were selected for further 
analysis. GO and KEGG pathway enrichment analyses were performed to explore whether genes from various 
terms are significantly enriched than expected in the  subgroups25,26.

Ethics approval and consent to participate. The identities of patients are not provided in the TCGA 
and GEO databases, therefore, no approval and informed consent was required from the institutional review 
board.

Results
Differentially expressed glycolysis gene sets between tumor tissues and adjacent normal tis‑
sues. The study process and analysis were presented as a panoramic flow chart (Fig. 1). A total of 12 solid 
tumors with complete clinical information and gene expression profiles including BLCA, BRCA, COAD, HNSC, 
KIRC, KIRP, LIHC, LUAD, LUSC, OV, PRAD, and THCA were included in the present study. All the above data 
were retrieved from TCGA and was subjected to normalization before performing GSEA. GSEA was performed 
on 9 gene sets associated with glycolysis process. GSEA was performed to explore whether these gene set vari-
ants were differentially expressed between tumors and their adjacent noncancerous tissues. One gene set with 
an FDR value less than 0.05 was selected for subsequent studies. At least one significant gene set was identified 
in BLCA, BRCA, HNSC, LIHC, LUAD, and LUSC (Fig. 2). The findings showed that FDR values of the 9 gene 
sets in COAD, KIRC, KIRP, OV, PRAD, and THCA were greater than 0.05. Distribution of the NES value and 
FDR q-value value of each gene set in the GSEA analysis is presented in Fig. S1a. Details on GSEA results are 

Risk Score =

n∑

i=1

βiExpression (Gi).

Figure 1.  Panoramic flowchart for development and verification of glycolysis gene signatures.

https://www.proteinatlas.org/
https://www.proteinatlas.org/
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presented Fig. S2. A total of 6 solid tumors (BLCA, BRAC, HNSC, LIHC, LUAD, and LUSC) and corresponding 
core genes (CORE ENRICHMENT: YES) were used for further analysis (Table S1).

To further explore whether these core genes participated in the glycolysis process, GO and KEGG pathway 
analyses were performed using ClusterProfiler R package. The findings showed these genes are enriched in several 
pathways implicated in glucose metabolisms, such as pyruvate metabolic process, pyruvate biosynthetic process, 
a glycolytic process (Figure S1b–d), and glycolysis/gluconeogenesis (Figure S1e). These findings indicate that 
these core genes play important roles in glucose metabolism, mainly glycolysis.

Construction and validation of a prognostic glycolysis associated‑gene signature. Relation-
ship between core genes and OS was explored through univariate regression analysis and multivariate Cox-PH 
regression model with a stepwise procedure to identify important variables. The findings showed statistically sig-
nificant gene signatures (GRGPI) were identified in BLCA, BRAC, HNSC, LIHC, LUAD, and LUSC (Table S2). 
These findings show that GRGPIs can be used to identify patients with adverse outcomes who would be classified 
as high-risk group based on these glycolysis gene-related classifiers. Further, the area under the time-dependent 
ROC curves (AUC) values were determined for each cancer type. The findings showed that LIHC had the high-
est AUC compared with that of BLCA, BRAC, HNSC, LUAD, and LUSC at 0.5- (0.852), 1- (0.840), 2- (0.871), 
3- (0.830), and 5-year (0.756) (Fig. S3). A total of 92 glycolysis-related genes with significant correlations with 
overall survival were identified through univariate Cox regression analysis (Fig.  3a) in LIHC. Independent 
prognostic factors were restricted to variables that contributed significantly toward the final model coefficients 
based on the AIC and the model χ2 score to avoid overfitting and unnecessary complexity. Selected features 
were incorporated into a least absolute shrinkage and selection operator (LASSO) regression model to penal-

Figure 2.  Enrichment curve of 9 glycolysis-related gene sets in 6 tumors (BLCA, BRCA, HNSC, LIHC, LUAD, 
LUSC), with FDR less than 0.05 as the statistical threshold.
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ize for model complexity overfitting. A total of 8 genes (AURKA, DEPDC1, CDK1, CENPA, HMMR, KIF20A, 
PFKFB4, and STMN1) with nonzero LASSO coefficients (Fig. 3b,c). Multivariate analysis using Cox propor-
tional hazard regression was used for virtual statistical weighting of the variables, and for determining their 
prognostic value. The risk score of 8 gene signatures was established as follows: Risk score = (0. 1224 × expres-
sion of AURKA) + (0.0534 × expression of CDK1) + (0.0920 × expression of CENPA) + (0.1323 × expression 
of DEPDC1) + (0.1140 × expression of HMMR) + (0.2425 × expression of KIF20A) + (0.1562 × expression of 
PFKFB4) + (0.0911 × expression of STMN1). Patients were grouped into high or low risk groups based on the 
median risk score of the TCGA discovery cohort. Distribution of risk scores, survival status, and gene expres-
sion profiles of patients varied significantly between the two subgroups (Fig. 4a). Kaplan–Meier survival analysis 
showed that survival of the low-risk group was significantly longer compared with that of the high-risk group 
(Fig. 4b, P < 0.001). Cumulative event probability curve showed that HCC patients in the high-risk group have 
a significantly higher probability of cumulative events during the entire follow-up period compared with that 
of low-risk patients (Fig. 4c, P < 0.001). We applied the classifier to assess whether the 8-mRNA signature can 
predict an individual or a specific HCC recurrence. TCGA dataset comprising recurrence events and recurrence 
time was used as an internal training cohort (TCGA training cohort). The prognostic evaluations of survival 
analysis for the 8-gene signature were based on TCGA recurrence-free survival (RFS) outcomes. Distribution of 
risk score, survival status, and gene expression patterns of patients are presented in Fig. 4d. The findings showed 
that patients with low-risk scores had longer RFS time compared with patients with high-risk scores (Fig. 4e, 
P < 0.001). Analysis of cumulative event occurrence curve showed a significant cumulative risk (HR) of HCC 

Figure 3.  Identification of genetic signatures for HCC prognostic models. (a) Univariate cox regression analysis 
of 92 glycolytic genes correlated with OS in HCC patients. (b) LASSO coefficient profiles of the 92 OS-associated 
genes. (c) Adjustment parameter (λ) was selected through a 20-fold cross-validation procedure and plotted as a 
function of log (λ) in the LASSO model.
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patients in the high-risk group compared with the low-risk group (Fig. 4f). The findings showed that the 8-gene 
signature can be used as a prognostic indicator for outcome and recurrence of HCC patients. Moreover, two 
independent analyses were conducted on the datasets from GEO and ICGC datasets. The findings showed that 
the 8-gene model effectively divided the two independent validation sets into two risk subgroups (Fig. 5a,d). 

Figure 4.  GRGPI signature serves as a promising risk prediction factor for overall survival (OS) and 
recurrence-free survival (RFS) in the TCGA cohort. (a,b) Distribution of risk score, survival status, and gene 
expression patterns of HCC patients in high- and low-risk groups for OS and RFS. (c,d) Kaplan–Meier plots for 
OS and RFS of the two risk groups in the TCGA cohort. (e,f) Performance of the cumulative event probability in 
the two risk subgroups.
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Notably, the survival analysis and cumulative risk curve indicated that the high-risk group had a shorter OS 
and higher cumulative risk compared with the low-risk group (Fig. 5b,c and 5e,f). The findings showed robust 
prognostic value of the classifier in the 3 independent cohorts.

Independent predictive value of the 8‑mRNA signature. Risk scores were calculated and used to 
develop predictive models for prediction of OS and RFS. To verify the assignments of sub-categories, t-SNE 
was performed to constraint the dimensionality of features. T-SEN analysis showed that the two risk subgroups 

Figure 5.  Performance of GRGPI signature in GEO and ICGC validation cohorts. (a,b) Distribution of risk 
score, survival status, and gene expression patterns of HCC patients in the 2 validation cohorts. (c,d) Kaplan–
Meier plots for OS in the two risk subgroups. (e,f) Performance of the cumulative event probability in the two 
risk subgroups.
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were scattered in two discrete directions (Fig. 6a–d). Time‐dependent ROC curves were generated for TCGA 
discovery cohort, TCGA training cohort, GEO validation cohort, and ICGC validation cohort to estimate the 
prognostic accuracy of the 8 glycolysis-related signature in predicting 0.5-, 1-, 2-, 3- and 5-year OS and RFS. The 
findings showed high prognostic accuracy of the 8-signature model (Fig. 6e–h).

The explanation for many clinical situations one can identify some standard variables that have previously 
been demonstrated to have prognostic value and are generally measured for most patients having the particu-
lar diagnosis. Further, tumor‐related clinicopathological variables associated with the classifier in the current 
study was explored based on TCGA (Fig. 7a, Table S3), GEO (Fig. 7b, Table S4), and ICGC (Fig. 7c, Table S5) 
cohorts. Patient clinicopathologic characteristics are presented in Table 1. Pearson’s correlation analysis showed 
several significant correlations between clinicopathological characteristics and HCC risk subtypes in the three 
independent cohorts. The findings showed that T classification (P = 0.0032), stage (P < 0.001), grade (P = 0.0175), 
family cancer history (P = 0.0359), AFP level (P = 0.0147), cancer status (P < 0.001), recurrence event (P < 0.001) 
and patient status were significantly correlated with HCC risk groups in the TCGA discovery cohort (P < 0.001). 
In addition, there was a significant correlation was observed between T classification (P = 0.0095) and Stage 
(P = 0.0033) between HCC subgroups in TCGA training set (Table S3). Similarly, analysis of the GEO and ICGC 
cohorts showed that some important clinicopathological characteristics had significant correlations with HCC 
subgroups. More detailed results are shown in Table S4 and Table S5. To verify the independence of GRGPI, a 
Cox proportional hazard regression analysis was performed using the TCGA, GEO, and ICGC cohorts (Table 2). 
The adjustment results of clinical variables showed that risk score remained an independent prognostic fac-
tor, indicating its robust predictive ability for OS (HR = 1.267, P < 0.001) and RFS (HR = 1.027, P < 0.001) of 
HCC patients (Fig. 8a,b). Findings of the Cox regression model showed that, some clinical-pathological factors 
(cancer status (P = 0.017), hepatitis virus infection (P = 0.041), and Child–Pugh score (P = 0.011) for OS; cancer 
status (P < 0.001), hepatitis virus infection (P = 0.017), and BMI (P = 0.009) for RFS) were independent poor 
prognostic factors. These variables were thus valuable for risk stratification in pathological subgroups as shown 
in Fig. 8a,b. In addition, KM survival analysis revealed that disease-specific survival rates were significantly 
different in some pathological subgroups, such as T classification (T1–2 vs T3-4, P < 0.001), stage (Stage I–II vs 
III–IV, P < 0.001), cancer status (Tumor Free vs With Tumor, P = 0.011), hepatitis virus infection (HVI Negative 
vs Positive, P = 0.008), Child–Pugh Score (A/B vs C, P < 0.001) and AFP (≤ 200 vs > 200, P = 0.002) for TCGA OS 
(Figure S4). These findings were consistent with the findings from univariate Cox regression for OS with adjust-
ments for prognostic factors (Fig. 8a, Table S3). In addition, the index independently predicted the OS of GEO 
(HR (95% CI) = 2.430 (2.054–2.874), P < 0.001) (Fig. 8c) and ICGC cohorts (HR (95% CI) = 1.108 (1.069–1.149), 
P < 0.001) (Fig. 8d). These findings indicate GRGPI is an independent prognostic factor for HCC patients.

Further stratified analysis was performed to explore independence of the model within the same subgroups of 
clinicopathological features. Taking advantage of the clinicopathological parameters, TCGA discovery cohort was 
divided into subgroups based on clinical-pathological features, such as gender (Male/Female), age (≤ 65/ > 65), 
grade (G1–2/G3–4), stage (Stage I–II/III–IV), T classification (T1–2/3–4), tumor status (Tumor Free/With 
Tumor). After stratification, the 8-mRNA signature accurately divided cohort into low- and high-risk patients 
(Fig. S5 and Fig. S6). Similar were obtained from the GEO (Fig. S7–S9) and ICGC (Fig. S10, S11) cohorts.

A multiple ROC curve analysis was performed to determine the sensitivity and specificity of the OS/RFS 
prognostic model and other clinical pathology variables. The 8-mRNA model was used for analysis of the TCGA 
discovery cohort, TCGA training cohort, GEO, and ICGC cohort, and the prediction quality was compared by 

Figure 6.  (a–d) T-SNE analysis showing the distribution of high-risk and low-risk patients in discrete 
directions in TCGA discovery cohort, TCGA training cohort, GEO validation cohort, and ICGC validation 
cohort. Time-dependent ROC curve analysis of the GRGPI model using the TCGA discovery cohort e, TCGA 
training cohort (f), GEO cohort (g), and ICGC cohort (h) for 0.5-, 1-, 2-, 3-, and 5- year OS.
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evaluating the area under the ROC curve to determine its performance. Multivariate Cox regression and AUC 
analyses showed that the prognostic model was an independent prognostic indicator with high accuracy (TCGA 
discovery cohort: AUC = 0.860; TCGA training cohort: AUC = 0.801; GEO validation cohort: AUC = 0.834; ICGC 
validation cohort: AUC = 0.843; Fig. 8e–h). The findings showed that the risk score model performed better 
compared with other clinical pathology variables for prognostic prediction of HCC patients. These findings 
indicated that GRGPI signatures have a predominately higher favorable value compared with other parameters 
in predicting OS and RFS of HCC patients.

Landscape of immune infiltration in HCC risk subgroups. Immune infiltration was explored to char-
acterize their immunological characteristics owing to the significant differences between subtypes. The CIB-
ERSORT algorithm was used to determine the abundance of 22 immune-related cell types and the findings 
were presented as heatmaps and box plots for TCGA (Fig. 9a,b), GEO (Fig. 9c,d), and ICGC (Fig. 9e,f) cohorts, 
respectively. Notably,, frequency of CD8+ T cells in the low-risk group was significantly higher compared with 
that in the high-risk group, whereas proportion of M2 macrophages was higher in the high-risk group compared 
with that of the low-risk group, in 3 independent cohorts. Analysis of tumor immune infiltration levels of each 
patient showed that high CD8+ T cell levels was correlated with better survival, whereas high levels of M2 cells 
indicated worse OS and RFS in HCC tissues (Fig. 9g–k).

WGCNA and GSEA analysis. WGCNA and GSEA analysis were performed to identify differential gene 
expression patterns between different subgroups. Notably, no outlier samples were detected based on average 
clustering (Fig. 10a). The soft threshold β was set at 7 to determine a scale-free network (Fig. 10b). Genes were 

Figure 7.  Clinical characteristics of HCC subclasses in the (a) TCGA, (b) GEO, and (c) ICGC cohorts.
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Variables TCGA Cohort (n = 371) ICGC Cohort (n = 232) GEO Cohort (n = 221)

Age

≤ 65 233 90 200

> 65 138 142 21

Gender

Female 121 61 30

Male 250 171 191

T classification

T1 183 N/A N/A

T2 95 N/A N/A

T3 80 N/A N/A

T4 13 N/A N/A

Stage classification

Stage I 179 36 93

Stage II 93 106 78

Stage III 92 71 50

Stage IV 7 19 0

Grade

G1 57 22 N/A

G2 178 142 N/A

G3 124 59 N/A

G4 12 9 N/A

BCLC stage

Zero N/A N/A 21

A N/A N/A 149

B N/A N/A 22

C N/A N/A 29

Status

Alive 241 189 131

Dead 130 43 90

Recurrence

No 191 N/A 100

Yes 180 N/A 121

Cancer status

Tumor free 250 N/A N/A

With tumor 121 N/A N/A

Family cancer history

No 251 152 N/A

Yes 120 80 N/A

Prior malignancy

No N/A 202 N/A

Yes N/A 30 N/A

Multi nodular

No N/A N/A 176

Yes N/A N/A 45

Cirrhosis

No N/A N/A 18

Yes N/A N/A 203

Fibrosis grade

No fibrosis 127 N/A N/A

Incomplete cirrhosis 15 N/A N/A

Established cirrhosis 111 N/A N/A

Fibrous speta 42 N/A N/A

Portal fibrosis 76 N/A N/A

Hepatitis virus infection

None risk 195 N/A 0

HBV 61 N/A 221

Continued
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assigned to 16 modules, and gray modules included genes that could not be clustered (Fig. 10c). Two gene mod-
ules highly correlated with high- (pink, yellow) and low-risk (greenyellow, turquoise) groups were identified 
(Fig. 10d). Further, GO and KEGG analyses were performed to identify the potential biological significance of 
related TOP2 modules in different subgroups (Fig. 10e–h). Moreover, GSEA analysis was performed based on 
the overall TCGA-LIHC expression profiles. The terms identified in both WGCNA and GSEA analysis results are 
presented in Fig. 10i–l. Terms related to cell cycle transition, chromatin separation, DNA replication, and DNA 
helicase activity were significantly enriched in the high-risk group.

Further verification of the 8‑gene signature. Additional verification was performed at the transcrip-
tome level and protein level to further explore the reliability of the 8-gene signatures. Expression of the 8 gene 
was explored based on the TCGA, GEO, and ICGC databases. The findings showed a general trend that these 8 
genes included in the signature were upregulated in HCC tumor tissues (Fig. 11a–c). Results from paired t-test 
(50 tumor tissues and paired normal adjacent tissues ) exhibited consistent trend (Wilcoxon test P value < 0.0001) 
(Fig. 11d). Furthermore, expression levels of the 8 genes were determined at the protein level using immunohis-
tochemistry (IHC), based on the Human Protein Atlas database. IHC showed upregulation of the eight proteins 
in HCC tissues. Moderate or high staining intensity of the 8 proteins in HCC tissues contrasted sharply with 
the low intensity or lack of staining in normal tissues (Fig. 11e). In addition, our research found that there were 
significant impact on the relationship between the expression of 8 central genes and the survival time of patients 
with HCC (Fig. 11f).

Development and verification of a personalized nomogram. A nomogram integrating GRGPI and 
clinicopathological characteristics was constructed using TCGA, GEO, and ICGC cohorts to provide clinicians 
with a portable quantitative table for predicting prognosis of liver cancer patients. The risk score contributed 
the largest risk point in the TCGA cohort, compared with other clinicopathological characteristics, followed 
by T classification, hepatitis virus infection, Child–Pugh score and stage, etc. (Fig. 12a). A total of 371 patients 
were reclassified in the new nomogram model for OS NRI (net reclassification index) = 0.415 (Fig. 12b,c). ROC 
analysis showed that the nomogram had high accuracy, and was a good predictor of patient survival, with an 
AUC value of 0.873 (Fig. 12d). Decision curve analysis showed that the novel nomogram had more net benefit 
across the range of decision threshold probabilities compared with the Risk score model and integrated clin-
icopathology model (Fig. 12e). Calibration curves showed a stable agreement between the prediction by the 
nomogram and the actual observation for 1-, 2-, and 3-year OS (Fig. 12f). In addition, the novel nomogram 
model integrated GRGPI and clinicopathological features and showed good agreement between the predicted 
and observed survival probabilities in the GEO (AUC = 0.854) and ICGC (AUC = 0.863) cohorts (Fig. S12 and 
Fig. S13).

Discussion
Hepatocellular carcinoma (HCC) is a highly malignant tumor that accounts for approximately 90% of the total 
primary liver cancer  cases25,26. It is the most common malignancy and the leading cause of cancer mortality 
 globally27. Studies report a high incidence of HCC in China. The World Cancer Report released by the World 

Variables TCGA Cohort (n = 371) ICGC Cohort (n = 232) GEO Cohort (n = 221)

HCV 18 N/A 0

HCV and HBV 97 N/A 0

Child–Pugh Score

A 198 N/A 97

B 99 N/A 75

C 74 N/A 49

BMI

≤ 24 174 N/A N/A

> 24 197 N/A N/A

AFP level

Low 190 N/A 121

High 181 N/A 100

ALT level

≤ 50 N/A N/A 130

> 50 N/A N/A 91

Tumor size

≤ 5 N/A N/A 140

> 5 N/A N/A 81

Table 1.  Clinicopathological characteristics of HCC patients included in the TCGA, GEO, and ICGC cohorts. 
BCLC stage Barcelona Clinic Liver Cancer Stage, AFP alpha fetoprotein, ALT alanine aminotransferase.
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Health Organization in 2019 indicated that new cases of liver cancer in China account for half of the global new 
cases, and the total number of death accounts for more than half of the global deaths  cases28. Therefore, several 
studies have explored treatment approaches for hepatocellular carcinoma. Surgical treatment is the conventional 
treatment method  HCC29–31. However, surgery is not suitable for treatment of some patients owing to tumor 
anatomical location, tumor size, tumor number, insufficient liver residual volume, or extrahepatic  metastasis32. 
Nonsurgical therapy approaches are currently available for treatment of liver cancer patients. Recent develop-
ment of medical technology and equipment has significantly improved management strategy for  HCC33. These 
approaches enable regulation of various ontogenetic modifications including inflammation, immune suppression, 
and direct modulation of host cell behavior. Cancer cells undergo adaptive metabolic programming to maintain 
their distinctive metabolic state of continuous proliferation. Metabolic rewiring in cancer cells makes them 
highly dependent on specific metabolic enzymes or processes, thus it is a potential target for designing cancer-
specific  therapeutics34,35. Glycogen metabolism is an important metabolic process in the liver. Reprogramming 
of glucose metabolism significantly promotes aberrant proliferation and survival in HCC cells compared with 
non-cancerous  cells36–38. Several enzymes and proteins involved in the process of HCC can undergo structural, 

Table 2.  Univariable and multivariable analyses for each clinical variables in TCGA, GEO, and ICGC cohort.

TCGA 

Patients (n)

Univariate analysis Multivariate analysis

Variables HR 95% CI P value HR 95% CI P value

AFP ≤ 200/> 200 190/181 1.73 1.22–2.46 2.30E−03 1.19 0.81–1.75 3.66E−01

BMI ≤ 24/> 24 174/197 0.73 0.52–1.03 7.61E−02 0.83 0.57–1.22 3.43E−01

Child Pugh Score A/B/C 198/99/74 1.66 1.36–2.02 7.10E−07 1.31 1.05–1.64 1.76E−02

Hepatitis virus infection None risk/HBV/HCV/
HCV and HBV 195/61/18/97 1.28 1.12–1.47 2.34E−04 1.17 1.01–1.36 4.15E−02

Family cancer history No/yes 251/120 1.14 0.80–1.63 4.60E−01 1.25 0.84–1.86 2.66E−01

Cancer status Tumor free/with tumor 250/121 1.52 1.08–2.15 1.71E−02 1.53 1.05–2.25 2.81E−02

Grade G1/G2/G3/G4 57/178/124/12 1.08 0.86–1.36 4.95E−01 1.14 0.90–1.45 2.89E−01

Stage Stage I/II/III/IV 179/93/92/7 1.68 1.39–2.04 8.92E−08 0.82 0.42–1.59 5.52E−01

T T1/T2/T3/T4 183/95/80/13 1.67 1.39–2.00 3.16E−08 1.60 0.86–2.99 1.41E−01

Gender Female/male 121/250 0.817 0.60–1.16 2.47E−01 0.92 0.63–1.35 6.73E−01

Age ≤ 65/> 65 233/138 1.277 0.90–1.80 1.71E−01 1.38 0.95–2.00 8.73E−02

Risk score High/low 185/186 1.32 1.26–1.38 1.18E−32 1.27 1.20–1.34 4.08E−17

GEO

Patients (n)

Univariate analysis Multivariate analysis

Variables HR 95% CI P value HR 95% CI P value

AFP ≤ 200/> 200 190/181 1.30 0.97–1.74 8.34E−02 1.32 0.96–1.81 8.40E−02

BMI ≤ 24/> 24 174/197 0.71 0.53–0.95 1.98E−02 0.66 0.48–0.90 1.98E−02

Child Pugh Score A/B/C 198/99/74 1.66 1.04–1.50 1.65E−02 0.99 0.82–1.20 1.65E−02

Hepatitis virus infection None risk/HBV/HCV/
HCV and HBV 195/61/18/97 1.16 1.03–1.30 1.40E−02 1.16 1.03–1.31 1.40E−02

Family cancer history No/yes 251/120 1.01 0.74–1.37 9.50E−01 0.97 0.69–1.34 9.50E−01

Cancer status Tumor free/with tumor 250/121 3.96 2.93–5.35 3.61E−19 4.12 2.99–5.66 3.61E−19

Grade G1/G2/G3/G4 57/178/124/12 1.07 0.89–1.30 4.77E−01 1.02 0.83–1.26 4.77E−01

Stage Stage I/II/III/IV 179/93/92/7 1.69 1.44–1.99 2.13E−10 1.35 0.81–2.25 2.13E−10

T T1/T2/T3/T4 183/95/80/13 1.62 1.39–1.89 5.97E−10 1.12 0.69–1.83 5.97E−10

Gender Female/male 121/250 1.01 0.74–1.37 9.78E−01 1.23 0.89–1.71 9.78E−01

Age ≤ 65/> 65 233/138 0.92 0.68–1.26 6.13E−01 0.85 0.61–1.18 6.13E−01

Risk score High/low 185/186 1.04 1.03–1.05 4.32E−13 1.03 1.02–1.4 4.32E−13

ICGC 

Patients (n)

Univariate analysis Multivariate analysis

Variables HR 95% CI P value HR 95% CI P value

ALT ≤ 50/> 50 130/91 1.08 0.70–1.66 7.27E−01 0.92 0.57–1.47 7.21E−01

AFP ≤ 300/> 300 121/100 1.68 1.10–2.58 1.67E−02 1.56 1.04–1.89 1.26E−02

Main tumor size ≤ 5/> 5 140/81 1.88 1.22–2.89 3.93E−03 1.14 0.65–2.01 6.52E−01

Multi nodular No/yes 176/45 1.59 0.99–2.57 5.72E−02 1.24 1.12–1.48 4.57E−05

Cirrhosis No/yes 18/203 4.62 1.14–18.8 3.24E−02 2.31 0.54–9.87 2.59E−01

CLIP staging Child–Pugh A/B/C 97/75/49 1.20 1.52–2.62 6.04E−07 2.43 1.28–4.63 6.90E−03

BCLC staging Zero/A/B/C 21/149/22/29 2.17 1.71–2.74 1.09E−10 1.50 1.03–2.19 3.35E−02

Stage Stage I/II/III/IV 93/78/50/0 2.32 1.75–3.08 4.79E−09 1.62 1.09–2.40 1.72E−02

Gender Female/male 30/191 1.02 0.53–1.89 9.95E−01 1.15 0.59–2.28 6.83E−01

Age ≤ 65/> 65 200/21 1.37 0.71–2.65 3.49E−01 2.33 1.15–4.71 1.88E−02

Risk score High/low 110/111 2.21 1.94–2.51 1.31E−33 2.43 2.05–2.87 4.08E−25
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functional, and expression changes to achieve metabolic reprogramming, which in turn controls the entire 
glycogen metabolism network thus promoting HCC  growth39–42. The current study explored dysregulation of 
expression patterns of glycolysis-related genes to determine the metabolic activity of tumors in hypoxic mode. 
Comprehensive bioinformatics analyses were conducted using gene sets containing genes that encode key gly-
colytic enzymes. Core genes from GSEA that were significantly enriched in tumor tissues were selected for sub-
sequent analysis. Transcriptomic analyses were conducted followed by K–M analysis to evaluate the correlation 
between expression of glycolysis-associated gene signatures and patient prognosis in 12 solid tumors. A total of 8 
independent prognostic genes in HCC, including AURKA, CDK1, CENPA, DEPDC1, HMMR, KIF20A, PFKFB4, 
and STMN1 were identified through multivariate Cox-PH regression analysis. A prognostic model was developed 
based on the 8-gene signature and the performance was verified using 3 independent verification cohorts. The 
findings showed that gene signatures implicated in glycolysis pathway can accurately predict the poor prognosis 
and recurrence of HCC patients. Notably, the prognostic model showed more accurate predictive ability and 

Figure 8.  (a–d) Univariate and multivariate Cox regression analysis based on all variables for prediction of OS 
and RFS in the 4 cohorts. Green dots represent the HR value of univariate cox analysis, and red dots represent 
the HR value of multivariate cox analysis. Blue lines indicate the standard error (SE) of HR. Multiple ROC 
curves comparing the predictive power of the GRGPI model and other clinicopathological features based on 
TCGA discovery cohort (e), TCGA training cohort (f), GEO cohort (g), and ICGC cohort (h).
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Figure 9.  Global inflammatory landscape in high and low-risk groups of HCC patients in TCGA (a), GEO 
(c), and ICGC (e) cohorts. (b) Boxplots showing panoramic distribution of immune cells between the 2 risk 
subgroups (B, TCGA; D, GEO; F, ICGC), and significance was determined by the Wilcoxon test. (d) KM-plot 
showing imbalance of 2 immune cells associated with the OS and RFS status of HCC patients in the 3 cohorts, 
patients were divided based on the median of CD8+ T cells or Macrophage M2.
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Figure 10.  Identification of subtype-specific gene profile and biological function by WGCNA and GSEA 
in TCGA cohort. (a) Clustering dendrograms of HCC samples. (b) Analysis of the scale-free fit index (left) 
and average connectivity (right) under various soft threshold powers (β = 7). (c) Correlations between the 
eigenvector values of 16 modules and the subtype characteristics. (d) Scatter diagram of eigengenes in the top2 
modules for each subtype. Heatmap showing the top 15 terms significantly enriched (e) GO(BP), (f) GO(CC), 
(g) GO(MF), and (h) KEGG for each WGCNA module. (i–l) The multiple GSEA curves describe some 
important biological terms, which are consistent with the results of WGCNA analysis.
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Figure 11.  Imbalance of prognostic signature at the gene level and protein level. Expression of three 8-gene 
signatures in normal and tumor tissues at the transcriptome level in TCGA (a), GEO (b), and ICGC (c) cohorts. 
(d) Comparing the expression of 8 gene signature in 50 cancer and paired paracancerous. (e) Staining intensity 
of the 8-gene signature in HCC pathological tissue and corresponding normal liver tissue. (f) The relationship 
between the expression of 8 central genes and the survival time of patients with HCC.
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was superior compared with other pathological features. To explore clinical application of the GRGPI-based risk 
model, a nomogram integrating multiple important clinicopathological characteristics was established, which 
can be used as a powerful and easy-to-use tool for evaluating survival probability of HCC patients.

Several studies report that some gene signatures are derived from glucose metabolism, including several 
genes that are critical for glycolysis and are overexpressed in glycolytic cancer cells. Aurora kinase A (AURKA) 
is an important regulatory protein involved in regulation of chromosome congression/alignment, regulation of 
chromosome segregation, and regulation of spindle  dynamics43,44. In addition to the effects in the cancer environ-
ment, AURKA actively promotes DNA repair and acts as a transcription factor to promote cell migration and 
 invasion44,45. It is located in the mitochondrial membrane where it regulates mitochondrial dynamics and ATP 
 production46,47. AURKA is an effective prognostic indicator that probably integrates multiple oncogenic events 
in progression of  tumors43,48,49. CDK1 (Cyclin-dependent kinase 1) is a serine/threonine-like protein kinase that 
plays an essential role in controlling cell proliferation at the G2/M point of the cell cycle. Studies report that high 
CDK1 expression level is an independent predictor for tumor recurrence in one and five years, and compounds 
that target CDK1 can be novel antitumor  reagents50–52. CENPA is overexpressed in several cancers, and plays an 

Figure 12.  Performance of a personalized nomogram based on GRGPI and clinicopathological features. A 
nomograph for predicting overall survival probability of HCC patients. (b,c) The nomogram model improves 
identification of high-risk patients, and 371 HCC patients are reclassified between the standard model and the 
Nomogram model. (d) ROC curve for the nomogram model. (e) Decision curve analyses of the nomogram for 
1-, 2-, and 3-year OS. (f) Calibration curves of 1‐, 2-, and 3‐year OS for HCC patients in the TCGA discovery 
cohort.
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auxiliary but important role in cancer pathogenesis, progression, distant metastases and invasion angiogenesis, 
 etc53,54. Previous studies report that CENPA is significantly overexpressed in hepatocellular carcinoma (HCC) 
tumor tissue. CENPA is associated with overall survival (OS), disease-free survival (DFS), relapse-free survival 
(RFS), and progression-free survival (PFS) of  HCC55–57. Key functions and potential regulatory pathways of DEP 
domain-containing protein 1 (DEPDC1), a newly discovered gene related to cancer and cell cycle, have been 
reported in bladder cancer, and other human cancers, such as breast cancer and prostate cancer. Previous studies 
report overexpression of DEPDC1 in several tumors and reported that it drives tumor pathogenesis through mul-
tiple potential  mechanisms58–60. HMMR and KIF20A are important regulators of mitosis and exhibit oncogenic 
properties in various cancers through multiple  mechanisms61–64. The Warburg pathway enzyme 6-phosphofructo-
2-kinase/fructose-2,6-bisphosphatase 4 (PFKFB4) is implicated in regulation of diverse biological processes and 
plays an important role in regulating glucose metabolism and guiding macromolecule biosynthesis to promote 
proliferation of cancer cells. Several studies screened and identified PFKFB4 as a poor prognostic factor for 
multiple tumors through high-throughput  analysis65–67. STMN1 is an oncogene and its aberrant upregulation 
is closely related to different kinds of  tumors68,69. STMN1 is an independent predictive factor of poor outcome, 
it is upregulated in hepatocellular carcinoma and promotes migration, invasion, and EMT by activating PI3K/
AKT  pathway69.

Dysregulation of glycolytic pathway is a hallmark of oncogenic potential in tumor biology. Reprogrammed 
glycolytic and mitochondrial pathways are hallmarks of altered energy generation system of malignant cells, and 
lead to abnormal survival and proliferation of tumor  cells70. Metabolic mode switching from aerobic oxidation 
to anaerobic glycolysis is an important characteristic of hepatocellular carcinoma. The Warburg effect results in 
accumulation of the lactic acid, as the final product of glycolysis. The acidic microenvironment thus mediates 
immune escape. The acidic environment is formed by continuous accumulation of highly acidic substances such 
as lactic acid and ketone  bodies71,72. Studies report past decade have found that aerobic glycolysis and the resulting 
acidification of tumor microenvironment (TME) exert specific inhibitory effects on antitumor immune response 
mediated by T cells and the activity of tumor-infiltrating myeloid cells. Therefore, targeting sugar metabolism 
and/or lactic acid production and secretion is an attractive anticancer treatment  strategy73,74. Moreover, the 
current study explored inflammatory infiltration landscape in HCC tissues based on 22 immune cells using 
the CIBERSORT  tool75. T cells CD8 are important immunomodulatory cytokines, that play a critical role at 
the interface between innate and adaptive immunity, mainly in antitumor immune  response76–82. Macrophages 
M2 promote tumor progression and poor prognosis, mainly promoting metastases in target  organs82–84. Thee 
findings showed that enhanced glycolytic activity contributes to the highly acidic environment in the TME. 
Tumor-reactive T cells are suppressed resulting in loss-of-function in the acidic TME induced by glycolytic 
activity, resulting in a critical barrier for efficacy of cancer  immunotherapy85–87. Most immunotherapies target 
the immune system but not cancer, therefore, immunotherapies are promising foundation for development of 
treatment regimens for several tumor types. However, complexity of the metabolic regulation of immune cell 
subsets and effect of the TME may have significant implications for efficacy of these therapies. In the current 
study, 8 genes implicated in prognosis of HCC were identified. These genes are important regulators in glucose 
metabolism and energy production, mainly in glycolysis process. These findings indicate that glycolysis pathway 
is required for proliferation of most cancer cells and for energy production in reprogramming of tumor micro-
environment characteristics. Therefore, therapeutic agents can be developed that target glycolysis pathway, thus 
controlling tumor progression and improving patients prognosis. These findings have remarkable prognostic 
and therapeutic implications for HCC patients.

Notably, the current study has some limitations. First, univariate Cox regression analysis and the LASSO 
method were used to filter glycolytic genes associated with clinical outcomes of HCC and a prognostic model was 
built through multivariate Cox-PH regression analysis. In the linear regression model, adjustments were made 
stepwise in major groups, to reveal which variables contributed the most to confounding, and some important 
components with similar contributions may be ignored. Second, a prognostic risk model was developed and 
validated based on public databases, which was not verified by prospective clinical trials. Further studies should 
consider some traditionally recognized clinical factors, which have a significant effect on tumor progression and 
prognosis of HCC patients. Factors related to a clinical interaction may be missed, such as tumor volume, TP53 
mutation, CTNNB1 mutation, lifestyle, patient follow-up time, and relevant therapeutic information. These 
factors have an effect on the accuracy of the prediction of the model. Therefore, the predictive performance of 
predictive models based on glycolysis-related gene signatures should be explored further in subsequent studies. 
In addition, well-designed, prospective, multicenter collaborative trials should explore if clinical decision-making 
based on these approaches leads to improved clinical risk stratification. To circumvent these limitations, more 
in vivo and in vitro studies should be conducted to verify the findings of the current study and explore more 
complex and in-depth biological mechanisms.

Conclusion
The current study developed and optimized a novel 8-gene signature for identifying outcomes and recurrence in 
HCC patients. This predictive model improves accuracy of predicting patient prognosis. Moreover, the 8-gene 
signature serves as an independent prognostic factor and was superior compared with other clinicopathological 
features. A nomogram was established based on the GRGPI signatures and clinicopathological characteristics, 
which significantly improved prognosis in terms of discrimination and effectiveness of clinical decision-making. 
The findings of the current study provide a basis for prognostic stratification for designing prospective trials of 
risk-adapted therapies and surveillance strategies. In addition, the findings have clinical implications, and can 
be used to ensure that more patients benefit from additional systemic treatment.
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