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Abstract

Multiple myeloma, a plasma cell malignancy, is a genetically heterogeneous disease and

the genetic factors that contribute to its development and progression remain to be fully elu-

cidated. The tumour suppressor gene GLIPR1 has previously been shown to be deleted in

approximately 10% of myeloma patients, to inhibit the development of plasma cell tumours

in ageing mice and to have reduced expression levels in the plasma cells of patients with

light-chain amyloidosis, a myeloma-related malignancy. Therefore, we hypothesised that

GLIPR1 may have tumour suppressor activity in multiple myeloma. In this study, we demon-

strate that plasma cell expression of GLIPR1 is reduced in the majority of myeloma patients

and Glipr1 expression is lost in the 5TGM1 murine myeloma cell line. However, overexpres-

sion of GLIPR1 in a human myeloma cell line did not affect cell proliferation in vitro. Similarly,

re-expression of Glipr1 in 5TGM1 cells did not significantly reduce their in vitro proliferation

or in vivo growth in C57BL/KaLwRij mice. In addition, using CRISPR-Cas9 genome editing,

we generated C57BL/Glipr1-/- mice and showed that loss of Glipr1 in vivo did not affect nor-

mal haematopoiesis or the development of monoclonal plasma cell expansions in these

mice up to one year of age. Taken together, our results suggest that GLIPR1 is unlikely to

be a potent tumour suppressor in multiple myeloma. However, it remains possible that the

down-regulation of GLIPR1 may cooperate with other genetic lesions to promote the devel-

opment of myeloma.

Background

Multiple myeloma (MM) is a haematological malignancy characterised by the uncontrolled

proliferation of antibody-producing plasma cells (PCs) within the bone marrow (BM). MM is

defined by the presence of 10% or more clonal PCs in the BM and one or more myeloma-

defining event(s) [1]. Myeloma-defining events include evidence of end-organ damage, such
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as hypercalcemia, renal insufficiency, anaemia, and bone lesions. The MM PCs produce large

amounts of a non-functional monoclonal immunoglobulin (paraprotein/M protein) that can

be detected in blood serum and/or urine [2]. Almost all MM cases are preceded by the prema-

lignant condition monoclonal gammopathy of undetermined significance (MGUS), a benign

clonal PC proliferation characterised by less than 10% PCs in the BM and the absence of end-

organ damage [3, 4]. Approximately 3–4% of people over 50 years of age have MGUS and they

are at risk of progressing to MM at a rate of 1% per year, although the time to progression is

variable [5]. While recent treatment advances have improved the median overall survival for

MM to ~6 years [6], the majority of patients relapse with refractory disease and thus MM

remains a largely incurable disease [7].

The development of MGUS is initiated in a post-germinal centre B cell by a primary cyto-

genetic event; namely hyperdiploidy or a chromosomal translocation involving the immuno-

globulin heavy-chain gene [8]. Malignant transformation and MM disease progression is

believed to occur due to the accumulation of secondary “genetic hits”, including further chro-

mosomal rearrangements and DNA mutations, as well as transcriptional and epigenetic

changes [8]. Recent studies have revealed that there is significant interpatient genetic heteroge-

neity in MM, with low recurrence rates for many mutations [9–13]. In addition, there is con-

siderable intrapatient genetic heterogeneity, with the majority of MM patients displaying a

complex subclonal architecture that is dynamic and can evolve over time [10, 11, 14–20]. Nota-

bly, many of the chromosomal abnormalities and genetic lesions identified in MM PCs are

also found at the MGUS stage [16, 19, 21], which highlights the possibility that novel epigenetic

changes and/or PC-extrinsic factors are involved in driving the progression from asymptom-

atic MGUS to malignant MM.

GLIPR1 is a ubiquitously expressed gene that encodes a member of the cysteine-rich secre-

tory proteins, antigen 5, and pathogenesis-related 1 proteins (CAP) superfamily with unspeci-

fied function [22, 23]. A reduction in GLIPR1 expression was shown to be a feature of several

solid cancers, including prostate, lung and bladder cancer, as well as sarcoma [24–27]. In all

cases, GLIPR1 demonstrated tumour suppressor activity in vitro [24–29], and, furthermore,

GLIPR1 expression was shown to suppress prostate cancer tumour growth in vivo [30]. GLIPR1

has been found to mediate its tumour suppressor effects in prostate cancer cells through several

different mechanisms [29, 31, 32]. Specifically, GLIPR1 was shown to promote apoptosis by

increasing reactive oxygen species production [29] and by modulating the regulation of apopto-

sis-related gene expression by HSC70 [31]. Interestingly, GLIPR1 was found to cause cell cycle

arrest by decreasing expression of the oncogenic MYC transcription factor [32], which is com-

monly up-regulated in MM [33–35] and a proven driver of MM development [36].

The putative tumour suppressor role of GLIPR1 is further supported by the finding that

Glipr1-/- mice had reduced survival due to increased rates of spontaneous malignancy,

although tumour development was of late onset (after ~500 days) and incomplete penetrance

(~40%) [29]. Notably, 40% of the tumours in the Glipr1-/- mice were classified as plasmacyto-

mas, a localised PC malignancy that frequently progresses to MM [37, 38]. In addition, the

same study found that the expression levels of GLIPR1 were significantly reduced in the

human MM cell lines U266 and RPMI-8226 compared to normal B cells [29]. Furthermore,

hemizygous chromosomal deletions encompassing GLIPR1 have been reported in PCs from

9.4% of MM patients [39], and down-regulation of GLIPR1 was one of only 38 gene expression

changes identified in PCs from patients with the MM-related malignancy light-chain amyloid-

osis, when compared with normal PCs [40]. Together, these data support a potential tumour

suppressor role for GLIPR1 in MM.

In this study, we show that GLIPR1 expression is reduced in MM patient–derived PCs com-

pared to PCs isolated from healthy controls. In addition, we demonstrate that Glipr1
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expression is lost in the C57BL/KaLwRij-5TGM1 murine model of MM and assess the impact

of its reintroduction on tumour growth in vivo. Furthermore, we generate C57BL/Glipr1-/-

mice and investigate the effect of Glipr1 loss on the development of PC abnormalities for up to

12 months.

Methods

Ethics statement

All procedures involving animals in this study were approved by the South Australian Health

and Medical Research Institute’s Animal Ethics Committee. A total of n = 26 C57BL/6 mice,

n = 31 C57BL/KaLwRij mice and n = 24 C57BL/Glipr1-/- mice were used in this study. All ani-

mals were housed in individually ventilated cages in specific pathogen free conditions and had

continuous access to standard food, water and environmental enrichment. All of the mice in

this study were euthanised by CO2 inhalation.

Publicly available microarray data

For analysis of GLIPR1 expression in CD138-selected BM PCs from newly diagnosed MGUS

or MM patients or healthy controls, two independent microarray datasets were used:

E-GEOD-16122 (normal, n = 5; MGUS, n = 11; MM, n = 133; [41]) and E-GEOD-6477 (nor-

mal, n = 15; MGUS, n = 22; MM, n = 69; [42]). Analysis of GLIPR1 expression in different

gene expression-defined (UAMS) molecular subsets of newly diagnosed MM patients was con-

ducted using microarray dataset GSE4581 (n = 414; [43]). Analysis of overall survival in MM

patients stratified on the basis of median GLIPR1 expression in CD138+ BM PCs at diagnosis

was carried out using the dataset E-TABM-1138 (n = 142; [44]). Correlative analysis of

GLIPR1 and MYC gene expression in CD138-selected BM PCs from newly diagnosed MM

patients was performed using E-GEOD-6477, GSE4581 and E-GEOD-16122. GSE4581 and

E-TABM-1138 were conducted on Affymetrix GeneChip Human Genome U133 plus 2.0

arrays, while E-GEOD-16122 and E- GEOD-6477 were conducted on U133A arrays. Processed

microarray data for GSE4581, E-GEOD-6477 and E-GEOD-16122 were downloaded from

ArrayExpress (EMBL-EBI) or Gene Expression Omnibus (NCBI) and were log2 transformed

where required. For E-TABM-1138, raw microarray data (CEL files) were downloaded from

ArrayExpress, normalised by RMA using the Bioconductor package affy and R (v3.03) and

log2 transformed.

Cell culture

All cell lines were maintained in a humidified environment at 37˚C in the presence of 5% CO2

and were manipulated within a class II biological safety cabinet. Unless otherwise specified, all

cell culture reagents were sourced from Sigma-Aldrich and all media were supplemented with

2 mM L-glutamine, 100 U/mL penicillin, 100 μg/mL streptomycin, 1 mM sodium pyruvate,

and 10 mM HEPES buffer. All cell lines were tested for mycoplasma infection using a MycoA-

lertTM Mycoplasma Detection Kit (Lonza) prior to use and were maintained in culture for a

maximum of 4 weeks. Human myeloma cell lines (HMCLs) RPMI-8226, LP-1, and U266 were

obtained from the ATCC between 2000 and 2003; STR authentication was not conducted on

these lines as they were obtained directly from the ATCC. HMCLs OPM2, H929 and JIM-1

were provided by Prof. Andrew Spencer (Monash University, Melbourne, Australia); the

OPM2 and H929 cell lines were authenticated using STR analysis (no STR reference for JIM-

1) performed by the Molecular Genetics Laboratory, SA Pathology, using an AmpFLSTR Iden-

tifiler PCR Amplification Kit (Thermo Fisher Scientific). HMCLs were maintained in RPMI-
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1640 medium with 10% fetal calf serum (FCS; Thermo Fisher Scientific). The murine MM

5TGM1 PC line was originally kindly provided by Assoc Prof Claire Edwards (University of

Oxford, UK). 5TGM1 cells expressing both green fluorescent protein (GFP) and luciferase

were previously generated using the retroviral expression vector NES-TGL [45]. 5TGM1 cells

were maintained in Iscove’s Modified Dulbecco’s Medium (IMDM) with 20% FCS. The

mouse BM stromal cell (BMSC) line OP9 was obtained from the ATCC and was maintained in

Dulbecco’s Modified Eagle Medium (DMEM) with 10% FCS.

Quantitative reverse transcription polymerase chain reaction (RT-qPCR)

Total RNA was isolated from cells using TRIzolTM Reagent (Thermo Fisher Scientific) accord-

ing to the manufacturer’s instructions, unless otherwise specified. For mouse and human

CD138+ PCs, RNA was reverse transcribed into cDNA using Sensiscript (Qiagen). For all

other tissues and cell lines, RNA (2 μg) was reverse transcribed into cDNA using Super-

ScriptTM IV (Thermo Fisher Scientific) according to the manufacturers’ instructions. Real-

time polymerase chain reaction (PCR) was conducted using 1x RT2 SYBR1Green qPCR Mas-

termix (QIAGEN) and the following primer sequences on the CFX ConnectTM Real-Time

PCR Detection System (Bio-Rad): human GLIPR1 (F: 5’-TCACTGGGAGAGAACATCT
GGA-3’ R: 5’-GGAAAGAGCGTCAAAGCCAG-3’), human GAPDH (F: 5’-ACC
CAGAAGACTGTGGATGG-3’ and R: 5’-CAGTGAGCTTCCCGTTCAG-3’), mouse
Glipr1 (F: 5’-AGGTTGTTTGGGCAGACAGT-3’ and R: 5’-TTTTGGGCAATC
ACTGCACG-3’), mouse Myc (F: 5’-TCGAGCTGTTTGAAGGCTGG-3’ and R:
5’-ACGGAGTCGTAGTCGAGGTC-3’) and mouse/human Actb/ACTB (F: 50-TT
GCTGACAGGATGCAGAAG-30 and R: 50-AAGGGTGTAAAACGCAGCTC-30). Changes in

gene expression were calculated relative to GAPDH or Actb using the 2� DDCt method [46].

Generation of Glipr1/GLIPR1-overexpressing cell lines

A 5TGM1 cell line overexpressing Glipr1 was generated by infection with a pRUFimCH2 ret-

roviral vector [47] harbouring a full-length cDNA encoding murine Glipr1, which was ampli-

fied from C57BL/6 thymus-derived cDNA by PCR. A H929 HMCL overexpressing GLIPR1
was generated by infection with a LeGOiT2 lentiviral vector [48] harbouring a full-length

cDNA encoding human GLIPR1, which was amplified by PCR from HMCL LP-1 cDNA.

Briefly, following sequence verification, the Glipr1/GLIPR1 viral vectors were transfected into

HEK-293T cells and viral particle-containing supernatant was used to infect 5TGM1 or H929

cells. Cells were subjected to fluorescence activated cell sorting (FACS) for mCherry/Tomato

protein expression on a FACSAriaTM Fusion (BD Biosciences) and pooled Glipr1/GLIPR1-

overexpressing cell lines and empty vector (EV) controls were established. The basal luciferase

activity of 5TGM1-Glipr1 and 5TGM1-EV control cells was assessed by seeding an equal num-

ber of cells in quadruplicate in a 96-well plate, adding 0.3 mg/mL D-luciferin (Biosynth) and

performing bioluminescence imaging using the IVIS1 Spectrum (PerkinElmer). No signifi-

cant difference in luciferase activity was observed between the two modified 5TGM1 cell lines.

Western blot analysis

Cells were lysed using radioimmunoprecipitation assay (RIPA) buffer [1% NP-40 (v/v), 20

mM HEPES, 150 mM NaCl, 10% glycerol (v/v), 2 mM Na3VO4, 10 mM Na4P2O7, 2 mM NaF,

and 1x cOmpleteTM EDTA-free Protease Inhibitor Cocktail (Roche)]. The protein concentra-

tion in each cell lysate was determined using the RC DCTM Protein Assay Kit (Bio-Rad),

according to manufacturer’s instructions. Equal concentrations of total protein were separated

by SDS-PAGE using the Mini-PROTEANTM III System (Bio-Rad). Proteins were then

GLIPR1 tumour suppressor and multiple myeloma
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transferred from the gel to a nitrocellulose 0.45 μm membrane (Bio-Rad) using the Mini

Trans-Blot1 Electrophoretic Transfer Cell (Bio-Rad). Membranes were probed with specific

antibodies against mouse Glipr1 (1:250; #AF4468, R&D Systems), human GLIPR1 (1:500;

#H00011010-A01, Abnova) and Hsp90/HSP90 (1:2,500; #7947, Santa Cruz Biotechnology).

These were then visualised using DyLight-680/800-conjugated secondary antibodies (1:10,000;

Thermo Fisher Scientific) and an Odyssey1 CLx Imager (LI-COR). Densitometry was per-

formed using ImageJ software (http://fiji.sc).

Proliferation assays

The proliferation of H929 cells in vitro was assessed by WST-1 assay. H929 cells were plated at

1x105 cells/mL in triplicate in RPMI-1640 medium containing 10% FCS (100 μL per well)

using four replicate 96-well plates. The plates were incubated at 37˚C with 5% CO2 and every

24 hours from day 0 to 3, 10 μL of WST-1 Reagent (Roche) was added to the wells of one plate.

Following a two-hour incubation, the absorbance of each well at 450 nm was measured using

the iMarkTM Microplate Absorbance Reader (Bio-Rad) and the plate discarded. The back-

ground from medium-only wells was subtracted from the absorbance values and the fold-

change in absorbance for each cell line on days 1–3 was calculated relative to day 0.

The proliferation of 5TGM1 cells in vitro was assessed by measuring luciferase activity.

5TGM1 cells were seeded in triplicate at 1 × 105 cells/mL in IMDM containing 20% FCS with,

or without, a confluent layer of OP9 cells. After three days, the 5TGM1 cells were enumerated

by measuring luciferase activity. Briefly, cells were collected with the aid of trypsin, washed in

PBS and lysed in 40 μL of 1x Luciferase Cell Culture Lysis Reagent (Promega). The lysates

(20 μL) were transferred into an opaque 96-well plate and 100 μL of luciferase reaction buffer

[5 mM MgCl2, 30 mM HEPES, 150 μg/mL D-luciferin (Biosynth) and 150 μM ATP] was

added per well immediately prior to reading the bioluminescence signal on a luminometer

(Wallac 3000).

Purification of primary murine PCs and RNA isolation

C57BL/6 and KaLwRij mouse BM was collected from cleaned femora and tibiae by repeatedly

flushing the bones with 5 mL of chilled PFE buffer (PBS, 2%FCS, 2 mM EDTA) using a 10 mL

syringe and 21 G needle. The BM cells were stained with a rat anti-CD138 primary antibody

(#300506, R&D Systems) and an anti-rat IgG-PE secondary antibody (#3030–09, Southern

Biotech), followed by FACS for PE+ cells using the FACSAriaTM Fusion (BD Biosciences).

Total RNA from primary murine PCs was subsequently isolated using the All Prep DNA/RNA

Micro Kit (Qiagen), according to the manufacturer’s instructions.

Reverse transcription polymerase chain reaction (RT-PCR)

Total RNA was extracted from isolated murine PCs/5TGM1 cells and reverse transcribed as

described above. Separate PCRs for Glipr1 and Actb (see primer sequences above) was per-

formed using AmpliTaq GoldTM DNA Polymerase (Thermo Fisher Scientific) on a VeritiTM

Thermal Cycler (Thermo Fisher Scientific). The PCR products from the cDNA were then visu-

alised by agarose gel electrophoresis using a 2% (w/v) agarose gel containing 1:10,000

GelRed1 (Biotium).

Colony formation assay

5TGM1 cells were seeded (200 cells per 35 mm dish) in duplicate in MethoCultTM semi-solid

methylcellulose medium (StemCell Technologies), according to the manufacturer’s

GLIPR1 tumour suppressor and multiple myeloma
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instructions. After 12 days of culture at 37˚C and 5% CO2, colonies (> 50 cells) were manually

counted using a light microscope.

C57BL/KaLwRij-5TGM1 murine model of MM

C57BL/KaLwRijHsd (KaLwRij) mice were originally kindly provided by Prof Andrew Spencer

(Monash University, Australia) and were rederived, bred and housed at the South Australian

Health and Medical Research Institute Bioresources Facility. Age- and sex-matched 6-8-week-

old KaLwRij mice were injected intravenously with 5 × 105 5TGM1-Glipr1 or 5TGM1-EV

cells in 100 μL of sterile PBS. For each cell line, 4–5 mice were injected in three replicate exper-

iments, resulting in a total of n = 14–15 mice per experimental group. Post-tumour cell admin-

istration, animals were observed daily for their level of activity/mobility; normal eating and

drinking; and grooming behaviour and appearance. In addition, the animals were weighed

three times per week. At the first signs of distress (e.g. scruffiness, hunching, reluctance to

move), hind limb paralysis, signs of terminal illness/bleeding or >10% weight loss an animal

was removed from the study and euthanised by CO2 inhalation. Tumour development was

monitored weekly by in vivo bioluminescence imaging, as previously described [47]. Animals

were monitored daily for any adverse effects and were euthanised at the first signs of morbid-

ity. Based on our previous experience with parental 5TGM1-BMx1 cells in this model (mean

BLI at wk 4: 1.10E+08, STDEV: 5.20E+07), 14 animals per group provides sufficient power to

detect a 50% decrease in tumour burden by a two-sided statistical test, with alpha: 0.05 and

power: 0.80. At experimental endpoints, topical emla 5% anaesthetic cream (lignocaine and

prilocaine) was applied to the tail and peripheral blood serum was isolated by a tail bleed.

Serum protein electrophoresis (SPEP) was then performed using the Hydragel Protein(E) Kit

(Sebia), according to the manufacturer’s instructions. The intensity of the paraprotein band/

M-spike was quantitated and normalised to the albumin band using Image Lab Software v6.0.1

(Bio-Rad). The presence of an M-spike on the SPEP gel for the 12-month-old mice was

assessed by densitometry using ImageJ software (http://fiji.sc).

Generating Glipr1 knockout mice

C57BL/Glipr1-/- (Glipr1-/-) mice were generated by the South Australian Genome Editing

Facility (University of Adelaide, Australia) using CRISPR-Cas9. Briefly, gRNAs were designed

that flanked the first exon of Glipr1 (gRNA 1: 5’-ATTGGTTCTTGCCAAATGGGC-3’
and gRNA 2: 5’-ATCAGCGGCTCTCGACCCGT-3’). These gRNAs and Cas9 mRNA

were injected into C57BL/6 zygotes, which were then transferred to pseudopregnant recipi-

ents. Founder pups were genotyped by PCR using separate reactions to detect wildtype (WT)

alleles (P1: 5’-TTGCATATTAGCCCTCAGAACCCTTAGT-3’ and P3: 5’-TGTGTGC
CTTTGTCTGAGGTC-3’) and deletion alleles (P1 and P2: 5’-ACACGGTAGCTTTTG
TATGAAGGAACAGT-3’) of Glipr1. PCR products from potential deletion alleles were Sanger

sequenced. A male founder that harboured a Glipr1 exon 1 deletion was crossed with C57BL/6

(WT) mice and the resultant Glipr1 deletion heterozygotes (Glipr1+/-) were intercrossed. The

progeny that were homozygous for the Glipr1 deletion were then incrossed to generate a stock

Glipr1-/- colony. The first litter of Glipr1-/- mice underwent standard early life physical and

behavioural checks at days 1–6, day 14, week 3 and week 6. Daily checks were performed for

cages as a whole and there were no Glipr1-/- mice that exhibited illness or distress. The

Glipr1-/- mice and the WT mice used in comparative analyses were from separate colonies and

were not littermates.

GLIPR1 tumour suppressor and multiple myeloma
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HEMAVET analysis

Peripheral blood samples were collected from mice by a tail bleed (emla topical anaesthetic

cream applied) into EDTA-coated microvette tubes (Sarstedt). Complete blood counts were

performed using a HEMAVET950 automated blood analyser (Drew Scientific), according to

the manufacturer’s instructions.

Flow cytometric cell lineage analysis

For analysis of 12-week-old mice, a total of n = 12 C57BL/6 mice and n = 12 C57BL/Glipr1-/-

mice were used in three independent experiments. For analysis of 12-month old mice, a total

of n = 10 C57BL/6 mice and n = 10 C57BL/Glipr1-/- mice were used in one experiment. BM

cells were extracted from long bones (femora and tibiae) using a mortar and pestle and spleen

cells were collected by pushing the excised and cleaned tissue through a 70 μm filter using a

syringe plunger. Cells were stained with Fixable Viability Stain 700 (BD Biosciences) according

to the manufacturer’s instructions and blocked with mouse gamma globulin (1:100; Jackson

ImmunoResearch). For detection of B cells/PCs in the BM and spleen, cells were stained with

B220-FITC (RA3-6B2, BioLegend), IgM-PE-Cy7 (R6-60.2, BD Biosciences) and CD138-

BV421 (281–2, BD Biosciences). For detection of BM monocytes/macrophages and granulo-

cytes in the BM, cells were stained with CD11b-APC-Cy7 (M1/70, BD Biosciences), CD169-

PE (3D6.112, BioLegend), Ly6G-PE-Cy7 (1A8, BioLegend) and F4/80-Pacific Blue (Cl:A3-1,

Bio-Rad). For the detection of hematopoietic stem cells (HSCs) and endothelial cells in the

BM, mature Lin+ cells were excluded by incubation with a lineage cocktail of biotin-conju-

gated antibodies [B220, CD3, CD4, CD5, CD8, Gr1, Ter119 (BioLegend)] followed by strepta-

vidin-PE (SouthernBiotech) secondary. For quantitating HSCs, cells were concurrently stained

with Sca-BV786 (D7, BD Biosciences), CD117-PE-Cy7 (2B8, BD Biosciences), CD135-PE-

CF594 (A2F10.1, BD Biosciences), and CD34-BV421 (RAM34, BD Biosciences). For detection

of BM endothelial cells, cells were concurrently stained with Sca-BV786, CD31-BV421 (390,

BioLegend), CD144-PE-Cy7 (BV13, BioLegend) and CD45.2-BUV395 (104, BD Biosciences).

Mesenchymal stem cells (MSCs) were quantitated from compact bone preparations as previ-

ously described [49]. To assist with compensation and gating cell populations, unstained cells,

single-stained CompBeads (BD Biosciences) and fluorescence minus one (FMO) stained cells

were prepared and analysed as controls for every panel. Cells were fixed in 1% neutral buffered

formalin, 2% glucose, and 0.01% sodium azide in PBS and subsequently analysed on a LSRFor-

tessaTM X-20 flow cytometer using FACSDivaTM software v8.0 (BD Biosciences). Analysis of

flow cytometry data, including compensation, was performed using Flowjo software

(Treestar).

Murine B cell ex vivo proliferation assay

Single splenic cell suspensions from age- and sex-matched 12-week-old C57BL/6 WT mice

and Glipr1-/- mice (n = 3 mice per genotype in three replicate experiments) were generated, as

described above. Red blood cells were lysed by incubating once with red blood cell lysis buffer

(150 mM NH4Cl, 10 mM KHCO3 and 0.1 mM EDTA, pH 8.0) for 10 minutes and the remain-

ing cells were washed with PFE buffer. Resting B cells were isolated by MACS negative selec-

tion using a mouse B Cell Isolation Kit (Miltenyi Biotec), according to the manufacturer’s

instructions. Successful depletion of CD43+ cells, was confirmed by staining the cells with

CD43-PE (eBioR2/60, Thermo Fisher Scientific) and B220-FITC and analysing by flow cytom-

etry, as described above. Purified resting B cells were resuspended in RPMI-1640 medium

with 10% FCS, standard supplements, 50 nM 2-Mercaptoethanol and 1x MEM Non-Essential

Amino Acids Solution. The cells (1 x 105 cells per well) were seeded in triplicate in 100 μL of

GLIPR1 tumour suppressor and multiple myeloma

PLOS ONE | https://doi.org/10.1371/journal.pone.0228408 January 29, 2020 7 / 25

https://doi.org/10.1371/journal.pone.0228408


medium with a final concentration of 20 ng/mL IL-4 and 20 μg/mL LPS using duplicate

96-well plates. One plate immediately underwent a WST-1 assay, according to the manufactur-

er’s instructions. The second plate was incubated at 37˚C with 5% CO2 for 3 days prior to per-

forming the WST-1 assay. The absorbance of each well at 450 nm was measured using the

iMarkTM Microplate Absorbance Reader (Bio-Rad). The medium-only background was sub-

tracted from the absorbance values and the fold-change in absorbance was calculated.

Statistical analysis

Unless otherwise described, statistical analysis was performed using GraphPad Prism v8.0.0

(GraphPad Software). When two groups were being compared for a single variable, a parametric

paired t test, a parametric unpaired t test or a non-parametric Mann-Whitney U test was used. For

the parametric tests a normal Gaussian distribution was assumed. When three or more patient

groups were being compared for a single variable, a non-parametric Kruskal-Wallis test with

Dunn’s multiple comparisons test was used. For time-course experiments, groups were compared

using a two-way ANOVA with Sidak’s multiple comparisons test. Correlations were assessed

using Pearson correlation coefficients. Overall survival was assessed using Kaplan–Meier curves;

comparisons between groups were made using the logrank (Mantel–Cox) test and the Mantel–

Haenszel hazard ratio. Differences were considered statistically significant when P< 0.05.

Results

GLIPR1 expression is reduced in the PCs of MM patients

Given that the GLIPR1 tumour suppressor gene was found to have significantly reduced expres-

sion levels in PCs from patients with amyloidosis [40] and to be deleted in 9.4% of MM patients

[39], we hypothesised that the expression of GLIPR1 may also be down-regulated in the malig-

nant PCs of MM patients. To assess this, in silico analysis of GLIPR1 expression in purified PCs

from newly diagnosed patients with MGUS or MM and healthy controls was performed using

two independent, publicly available microarray datasets. Significantly reduced expression of

GLIPR1 was observed in PCs from MM patients when compared to PCs from healthy donors in

both dataset E-GEOD-6477 (P< 0.0001; Fig 1A) and dataset E-GEOD-16122 (P = 0.022; Fig

1B). Reduced GLIPR1 expression, defined as less than the lower 95% confidence interval for

GLIPR1 expression in the healthy cohort, was observed in 84% (58/69; E-GEOD-6477) and 75%

(100/133; E-GEOD-16122) of MM patients. In addition, GLIPR1 mRNA expression was signifi-

cantly reduced in the PCs of MM compared with MGUS patients in E-GEOD-6477 (P = 0.003;

Fig 1A), whereas there was no difference in E-GEOD-16122 (P> 0.999; Fig 1B).

To assess whether reduced GLIPR1 expression is associated with primary genetic events in

MM patients, the publicly available microarray dataset GSE4581 was partitioned into gene

expression profiling-defined molecular subgroups (UAMS classification [43]) and GLIPR1 lev-

els were compared. GLIPR1 expression was reduced in the hyperdiploid (HY) and the reduced

lytic bone disease (LB) subgroups compared to the MAF (MF) or MMSET (MS) translocation

subgroups (P< 0.01; S1A Fig). GLIPR1 levels were also reduced in the HY subgroup compared

to the chromosomal translocations involving cyclin D1 and cyclin D3 (CD2) subgroup

(P< 0.01; S1A Fig). In addition, to assess the potential prognostic significance of GLIPR1
expression, the overall survival of newly diagnosed MM patients from publicly available micro-

array dataset E-TABM-1138 (n = 142) was analysed. When patients were stratified into two

groups based on median GLIPR1 expression, there was no significant difference in overall sur-

vival between MM patients with below median (low) GLIPR1 expression and those patients

with above median (high) GLIPR1 levels (P = 0.760; S1B Fig). Furthermore, given that GLIPR1

was shown to down-regulate MYC in prostate cancer [32], the relationship between GLIPR1
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expression and MYC expression in MM PCs from newly diagnosed patients was also assessed

in silico. The expression of GLIPR1 was found to be negatively correlated with MYC expression

in three independent microarray datasets (E-GEOD-6477: r = -0.349, P = 0.0033; E-GEOD-

16122: r = -0.199, P = 0.0214; GSE4581: r = -0.221, P< 0.0001; S1C–S1E Fig). The prognostic

significance of MYC expression in the microarray dataset E-TABM-1138 was also analysed.

There was no statistical difference in the overall survival for patients with above median MYC
expression versus patients with below median MYC expression (S1F Fig).

GLIPR1 overexpression does not affect HMCL proliferation in vitro
The expression of GLIPR1 in a panel of HMCLs was assessed and low GLIPR1 mRNA levels

were observed in five of the six HMCLs examined by RT-qPCR (Fig 2A). To determine

whether GLIPR1 expression levels affect the growth of HMCLs in vitro, H929 cells were trans-

duced with a GLIPR1 expression construct (H929-GLIPR1) or empty vector control

(H929-EV). The overexpression of GLIPR1 in the H929-GLIPR1 cells was confirmed by RT-

qPCR (Fig 2B) and Western blot (Fig 2C). The proliferation of the H929-GLIPR1 cells was

compared to that of the H929-EV cells by a WST-1 assay. No significant difference in basal

growth was observed between the cell lines over three days (P = 0.794; Fig 2D).

Glipr1 is not expressed in 5TGM1 murine MM cells but re-expression does

not affect tumour cell proliferation in vitro
To investigate the potential role of Glipr1 in suppressing MM tumour development, the widely

studied C57BL/KaLwRij (KaLwRij)-5TGM1 murine model of MM was utilised [50–52]. In

this model, the 5TGM1 murine MM cell line, derived from a spontaneous PC tumour in an

aged KaLwRij mouse, is inoculated intravenously into young syngeneic KaLwRij mice. This

results in the development of disease that recapitulates many features of human MM, includ-

ing PC tumour growth in the BM, paraprotein production and lytic bone disease [50–52].

Firstly, the expression of Glipr1 was assessed in purified PCs from healthy wildtype (WT)

C57BL/6 mice and KaLwRij mice, as well as the KaLwRij-derived 5TGM1 MM cell line. While

Glipr1 mRNA expression was detected in normal PCs from both the WT and KaLwRij mouse

strains, Glipr1 expression was undetectable in the 5TGM1 MM PC line (Fig 3A), consistent

with Glipr1 being a tumour suppressor.

Fig 1. GLIPR1 mRNA expression is down-regulated in PCs from MM patients. In silico analysis was performed on

publicly available datasets analysing gene expression in CD138+ PCs isolated from MGUS (n = 22) and MM (n = 69)

patients and healthy controls (n = 15; E-GEOD-6477; A) and MGUS (n = 11) and MM (n = 133) patients and healthy

controls (n = 5; E-GEOD-16122; B). Scatter dot plots show median and interquartile range. ����P< 0.0001,
��P< 0.01; Kruskal-Wallis test with Dunn’s multiple comparisons test.

https://doi.org/10.1371/journal.pone.0228408.g001
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To determine whether Glipr1 has tumour suppressor activity in the KaLwRij-5TGM1 MM

mouse model, 5TGM1 cells were transduced with a Glipr1 expression construct

(5TGM1-Glipr1) or empty vector control (5TGM1-EV). The re-expression of Glipr1 in the

5TGM1-Glipr1 cells was confirmed by Western blot (Fig 3B). Given that enforced GLIPR1

expression in prostate cancer cells caused a reduction in MYC mRNA levels [32], the effect of

Glipr1 re-expression on the expression levels of Myc in 5TGM1 cells was assessed. Using RT-

qPCR, no difference in Myc mRNA expression was observed between 5TGM1-Glipr1 and

5TGM1-EV cells (P = 0.799, S2 Fig). In addition, Glipr1 re-expression was not found to affect

the proliferation of 5TGM1 cells either in mono-culture (P = 0.985; Fig 3C) or in co-culture

with the OP9 murine BM stromal cell line (P = 0.473; Fig 3D) over three days. Furthermore,

the number of colonies formed by 5TGM1-Glipr1 cells in semi-solid medium did not differ

from that of 5TGM1-EV control cells after 12 days (P = 0.264; Fig 3E).

Fig 2. GLIPR1 overexpression does not affect HMCL proliferation in vitro. (A) The expression levels of GLIPR1 mRNA in six HMCLs were assessed

by RT-qPCR (normalised to ACTB). Graph depicts the mean + SD of triplicates. (B) RT-qPCR for GLIPR1 mRNA was performed on RNA from

H929-EV cells and H929-GLIPR1 cells. GLIPR1 expression levels were normalised to ACTB and were expressed relative to H929-EV cells. Graph depicts

the mean + SD of triplicates. ����P< 0.0001, unpaired t test. (C) The expression of GLIPR1 protein in H929-EV cells and H929-GLIPR1 cells was

assessed by Western blot. HSP90 was used as the loading control. (D) The basal proliferation of H929-EV and H929-GLIPR1 cells was assessed over 3

days by WST-1 assay. Graph depicts the mean ± SD of n = 3 independent experiments.

https://doi.org/10.1371/journal.pone.0228408.g002
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Re-expression of Glipr1 in 5TGM1 cells does not affect tumour growth in
vivo
To determine the effect of Glipr1 on MM tumour growth in vivo, the 5TGM1-Glipr1 and

5TGM1-EV cell lines were injected intravenously into KaLwRij mice and tumour burden was

monitored at weekly intervals by bioluminescence imaging. There was a trend towards

reduced tumour burden at 4 weeks in the KaLwRij mice inoculated with 5TGM1-Glipr1 cells

compared with those mice inoculated with 5TGM1-EV cells, but this decrease did not reach

statistical significance (P = 0.246; Fig 4A). Tumour burden was also independently assessed at

4 weeks by measuring monoclonal paraprotein (M-spike) levels using serum protein electro-

phoresis (SPEP). The M-spike intensity showed the same trend toward reduced tumour bur-

den in the 5TGM1-Glipr1 compared to the 5TGM1-EV group, but statistical significance was

not reached (P = 0.451; Fig 4B).

Generation of Glipr1 knockout mice using CRIPSR-Cas9 genome editing

As Glipr1 overexpression in MM PCs caused a trend towards reduced tumour growth in the

aggressive KaLwRij-5TGM1 model, we hypothesised that the loss of Glipr1 expression in mice

Fig 3. Glipr1 expression is lost in 5TGM1 cells but its re-expression does not affect cell proliferation in vitro. (A)

The expression of Glipr1 mRNA was assessed by RT-PCR in CD138+ PCs from healthy WT (C57BL/6) mice and

KaLwRij mice, as well as the KaLwRij-derived 5TGM1 MM PC line. The products were run on a 2% agarose gel and

stained with GelRed. Actb was used as a positive control. NTC = no template control. (B) The expression of Glipr1

protein in 5TGM1-Glipr1 (Glipr1) and control 5TGM1-EV (EV) cells was assessed by Western blot. Hsp90 was used

as the loading control. The number of 5TGM1-Glipr1 cells in mono-culture (C) or co-culture with OP9 bone marrow

stromal cells (D) was assessed by measuring luciferase activity after 3 days. Cell number is expressed relative to the EV

control cells. (E) Colony formation by 5TGM1-Glipr1 cells versus 5TGM1-EV cells was assessed in semi-solid

methylcellulose-containing medium after 12 days. Colony number is expressed relative to the EV control cells. Graphs

depict the mean + SD of n = 3 independent experiments.

https://doi.org/10.1371/journal.pone.0228408.g003
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may promote the development of premalignant and/or malignant PC expansions. To test this,

Glipr1 knockout mice were generated using CRISPR-Cas9 genome editing technology. The

strategy was to delete the first exon of the Glipr1 gene using two guide RNAs (gRNAs), one

upstream of the conserved promoter region and the other in the first intron of Glipr1 (Fig 5A).

C57BL/6 WT mouse zygotes were injected with Cas9 mRNA and both gRNAs, and were then

transferred to pseudopregnant recipients, which resulted in the birth of four founder mice

(F1-4). PCR genotyping coupled with Sanger sequencing revealed that three of the founders

had at least one Glipr1 allele in which the first exon was successfully deleted (Fig 5B). The

Glipr1 deletion allele of founder 3, a ~3.6 kb deletion encompassing exon 1 (Fig 5B), was

selected for breeding to homozygosity because it did not involve any random insertions/dele-

tions and belonged to the only male founder. This Glipr1 deletion allele was backcrossed onto

a C57BL/6 background for one generation and then bred to homozygosity to generate C57BL/

Glipr1-/- (Glipr1-/-) mice. To confirm successful gene knockout, RT-qPCR for Glipr1 mRNA

was performed on RNA from the B cell-rich BM and spleen of Glipr1-/- mice and WT control

mice. Using PCR primers in Glipr1 exons 3 and 4, the expression of Glipr1 mRNA transcripts

in the BM and spleen of Glipr1-/- mice was significantly reduced compared to that of WT mice

(Fig 5C). While Glipr1 protein expression was observed in lysates from BM and spleen cells of

WT mice, there was no Glipr1 protein detected in the BM or spleen of the Glipr1-/- mice by

Western blot (Fig 5D), confirming Glipr1 knockout in these mice.

Fig 4. Glipr1 overexpression in 5TGM1 cells does not affect tumour growth in vivo. KaLwRij mice were injected

intravenously with 5 x 105 5TGM1-Glipr1 or 5TGM1-EV control cells. (A) Tumour burden in the mice was measured

weekly from week 2 post-tumour cell inoculation by bioluminescence imaging and the signal from the ventral and

dorsal scans were summed for each mouse. A graph of the total flux for the mice injected with 5TGM1-Glipr1 or

5TGM1-EV cells (left) and representative ventral scans of one mouse per cell line over time (right) are shown. (B)

Serum was collected from the mice after four weeks and the M-spikes were measured by SPEP. M-spikes (^) on the

SPEP gel (left) and the quantitated M-spike intensity (right), normalised to albumin and expressed relative to the EV

control, are shown. Graphs depict the mean ± SEM of n = 14–15 mice per cell line from three independent

experiments.

https://doi.org/10.1371/journal.pone.0228408.g004
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Analysis of B cell development in 12-week-old Glipr1 knockout mice

Glipr1 is reported to be expressed in murine B cells and PCs [53], therefore, we aimed to eluci-

date the effect of Glipr1 knockout on normal haematopoiesis, particularly B cell development,

in adult mice. Peripheral blood from 12-week-old Glipr1-/- mice and WT mice was assessed

using a HEMAVET analyser. No significant differences in the numbers of white or red blood

cells, haemoglobin concentration, or other measured parameters were observed between the

Glipr1-/- mice and WT mice (S1 Table). In addition, BM was collected from 12-week-old

Fig 5. Generating Glipr1 knockout mice (Glipr1-/-) using CRISPR-Cas9 genome editing. (A) Schematic showing the

location of the gRNAs used for CRISPR-Cas9-mediated deletion of Glipr1 exon 1 and the PCR primers (P1 & P2) used

to screen founder mice for deletions. The direction of gene transcription is indicated by the arrow. (B) DNA samples

from the four founder mice (F1-4) were screened for deletions of Glipr1 exon 1 by PCR using primers P1 and P2 and

the products were run on a 1% agarose gel (left). Sanger sequencing of the highlighted deletion band in F3 showed a

3,641 bp deletion between the two gRNA sites, which removed Glipr1 exon 1 (right). NTC = no template control,

WT = wildtype C57BL/6 mouse. (C) RT-qPCR for Glipr1 mRNA was performed on RNA from the BM and spleen of

Glipr1-/- mice and WT control mice using primers in exons 3 and 4. Glipr1 expression levels were normalised to Actb
and were expressed relative to WT mice. Graph depicts the mean + SD of n = 2 mice per genotype. ����P< 0.0001,

unpaired t test. (D) The levels of Glipr1 protein in the BM and spleen of Glipr1-/- and WT mice was assessed by

Western blot. Hsp90 was used as the loading control.

https://doi.org/10.1371/journal.pone.0228408.g005
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Glipr1-/- mice and WT mice and flow cytometric analyses of B cell populations were performed

(Fig 6A). Although there was no difference in total B cells (P = 0.101; Fig 6B), a significant

reduction in the percentage of pre-pro B cells (P = 0.024; Fig 6C) and immature B cells

(P = 0.033; Fig 6D) was observed in the Glipr1-/- mice compared with WT controls. No differ-

ences in the populations of mature B cells (P = 0.702; Fig 6E) or PCs (P = 0.369; Fig 6F) were

observed. B cell populations in the spleens of the mice were also analysed by flow cytometry

(Fig 6G) and no difference in total B cells P = 0.114; Fig 6H) and PCs (P = 0.181; Fig 6I) were

observed between the Glipr1-/- mice and WT controls. Furthermore, to assess whether Glipr1
loss may predispose primary murine B cells to expansion, the proliferation of purified splenic

B cells in response to ex vivo stimulation with IL-4 and LPS was measured. There was a trend

towards increased proliferation of B cells from Glipr1-/- mice compared to WT mice over three

days, but statistical significance was not reached (P = 0.232; S3 Fig).

Loss of Glipr1 does not affect B cell/PC expansions in 12-month-old mice

Previous studies have shown that Glipr1-/- mice develop MM-like disease with late onset and

incomplete penetrance [29]. Therefore, we hypothesised that the loss of Glipr1 would result in

an increased and/or accelerated incidence of abnormal PC expansions in ageing mice. To test

this, Glipr1-/- mice and WT control mice were aged for 12 months and subjected to HEMA-

VET, flow cytometry and SPEP analyses. To investigate the possible effects of Glipr1 loss on

Fig 6. FACS analysis of B cell development in 12-week-old WT and Glipr1-/- mice. Single cell suspensions from the

BM and spleen were obtained from 12-week-old Glipr1-/- mice and WT control mice. The cells were stained with anti-

B220, anti-IgM and anti-CD138 antibodies and analysed by flow cytometry. BM cells were gated, as represented in (A),

to show the percentage of total B cells (B220+; B), pre-pro B cells (B220lowIgM-; C), immature B cells (B220lowIgM+; D),

mature B cells (B220highIgMlow; E) and PCs (B220-IgM-CD138+; F) among total leukocytes. Spleen cells were gated, as

represented in (G), to show the percentage of total B cells (H) and PCs (I) among total leukocytes. Graphs depict the

mean ± SEM of n = 12 (B-F) or n = 9 (H&I) mice per genotype. �P< 0.05, Mann-Whitney U test.

https://doi.org/10.1371/journal.pone.0228408.g006
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non-B cell populations that may indirectly impact on the PC population within the BM micro-

environment, flow cytometric analyses were performed. No significant differences in the per-

centages of haematopoietic stem cells (HSCs; S4 Fig), monocytes, macrophages, granulocytes

(S5 Fig) or endothelial cells (S6 Fig) in the BM, or mesenchymal stem cells (MSCs; S7 Fig) in

the bone, were observed between the Glipr1-/- and WT control mice.

Analysis of peripheral blood parameters identified a significant reduction in the number of

monocytes in Glipr1-/- mice compared with WT controls (P = 0.015; S2 Table). No differences

were observed in the other blood parameters measured (S2 Table). Flow cytometric analyses of

B cell populations within the BM revealed no differences in the total B cell (P = 0.912; Fig 7A),

pre-pro B cell (P = 0.248; Fig 7B), immature B cell (P = 0.631; Fig 7C), mature B cell (P = 0.684;

Fig 7D) and PC (P = 0.171; Fig 7E) populations between Glipr1-/- and WT control mice. Simi-

larly, no differences in the total B cell (P = 0.306; Fig 7E) and PC (P = 0.781; Fig 7F) popula-

tions in the spleen were observed. The development of clonal PC expansions was assessed by

looking for M-spikes in the serum of the 12-month-old Glipr1-/- mice and WT mice using

SPEP. In total, five out of ten female mice showed evidence of an M-spike compared to only

one out of ten male mice (Fig 6H), which was consistent with a previous report of higher M-

Fig 7. Glipr1 knockout does not affect B cell or PC populations in 12-month-old mice. BM and spleen cells were

prepared from 12-month-old Glipr1-/- and WT control mice. Resultant single cell suspensions were stained with anti-

B220, anti-IgM and anti-CD138 antibodies and analysed by flow cytometry. BM cells were gated to show the

percentage of total B cells (B220+; A), pre-pro B cells (B220lowIgM-; B), immature B cells (B220lowIgM+; C), mature B

cells (B220highIgMlow; D) and PCs (B220-IgM-CD138+; E) among total leukocytes. Spleen cells were gated to show the

percentage of total B cells (F) and PCs (G) among total leukocytes. Graphs depict the mean ± SEM of n = 10 mice per

genotype. (H) Serum was collected by tail bleed from 12-month-old Glipr1-/- mice and WT control mice and the

presence of M-spikes was determined using SPEP (n = 10 mice per genotype). The SPEP gels are shown with the

position of the albumin and globulin components of the serum indicated by brackets. � = mice with an M-spike by

densitometry.

https://doi.org/10.1371/journal.pone.0228408.g007

GLIPR1 tumour suppressor and multiple myeloma

PLOS ONE | https://doi.org/10.1371/journal.pone.0228408 January 29, 2020 15 / 25

https://doi.org/10.1371/journal.pone.0228408.g007
https://doi.org/10.1371/journal.pone.0228408


spike incidence in one-year-old female C57BL mice [54]. Three out of ten Glipr1-/- mice were

found to have an M-spike, which was equal to the incidence of M-spikes amongst the WT

mice (Fig 6H). Together, these results suggest that the loss of Glipr1 does not promote the

development of PC expansions in C57BL mice up to one year of age.

Discussion

The genetics of MM PCs are extremely complex with the majority of MM patients exhibiting a

subclonal disease structure with a high degree of genetic heterogeneity and a distinct lack of

recurrent mutations [8, 10, 11]. While an array of chromosomal rearrangements, nucleotide

variations, transcriptional alterations and epigenetic changes are known to occur within PCs

during disease pathogenesis, the complete complement of genetic abnormalities that contrib-

ute to driving MM development remain to be fully elucidated [55–57]. Here, we show that

GLIPR1 expression is significantly reduced in PCs from MM patients compared to normal

controls, with the majority of MM patients having GLIPR1 mRNA levels below the normal

range. This is consistent with the previously reported down-regulation of GLIPR1 expression

in the PCs of light-chain amyloidosis patients compared with normal controls [40], suggesting

that this may be a common genetic event in PC malignancies. The median GLIPR1 expression

levels in the PCs of MGUS patients were most similar to those levels in normal controls in one

microarray dataset and, conversely, to those levels in MM patients in the second dataset.

Hence, the stage at which GLIPR1 expression is down-regulated during MM disease develop-

ment remains unclear. In addition, we found that GLIPR1 expression was reduced in a subset

of HMCLs, which is consistent with the previous finding that the HMCLs U266 and RPMI-

8226 have significantly reduced GLIPR1 expression compared to normal B cells [29]. Together,

these data suggest a role for the down-regulation of GLIPR1 in promoting MM disease

development.

In this study, GLIPR1 expression was found to be lower in MM patients belonging to the

hyperdiploid (HY) and low bone disease (LB) UAMS molecular subgroups compared to the

MAF, MMSET and Cyclin translocation subgroups, although the mechanisms underlying

these associations remain unclear. As the HY and LB subgroups have previously been found to

have a more favourable prognosis [43], the enrichment of MM patients with reduced GLIPR1
expression in these subgroups is consistent with our finding that GLIPR1 expression does not

impact on overall survival. In the context of murine MM, the expression of Glipr1 was found

to be absent in the KaLwRij tumour-derived 5TGM1 MM cell line compared to detectable lev-

els in PCs from healthy KaLwRij and WT mice, suggesting that Glipr1 down-regulation may

also play a role in the development of murine MM. To investigate whether loss of Glipr1
expression is a common occurrence in the spontaneous MM tumours that arise in KaLwRij

mice, other MM cells derived from different KaLwRij donors, such as the 5T2 cell line [50, 58–

60], could be analysed.

The mechanism(s) by which Glipr1/GLIPR1 expression is down-regulated in the context of

human and murine MM remains unknown. Hemizygous chromosomal deletions encompass-

ing GLIPR1 have been reported in 9.4% of MM patients [39], suggesting that this may be a

mechanism that contributes to the down-regulation of GLIPR1 in human PCs. The potential

role of chromosomal deletion in reducing GLIPR1 expression in PCs could be examined by

correlating the GLIPR1 copy number (as determined by fluorescence in situ hybridization)

and GLIPR1 expression levels in a panel of HMCLs. Analysis of copy number aberrations in

the 5TGM1 cell line compared to the KaLwRij genome did not reveal any deletions encom-

passing Glipr1 [61], suggesting that the loss of Glipr1 expression occurs by an alternative mech-

anism in these murine MM cells. Reduced GLIPR1 expression in prostate cancer cells was
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shown to be primarily caused by aberrant DNA hypermethylation [26]. Given that the down-

regulation of tumour suppressor genes by hypermethylation of promoter CpG sites is a com-

mon feature of MM PCs [56, 62], it is possible that this mechanism underlies reduced GLIPR1
expression in at least some patients. This could be examined by correlating differential methyl-

ation of specific CpGs within the GLIPR1 promoter with gene expression levels in a panel of

HMCLs.

Overexpression of GLIPR1 in prostate, bladder and lung cancer, as well as osteosarcoma

cells, has been demonstrated to reduce tumour cell proliferation and/or colony formation in
vitro [24, 25, 27, 29]. In contrast, neither the overexpression of GLIPR1 in the H929 HMCL

nor the re-expression of Glipr1 in the 5TGM1 murine MM cell line affected basal tumour cell

proliferation or colony formation in vitro. The interaction between malignant PCs and acces-

sory cells of the BM microenvironment, including immune cells [63], stromal cells [64] and

endothelial cells [65], is critical for MM disease manifestation. Immune system avoidance [66]

and new blood vessel formation [67] are key aspects of MM disease development that can only

be modelled in an immune competent animal model. Given the integral role of the BM micro-

environment on MM tumour development and the inability to fully recapitulate its complexi-

ties in vitro [68], the 5TGM1/KaLwRij murine model of MM was used to assess the effect of

Glipr1 re-expression on MM tumour growth in vivo. A reduction in tumour burden was

observed in mice inoculated with 5TGM1-Glipr1 cells compared to mice inoculated with

5TGM1-EV cells after four weeks, but this difference did not reach statistical significance in

the 5TGM1/KaLwRij model. This result contrasts with the previously reported significant

reduction in tumour burden following intra-tumoral administration of an adenoviral Glipr1
expression vector in an orthotopic, metastatic mouse model of prostate cancer [30]. Given that

the highly progressive nature of the KaLwRij-5TGM1 model of MM [69], it was our conten-

tion that these findings did not exclude the possibility that reduced GLIPR1 expression may

contribute to the development of PC expansions/malignancy. Our preclinical model was pow-

ered at 80% to detect a 50% reduction in tumour volume at the experimental endpoint.

To examine this, we generated Glipr1 knockout (Glipr1-/-) mice by removing the first exon

of the gene using CRISPR-Cas9 genome editing. As previous RNA-seq data has shown that

Glipr1 is expressed throughout B cell lineage development, with the highest expression levels

observed in PCs [53], we hypothesised that Glipr1 knockout may disrupt B cell development

in mice. A significant reduction in the percentages of pre-pro and immature B cells, but not

mature B cells or PCs, was observed in the BM of Glipr1-/- mice compared with WT controls at

12 weeks of age. However, this decrease in early B cell populations was not replicated in

12-month-old mice. Hence, further research is required to determine whether GLIPR1 plays a

role in early B cell development. It remains a possibility that Glipr1 is necessary for optimal

early B cell survival and/or retention within the BM in young adult mice, and that mature B

cells are less dependent on Glipr1 for their survival/retention. Whether this effect is driven by

a B cell intrinsic lack of Glipr1, or by a compromised B cell developmental niche caused by

Glipr1-null BM accessory cells remains undetermined. The finding that red and white blood

cell numbers were similar between Glipr1-/- and WT control mice at 12 weeks of age suggests

that Glipr1 is unlikely to have a major role in haematopoiesis. However, we found that resting

splenic B cells from Glipr1-/- mice exhibited a trend towards increased proliferation in

response to stimulation with LPS and IL-4, suggesting that Glipr1 may have a role in regulating

B cell function, specifically inhibiting B cell expansion. This result is consistent with the possi-

bility that reduced Glipr1 expression may promote PC expansions in vivo.

In this study, the effect of Glipr1 loss on the development of clonal PC expansions was

assessed in 12-month-old Glipr1-/- and WT control mice. No differences in PC populations

were observed by flow cytometric analyses of BM and spleen cells from Glipr1-/- mice
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compared with WT control mice. In addition, SPEP analysis showed that the incidence of M-

spikes, which is evidence of a possible clonal PC expansion, was 30% for both the Glipr1-/- and

WT mice. This is in agreement with the previously reported M-spike frequency of ~25–30% in

one-year-old C57BL mice [36, 54]. Together, these data suggest that the loss of Glipr1 does not

promote the development of PC proliferative disorders in mice up to one year of age. These

findings contrast with the previously reported propensity of Glipr1-/- mice to develop plasma-

cytomas [29]. However, the low penetrance (~17%) and late onset (no mortality until at least

15 months of age) of tumours in these mice suggests that the cohort size and length of moni-

toring of the Glipr1-/- mice in this study may have been insufficient to observe potentially

enhanced PC tumorigenesis. In addition, the previously described Glipr1 knockout mice had a

C57BL6/129Sv (1:1) hybrid genetic background [29] and studies have shown that tumour pen-

etrance and onset are increased in transgenic mice with a 129Sv background compared to a

C57BL/6 background [70–73]. Hence, it is likely that the previously described Glipr1 knockout

mice were more susceptible to developing PC abnormalities compared to those generated in

this study, which were on a pure C57BL/6 background. Therefore, in order to further assess

the impact of Glipr1 loss on the development of PC malignancies in vivo, future studies should

include ageing a larger cohort of our Glipr1-/- mice over a longer timeframe (~ 2 years).

Overexpression of MYC due to chromosomal rearrangements and/or other genetic abnor-

malities is a common feature of MM and has been shown to be a potent driver of the progres-

sion from MGUS to MM [33–36]. Here, in silico analysis showed that GLIPR1 expression is

inversely correlated with MYC expression in the PCs of MM patients, suggesting that GLIPR1
may contribute to the negative regulation of oncogenic MYC expression. This finding is con-

sistent with the previous report of GLIPR1 expression being inversely correlated with MYC
expression in prostate cancer patient samples [32]. The same study also found that GLIPR1
overexpression in prostate cancer cell lines led to a reduction in MYC expression due to

GLIPR1 directly decreasing MYC transcription as well as promoting the ubiquitination and

degradation of MYC protein [32]. In contrast, the re-expression of Glipr1 in 5TGM1 cells did

not alter Myc mRNA levels, suggesting that Glipr1 does not regulate Myc expression in these

cells. Hence, it remains unclear whether GLIPR1 directly regulates MYC expression in PCs. It

was previously shown that MYC overexpression and loss of Glipr1 expression co-operate to

promote prostate cancer development in vivo [32]. Hence, their potential co-operation in pro-

moting the malignant transformation of PCs could be tested by generating Glipr1-/- mice that

also have PC-specific Myc overexpression (e.g., using the Vk�MYC transgene [36]) and then

monitoring them for clonal PC expansions/malignancies,.

In conclusion, this is the first study to demonstrate that GLIPR1 expression is frequently

reduced in the PCs of MM patients and that Glipr1 expression is lost in the 5TGM1 murine

MM cell line. Despite this, the overexpression of GLIPR1/Glipr1 in a HMCL/5TGM1 cells did

not significantly alter tumour cell growth in vitro or in vivo. In addition, Glipr1 knockout mice

did not show evidence of increased monoclonal PC expansions up to one year of age. Together

these results suggest that GLIPR1 is unlikely to be a potent tumour suppressor in MM, but fur-

ther work is required to determine whether its down-regulation may contribute to disease

development.

Supporting information

S1 Fig. The expression of GLIPR1 in MM PCs differs between molecular subgroups, does

not affect overall survival and is inversely correlated with MYC expression. (A) MM

patients from microarray dataset GSE4581 (n = 414) were stratified into molecular subgroups

based on the UAMS criteria; namely, patients characterised by increased proliferation-related
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genes (PR), chromosomal translocations involving cyclin D1 and cyclin D3 (CD1 and CD2),

MAF (MF) or MMSET (MS), as well as patients exhibiting hyperdiploidy (HY) and decreased

prevalence of lytic bone disease (LB). The expression of GLIPR1 was analysed in each subset.

Box and whiskers plots show the median, interquartile range, and minimum and maximum

values for each subset; #P< 0.01 relative to MF and MS, ^P< 0.01 relative to CD2; Kruskal-

Wallis test with Dunn’s multiple comparison tests. (B) Kaplan–Meier plots of overall survival

are shown for newly diagnosed MM patients stratified on the basis of median CD138+ PC

GLIPR1 expression, derived from microarray dataset E-TABM-1138 (n = 142). (C-E) GLIPR1
expression levels in the PCs of newly diagnosed MM patients from E-GEOD-6477 (n = 69; C),

GSE4581 (n = 414; D) and E-GEOD-16122 (n = 133; E) were plotted against the expression

levels of MYC. Pearson correlation r coefficient and P values are shown. (F) Kaplan–Meier

plots of overall survival are shown for newly diagnosed MM patients stratified on the basis of

median CD138+ PC MYC expression, derived from microarray dataset E-TABM-1138

(n = 142).

(TIF)

S2 Fig. Glipr1 overexpression does not affect Myc expression levels in 5TGM1 cells. RT-

qPCR for Myc mRNA was performed on RNA from 5TGM1-EV cells and 5TGM1-GLIPR1

cells. Myc expression levels were normalised to Actb and were expressed relative to

5TGM1-EV cells. Graph depicts the mean + SD of triplicates. P = 0.799, unpaired t test.

(TIF)

S3 Fig. No difference in ex vivo proliferation of primary B cells from Glipr1-/- compared

with WT control mice. Purified splenic B cells from 12-week-old WT and Glipr1-/- mice were

cultured in the presence of IL-4 and LPS. Cell proliferation was measured by a WST-1 assay

three days after stimulation. Graph depicts the mean + SD of n = 3 independent experiments.

P = 0.232, paired t test.

(TIF)

S4 Fig. FACS analysis of HSCs in the BM of 12-month-old Glipr1-/- mice. BM was collected

from 12-month-old Glipr1-/- and WT control mice and single cell suspensions were prepared.

The cells were stained with lineage markers, anti-Sca1, anti-CD117, anti-CD135 and anti-CD34

antibodies and analysed by flow cytometry. (A) Representative flow plots showing the gating

strategy used to define haematopoietic stem progenitor cells (HSPCs; Lin-Sca1+CD117+), short-

term haematopoietic stem cells (ST-HSCs; Lin-Sca1+CD117+CD135-CD34-) and long-term hae-

matopoietic stem cells (LT-HSCs; Lin-Sca1+CD117+CD135-CD34+). Graphs show the percent-

age of HSPCs among Lin- cells (B), and ST-HSCs (C) and LT-HSCs (D) among total HSPCs.

Graphs depict the mean ± SEM of n = 10 mice per genotype.

(TIF)

S5 Fig. FACS analysis of monocytes/macrophages and granulocytes in the BM of

12-month-old Glipr1-/- mice. BM was collected from 12-month-old Glipr1-/- and WT control

mice and single cell suspensions were prepared. The cells were stained with anti-CD11b, anti-

F4/80, anti-CD169 and anti-Ly6G antibodies and analysed by flow cytometry. (A) Representa-

tive flow plots showing the gating strategy used to define monocytes (CD11b+F4/

80+CD169-Ly6G-), macrophages (CD11b+F4/80+CD169+) and granulocytes (CD11b+F4/

80-CD169-Ly6G+). Graphs show the percentage of monocytes (B), macrophages (C) and gran-

ulocytes (D) among total leukocytes. Graphs depict the mean ± SEM of n = 10 mice per geno-

type.

(TIF)
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S6 Fig. FACS analysis of endothelial cells in the BM of 12-month-old Glipr1-/- mice. BM

was collected from 12-month-old Glipr1-/- and WT control mice and single cell suspensions

were prepared. The cells were stained with lineage markers, anti-CD11b, anti-CD45, anti-

CD31 and anti-CD144 antibodies and analysed by flow cytometry. (A) Representative flow

plots showing the gating strategy used to define total endothelial cells (Lin-CD45-CD31+) and

mature endothelial cells (Lin-CD45-CD31+CD144+). Graphs show the percentage of endothe-

lial cells (B) and mature endothelial cells (C) among Lin-CD45- BM cells. Graphs depict the

mean ± SEM of n = 10 mice per genotype.

(TIF)

S7 Fig. FACS analysis of mesenchymal stem cells in the compact bone of 12-month-old

Glipr1-/- mice. Compact bone (CB) was collected from 12-month-old Glipr1-/- and WT control

mice and single cell suspensions were prepared. The cells were stained with lineage markers,

anti-CD45, anti-CD31, anti-CD51 and anti-Sca1 antibodies and analysed by flow cytometry.

(A) Representative flow plots showing the gating strategy used to define mesenchymal stem

cells (MSCs; Lin-CD45-CD31-CD51-Sca1+). (B) Graph shows the percentage of MSCs among

Lin-CD45-CD31- CB cells. Graph depicts the mean ± SEM of n = 10 mice per genotype.

(TIF)

S1 Table. Haematological parameters in the peripheral blood of 12-week-old Glipr1-/-

mice. Peripheral blood was collected by a tail bleed from 12-week-old Glipr1-/- mice and WT

control mice and was assessed on a HEMAVET analyser (n = 7/genotype). Data are given as

mean ± SD.

(XLSX)

S2 Table. Haematological parameters in the peripheral blood of 12-month-old Glipr1-/-

mice. Peripheral blood was collected by a tail bleed from 12-month-old Glipr1-/- mice and WT

control mice and was assessed on a HEMAVET analyser (n = 10/genotype). Data are given as

mean ± SD. �P< 0.05, ��P< 0.01, Mann-Whitney U test.

(XLSX)

S1 File. Original blot and gel images contained in the manuscript’s figures.

(PDF)
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