
Research Article
NUFFT-Based Iterative Image Reconstruction via Alternating
Direction Total Variation Minimization for Sparse-View CT

Bin Yan, Zhao Jin, Hanming Zhang, Lei Li, and Ailong Cai

China National Digital Switching System Engineering and Technological Research Center, Zhengzhou 450002, China

Correspondence should be addressed to Lei Li; leehotlin@aliyun.com

Received 18 September 2014; Accepted 11 January 2015

Academic Editor: Yi Gao

Copyright © 2015 Bin Yan et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Sparse-view imaging is a promising scanning method which can reduce the radiation dose in X-ray computed tomography
(CT). Reconstruction algorithm for sparse-view imaging system is of significant importance. The adoption of the spatial iterative
algorithm for CT image reconstruction has a low operation efficiency and high computation requirement. A novel Fourier-based
iterative reconstruction technique that utilizes nonuniform fast Fourier transform is presented in this study alongwith the advanced
total variation (TV) regularization for sparse-view CT. Combined with the alternating direction method, the proposed approach
shows excellent efficiency and rapid convergence property. Numerical simulations and real data experiments are performed on
a parallel beam CT. Experimental results validate that the proposed method has higher computational efficiency and better
reconstruction quality than the conventional algorithms, such as simultaneous algebraic reconstruction technique using TV
method and the alternating direction total variation minimization approach, with the same time duration. The proposed method
appears to have extensive applications in X-ray CT imaging.

1. Introduction

X-ray computed tomography (CT) has been widely used
for imaging applications in various fields, such as industrial
nondestructive testing [1] and medical diagnosis [2], for
its advantages of noninvasive and high spatial resolution.
However, in many practical applications of X-ray computed
tomography, complete projection data set cannot be obtained
because of the limitation of scanning time, space, dose, and
so on. Therefore, sparse angle scanning scheme is adopted to
tackle these problems. On one hand, this scheme can speed
up the scanning rate and decrease the X-ray radiation dose,
such as breast and vascular imaging [3–6]. On the other hand,
sparse data sampling can savemuch scanning time and it is of
practice value when high reconstruction precision is not that
urgent. To solve the sparse-view reconstruction problem, the
classical methods should be upgraded, and a new algorithm
needs to be developed.

Given the unsatisfactory Tuy-Smith condition [7, 8] in
sparse-view, a CT image cannot be accurately reconstructed

via analytic method. To solve the ill-posed problem [9, 10],
numerous iterative algorithms [11–13] have been proposed
based on spatial domain. However, these iterative algorithms
are time-consuming and have a great demand for hardware
resources. Despite applying hardware speedup technology,
such as an ordinary graphics processing unit [14], these
algorithms still consume a considerable amount of time.

Compressive sensing theory by Candés et al. [15–17]
provided a new idea for the exact recovery of an image
from the sparse samples of its discrete Fourier transform.
The exact reconstruction relies on the assumption that there
exists sparse representation for an image. A number of cases
are known to have sparse gradient-magnitude images. In
some cases, minimizing the total variation (TV) can generate
accurate images from sparse samples [18–20]. Therefore,
combining TV regularizationwith the iterations of the simul-
taneous algebraic reconstruction technique (SART), here-
inafter called SART–TV [21], can improve reconstruction
image quality while decreasing mean-squared error. Based
on the projection onto the convex sets (POCS) algorithm,
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the adaptive steepest descent-POCS (ASD-POCS) algorithm
[20] can effectively handle incomplete datasets and demon-
strates excellent performance in sparse-view CT applications.

The rapid increase in the size of scanning data has
highlighted the importance of reducing reconstruction time
and improving reconstruction quality. It is known that pro-
cessing the same signal in the frequency space is faster than
that in the spatial domain by fast Fourier transform (FFT).
Several algorithms for image reconstruction in the frequency
space can also be developed on the basis of fast Fourier
transform. Several studies have been conducted to achieve
this goal. In 1981, Stark et al. [22] developed direct Fourier
methods (DFM) using central slice theorem and obtained
favorable results. In 2003, Seger andDanielsson [23] analyzed
the missing projection data in the frequency domain and
proposed a reconstruction method for the scanned timber
data according to Fourier transform. In 2013, Fahimian et
al. [24] presented a Fourier-based iterative reconstruction
in medical X-ray CT, and numerical experiment results
showed that thismethod required less computation time than
other iterative algorithms.These achievements facilitated the
development of an improved algorithm for solving the sparse-
view reconstruction problem in the frequency domain.

Because of the limitation of FFT, that is, its unsuitabil-
ity for application to nonuniform samples, this technique
requires further enhancement to improve its universality. To
this end, nonuniform FFT (NUFFT) [25] has been recently
developed to overcome this limitation without increasing
the computation complexity of FFT. NUFFT is also basis
of the proposed reconstruction algorithm in this study.
Motivated by the feature of NUFFT for data distribution,
some approaches have been proposed to reconstruct a CT
image to deal with frequency data. In 2004, Matej et al.
[26] proposed an iterative tomographic image reconstruction
method using NUFFT and obtained better results with this
technique than with the filtered back-projection (FBP) algo-
rithm. In 2006, Zhang-O’Connor and Fessler [27] proposed
Fourier-based forward- and back-projectors for fan-beam
tomographic image reconstruction. However, these proposed
NUFFT cannot effectively solve the problems in sparse-view
image reconstruction.TheNUFFT just was especially applied
as a transition during iteration in spatial domain, which in
turn burdened computation consumption.

In this paper, our study aims to present a promising
contribution to the task of image reconstruction from sparse-
view by combining the alternating direction total variation
minimization (ADTVM) technique with NUFFT to establish
a newmethod which is suitable for large-scale reconstruction
because of its low computational requirement.The algorithm
is developed under the framework of alternating direction
method (ADM) which shows high efficiency and stability.
The advantages of the proposed algorithm are verified by the
results of several groups of experiments.

The organization of this paper is organized as follows.
Section 1 concisely reviews the basic CT reconstruction
and the state of the art of sparse-view image reconstruc-
tion. Section 2 describes the basic principles of the pro-
posed method, including the reconstruction model and the
corresponding algorithm based on NUFFT and ADTVM.
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Figure 1: An object 𝑓(𝑥, 𝑦) and its parallel projection 𝑝𝜃(𝑠).

Section 3 demonstrates groups of typical experiments results,
including numerical simulation and real data ones. Section 4
discusses the findings of the experiments and concludes the
paper.

2. Method and Material

2.1. Image Reconstruction Model. In this work, we consider
temporarily parallel geometry. In parallel geometry, 2D func-
tion𝑓 (objection function) is defined in a compact support of
spatial domain, which means that it vanishes outside a finite
region of the plane. In the (𝑥, 𝑦) plane, the general formation
for the line integral, known as theRadon transformof𝑓(𝑥, 𝑦),
is

𝑝𝜃 (𝑠) = ∬
∞

−∞

𝑓 (𝑥, 𝑦) 𝛿 (𝑥 cos 𝜃 + 𝑦 sin 𝜃 − 𝑠) 𝑑𝑥 𝑑𝑦. (1)

In Figure 1, projection 𝑝𝜃(𝑠) consists of a collection of line
integrals (1) taken along straight parallel lines in the plane that
means a collection of 𝑝𝜃(𝑠) with constant 𝜃 ∈ [0, 𝜋/2] and
𝑠 ∈ [−𝑆/2, 𝑆/2].

CT image reconstruction is an inverse problem, and
the observed projections should be converted into images
which reflect the distribution of the attenuation coefficient of
the interested physical object. A conventional reconstruction
method, that is, the direct Fourier methods (DFM), is
established based on the Fourier slice theorem. Basically, the
steps of DFM can be summarized as follows:

(a) 1D discrete Fourier transform of the parallel projec-
tions taken at different angles;

(b) polar to Cartesian grid interpolations;

(c) 2D inverse Fourier transform.
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From the perspective of DFM, the observation equation
in the Fourier domain can be expressed as follows:

𝑃𝜃 (𝜌) = ∫
∞

−∞

𝑝𝜃 (𝑠) 𝑒
−𝑗2𝜋𝜌𝑠𝑑𝑠, (2)

where 𝑃𝜃(𝜌) is observed by the Fourier transform of the
measured projection data 𝑝𝜃(𝑠) and 𝜌 is the frequency
variable of Fourier transform. The process proceeds with the
use of FFT and is characterized by high accuracy. According
to Fourier central slice theory, the 1D FFT of the projection
𝑃𝜃(𝜌) is equal to 𝑓(𝑢, V), which is derived from the 2D FFT
of the reconstructed image in a certain angle. Therefore, the
relationship is described as follows:

𝑃𝜃 (𝜌) = ∫
+∞

−∞

𝑝𝜃 (𝑠) 𝑒
−𝑗2𝜋𝜌𝑠𝑑𝑠

= 𝑓 (𝑢, V)
󵄨󵄨󵄨󵄨󵄨 𝑢=𝜌 cos 𝜃
V=𝜌 sin 𝜃

,

(3)

where 𝑓(𝑢, V) = ∬
+∞

−∞
𝑓(𝑥, 𝑦)e−𝑗2𝜋(𝑥𝑢+𝑦V)𝑑𝑥 𝑑𝑦. The equation

shows an obvious equivalence corresponding to frequency
projection 𝑃𝜃(𝜌) with 𝑓(𝑢, V) in polar coordinates.

To avoid interpolation errors, such as DFM in the image
and frequency domains, this study introduces NUFFT, which
can translate polar coordinates into the image space without
interpolation. This technique can significantly improve the
accuracy of reconstruction. Let F𝑁 represent the NUFFT
operator, such that the following equation can be derived:

F𝑁 (𝑓) = ∬
+∞

−∞

𝑓 (𝑥, 𝑦) 𝑒−𝑗2𝜋(𝑥𝑢+𝑦V)𝑑𝑥 𝑑𝑦
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝑢=𝜌 cos 𝜃V=𝜌 sin 𝜃

= ∫
∞

−∞

𝑝𝜃 (𝑠) 𝑒
−𝑗2𝜋𝜌𝑠𝑑𝑠

= 𝑃𝜃 (𝜌) .

(4)

The reconstruction module can be discretely shown as
follows:

P = F𝑁f , (5)

where the (observed) constant F𝑁 and the variant f are the
vector forms of Fourier sampling and objection function,
respectively. Matrix F𝑁 stands for the NUFFT of f . The
Fourier transform F𝑁f in (5) and its adjoint F𝐻

𝑁
f can be

implemented by using FFT to generate a fast and accurate
evaluation.

In sparse-view reconstruction, (5) is ill-posed, and the
projection data are insufficient for exact reconstruction.
Mathematically, the problem that we consider here involves
insufficient data, such that (5) is underdetermined. To solve
this linear and underdetermined equation, we specify a TV
minimization algorithm that considers the reconstruction
to be a task of finding the best solution to the following
optimization problem:

f∗ = arg min ‖f‖TV ,

subject to (s.t.) P = F𝑁f , f ≥ 0,
(6)

where ‖f‖TV denotes the discretization of the TV term and
‖f‖TV = ∑

𝑖
‖𝐷𝑖f‖1. By applying the directional gradients

operators𝐷𝑖 [20, 28],model (6) can also bewritten as follows:

min ∑
𝑖

󵄩󵄩󵄩󵄩w𝑖
󵄩󵄩󵄩󵄩1 +

𝜆

2

󵄩󵄩󵄩󵄩F𝑁f − P󵄩󵄩󵄩󵄩
2

2
,

s.t. 𝐷𝑖f = w𝑖, f ≥ 0,

(7)

where 𝜆 is the fidelity parameter to control the data consis-
tency in the object function.

Therefore, the overall reconstruction flowchart can be
summarized as Figure 2.

2.2. NUFFT with ADM for the Model. The above constrained
optimization is addressed by converting the equation into
its unconstrained form by applying the augmented Lagrange
function:

min𝐿 (f ,w𝑖) = ∑
𝑖

(
󵄩󵄩󵄩󵄩w𝑖

󵄩󵄩󵄩󵄩1 + 𝑢
𝑇

𝑖
(𝐷𝑖f − w𝑖)

+
𝜌𝑖
2

󵄩󵄩󵄩󵄩𝐷𝑖f − w𝑖
󵄩󵄩󵄩󵄩
2

2
)

+
𝜆

2

󵄩󵄩󵄩󵄩F𝑁f − P󵄩󵄩󵄩󵄩
2

2
,

(8)

where 𝜌𝑖 is a scalar that denotes the penalty coefficient
and 𝑢𝑖 denotes the multipliers. The minimization processes
with respect to variables f and w𝑖 cannot be easily realized
simultaneously by directly performing the optimization.
Moreover, decomposing the variables by using ADM has a
low computation cost. The ADM approach decouples the
augmented Lagrange function into two subproblems, namely,
the w-subproblem and the f-subproblem [29].

The w-subproblem can be written as follows:

min 𝐿 f (w𝑖) = 𝑢𝑇
𝑖
(𝐷𝑖f − w𝑖) +

𝜌𝑖
2

󵄩󵄩󵄩󵄩𝐷𝑖f − w𝑖
󵄩󵄩󵄩󵄩
2

2
+
󵄩󵄩󵄩󵄩w𝑖

󵄩󵄩󵄩󵄩1 . (9)

The w-subproblem is separable with respect to w, and
problem (9) can be efficiently solved by using the shrinkage
operator [30], which is expressed as follows:

w∗
𝑖
= max{

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝐷𝑖f +

𝑢𝑖
𝜌𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
−
1

𝜌𝑖
, 0} ⋅ sgn(𝐷𝑖f +

𝑢𝑖
𝜌𝑖
) . (10)

In addition, with the aid of w𝑖, the optimization of f-
subproblem can be achieved by solving the following:

min 𝐿w𝑖 (f) =
𝜆

2

󵄩󵄩󵄩󵄩F𝑁f − P󵄩󵄩󵄩󵄩
2

2

+∑
𝑖

(𝑢𝑇
𝑖
(𝐷𝑖f − w𝑖) +

𝜌𝑖
2

󵄩󵄩󵄩󵄩𝐷𝑖f − w𝑖
󵄩󵄩󵄩󵄩
2

2
) .

(11)

𝐿w𝑖(f) is clearly a quadratic function, the gradient of
which is expressed as follows:

𝑙 (f) = 𝜆F𝐻
𝑁
(F𝑁f − P) +∑

𝑖

(𝐷𝑇
𝑖
𝑢𝑖 + 𝜌𝑖𝐷

𝑇

𝑖
(𝐷𝑖f − w𝑖)) .

(12)
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Figure 2: The flowchart of sparse-view image reconstruction for the model.

Force 𝑙(f) = 0 and the exact solution for 𝐿(f) is presented
as follows:

f∗ = (𝜆F𝑇
𝑁
F𝑁 +∑

𝑖

𝜌𝑖𝐷
𝑇

𝑖
𝐷𝑖)

+

⋅ (𝜆F𝑇
𝑁
𝑃 −∑
𝑖

𝐷𝑇
𝑖
(𝑢𝑇
𝑖
− 𝜌𝑖w𝑖)) ,

(13)

where 𝑀+ denotes the Moore-Penrose inverse of matrix
𝑀. Theoretically, the exact minimizer can be used to solve
the f-subproblem. However, the inverse or pseudo-inverse
is too costly to compute numerically at each iteration. The
augmented Lagrangian function (8) is expected to be min-
imized by solving the w-subproblem and the f-subproblem
alternately. Therefore, solving the f-subproblem accurately
at each sweep may be unnecessary. A robust and efficient
nonmonotone alternating direction algorithm [31] is used to
solve problem (13).

By using the solutions of w∗
𝑖
and f∗, the multipliers are

updated as follows:

𝑢𝑖 = 𝑢𝑖 + 𝜌𝑖 (𝐷𝑖f
∗ − w∗
𝑖
) . (14)

The optimized solution for (8) is attained by circularly
applying (10) and (13) until 𝐿(f ,w𝑖) is minimized jointly with
respect to (f ,w𝑖).

2.3. Algorithm of the Overall Framework. All issues in han-
dling the subproblems have been addressed in Section 2.2. In
light of all derivations presented above, the new algorithm for
solving the reconstruction problem can be stated as follows.

Algorithm 1. Input projection data 𝑝, 𝜆, 𝜌𝑖 > 0. Initialize 𝑢𝑖 =
𝑢(0)
𝑖

and starting points 𝑤0
𝑖
, 𝑢0
𝑖
for all 𝑖. Set 𝑘 = 0.

(1) make 1D FFT of 𝑝𝜃(𝑠) with respect to 𝑠

𝑃𝜃 (𝜌) ←󳨀 ∫
+∞

−∞

𝑝𝜃 (𝑠) 𝑒
−𝑗2𝜋𝜌𝑠𝑑𝑠; (15)

while “not achieved maximum iteration loops,”Do

(2) compute frequency domain 𝑃𝜃(𝜌) via NUFFT;



Computational and Mathematical Methods in Medicine 5

(a) Phantom (b) SART-TV

(c) ADTVM (d) New method

Figure 3: Image reconstructions of the Shepp-Logan phantom in 60-view scan. Display Window (0.1 0.5). (a) shows the original image. (b)
shows the image after applying the SART-TV algorithm at 200 iterations. (c) gives the image after vua the ADTVMalgorithm at 200 iterations.
(d) presents the reconstruction image after using the NUFFT-ADM algorithm at 200 iterations.

(3) compute f by

f𝑘+1
𝑖

←󳨀 (𝜆F𝑇
𝑁
F𝑁 +∑

𝑖

𝜌𝑖𝐷
𝑇

𝑖
𝐷𝑖)

+

⋅ (𝜆F𝑇
𝑁
𝑃 −∑
𝑖

𝐷𝑇
𝑖
(𝑢𝑇
𝑖
− 𝜌𝑖w𝑖)) ;

(16)

(4) compute w by

w𝑘+1
𝑖

←󳨀 max{
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝐷𝑖f +

𝑢𝑖
𝜌𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
−
1

𝜌𝑖
, 0} ⋅ sgn(𝐷𝑖f +

𝑢𝑖
𝜌𝑖
) ; (17)

(5) update 𝑢𝑖 by

𝑢𝑘+1
𝑖

←󳨀 𝑢𝑖 + 𝜌𝑖 (𝐷𝑖f
∗ − w∗
𝑖
) ; (18)

(6) 𝑘 ← 𝑘 + 1
End Do

In this study, the proposed NUFFT reconstruction tech-
nique is developed on the basis of ADTVM. This technique
is called NUFFT-ADM. According to the above algorithm,
the proposed method demonstrates fast convergence and
effective iteration through ADM. This method can be effec-
tively implemented in large-scale reconstruction in sparse-
view because of its low computational cost, thus making this
technique promising in practical applications.

3. Experiments

To verify the performance of the proposed algorithm, both
numerical simulations and real CT scan data experiments
are conducted. All experiments are performed on an AMAX
Tesla workstation with Intel Xeon E5520 dual-core CPU
2.27GHz and 24GB memory. All programs are performed
using MATLAB 2011a. In all experiments, the parameter
of TV is that primary penalty parameter 𝜇 and secondary
penalty parameter 𝛽 are 1024 and 32, respectively.



6 Computational and Mathematical Methods in Medicine

SART-TV

0
50 100 150 200 250 3000

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Phantom

(a) SART-TV of the vertical rows

SART-TV

0
50 100 150 200 250 3000

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Phantom

(b) SART-TV of the horizontal rows

0
50 100 150 200 250 3000

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Phantom
ADTVM

(c) ADTVM of the vertical rows

0
50 100 150 200 250 3000

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Phantom
ADTVM

(d) ADTVM of the horizontal rows
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(e) New method of the vertical rows
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Figure 4: The image profile in Figure 1 shows (a) vertical profiles along the center of the SART-TV result, (b) horizontal profiles along the
center of the SART-TV result, (c) vertical profiles along the center of the ADTVM result, and (d) horizontal profiles along the center of the
ADTVM result. (e) Vertical profiles along the center of the NUFFT-ADM result and (f) horizontal profiles along the center of the NUFFT-
ADM result.



Computational and Mathematical Methods in Medicine 7

0 100 200 300 400 500 600 700 800 900 1000
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Iteration number

RM
SE

NUFFT-ADM
ADTVM

SART-TV

Figure 5: RMSEs as functions of iterations for three different
algorithms.

Table 1: Parameters in the simulation of a sparse-view scan.

Parameters Configuration
Detection elements 512
Source to axis distance 300mm
Source to detection distance 600mm
Views of projection data 18
Projection data 512 × 18
Reconstruction size 256 × 256 pixels
Pixel size 0.127mm × 0.127mm

3.1. Numerical Phantom Simulation. The above algorithm is
applied to validate its high efficiency. A group of 2D image
reconstruction experiments are performed using a 2D Shepp-
Logan phantom with a size of 256 × 256. This phantom is
generated according to the definition of the ellipse phantom
image. The scanning and reconstruction parameters in the
experiment are listed in Table 1. The detector elements are
equidistantly spaced 0.127mm from one another.

To demonstrate the reconstruction accuracy quantita-
tively, the root-mean-squared error (RMSE) is used as a
measurement of the reconstruction error. RMSE is defined as
follows:

RMSE = √∑
𝑖
∑
𝑗

󵄨󵄨󵄨󵄨𝑓(𝑖, 𝑗) − 𝑔(𝑖, 𝑗)
󵄨󵄨󵄨󵄨

𝑁

2

, (19)

where 𝑓 and 𝑔 denote the ideal phantom and the reconstruc-
tion image, respectively; and 𝑁 denotes the total number of
pixels of the image.The imagewas reconstructed using SART-
TV, ADTVM, the proposed method, respectively, and their
results are presented in Figure 3. Two hundred iterations are

performed for each algorithm. The profiles of these images
along the central horizontal and vertical rows are shown in
Figure 4 for the different methods.

RMSE is used as an evaluation criterion for different
iteration times. The result is shown in Figure 5. The accuracy
and running time of each reconstruction method at different
iterations are presented in Table 2 for comparison.

The RMSEs, as well as the accuracy and running time
of different methods, show that NUFFT-ADM significantly
outperforms SART-TV and ADTVM. On one hand, the
convergence of the new method is faster than that of SART-
TV because of the use of the optimal solution with ADM. On
the other hand, by taking advantage of the frequency NUFFT
operator instead of the projection and back-projection in
the spatial domain, which consumes the greatest amount
of time among all components, NUFFT-ADM has a higher
computation capability than the general algorithm in the
spatial domain.

3.2. Reconstruction Using Real Data. To further verify the
performance of the proposed algorithm, several experiments
are performed to reconstruct a head model from real data
using the new method. We compare the proposed algorithm
with SART-TV and ADTVM. Table 3 lists the scanning
and reconstruction parameters. The detector elements are
equidistantly spaced 0.635mm from one another. The num-
ber of iterations for NUFFT-ADM, ADTVM, and SART-TV
is 200.

The reconstruction results are presented in Figure 6.
The reconstruction acquired results using real data clearly

show that the quality of the reconstructed image is improved
as the number of iterations is increased. Under the same
number of iterations, the reconstruction results of NUFFT-
ADMare superior to those of SART-TV, especially in terms of
the high-frequency information that shows the image detail
or volatile part. Compared toADTVM, the detail of the image
by the new method is nearly the same.

4. Conclusions

An optimal algorithm based on NUFFT for CT image
reconstruction is presented in this work. The validity of the
NUFFT-ADM algorithm is verified by conducting numerical
simulations and real data experiments. The reconstruction
results show that the proposed reconstruction algorithm
improves reconstruction quality, accelerates convergence
speed, and demonstrates lower computation complexity than
other iterative algorithms. That is, the NUFFT-ADM algo-
rithm can practically deal with fast image reconstruction
from sparse projectionmeasurements to reduce the radiation
dose in X-ray CT. In principle, the proposed method can be
extended to fan-beam geometry via the rebinning method to
broad its application.
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(a) SART-TV (at 100 iterations) (b) ADTVM (at 100 iterations) (c) New method (at 100 iterations)

(d) SART-TV (at 300 iterations) (e) ADTVM (at 300 iterations) (f) New method (at 300 iterations)

Figure 6: Reconstruction results of SART-TV, ADTVM, and NUFFT-ADM.

Table 2: Accuracy and the running time of different method.

Iteration number SART-TV ADTVM NUFFT-ADM
RMSE Running time RMSE Running time RMSE Running time

100 0.0377 177.786 s 0.0165 107.439 s 0.0079 8.986 s
200 0.0302 349.544 s 0.0015 199.133 s 0.0012 16.752 s
500 0.0174 856.158 s 4.8927𝑒 − 4 508.376 s 1.6378𝑒 − 4 51.863 s

Table 3: Parameters in the simulation of a sparse-view scan.

Parameters Configuration
Detection elements 640
Source to axis distance 678mm
Source to detection distance 1610mm
Views of projection data 60
Projection data 60 × 72
Reconstruction size 256 × 256 pixels
Pixel size 0.582 × 0.582mm2
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