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Abstract: Fossil frustules of Ellerbeckia and Melosira were studied using laboratory-based nano X-
ray tomography (nano-XCT), transmission electron microscopy (TEM) and energy-dispersive X-ray
spectroscopy (EDS). Three-dimensional (3D) morphology characterization using nondestructive nano-
XCT reveals the continuous connection of fultoportulae, tube processes and protrusions. The study
confirms that Ellerbeckia is different from Melosira. Both genera reveal heavily silicified frustules with
valve faces linking together and forming cylindrical chains. For this cylindrical architecture of both
genera, valve face thickness, mantle wall thickness and copulae thickness change with the cylindrical
diameter. Furthermore, EDS reveals that these fossil frustules contain Si and O only, with no other
elements in the percentage concentration range. Nanopores with a diameter of approximately 15 nm
were detected inside the biosilica of both genera using TEM. In situ micromechanical experiments
with uniaxial loading were carried out within the nano-XCT on these fossil frustules to determine
the maximal loading force under compression and to describe the fracture behavior. The fracture
force of both genera is correlated to the dimension of the fossil frustules. The results from in situ
mechanical tests show that the crack initiation starts either at very thin features or at linking structures
of the frustules.

Keywords: diatom; fossil frustule; 3D visualization; X-ray computed tomography; micromechanical
behavior; morphology

1. Introduction

Natural materials are evolutionary optimized materials that frequently feature hi-
erarchical structures. They play an important role in bionanotechnology and composite
materials [1–7]. Diatom biosilica is one of these biological materials, mainly from two
sources: diatomaceous earth and living diatoms. Diatoms are unicellular microorganisms
with more than hundreds of thousands of species [8]. Their hard and porous wall with a
unique 3D morphology is called diatom frustule [9–11]. Biosilica from diatom frustules
resist disintegration and decay, and therefore, diatom-rich fossil deposits have formed
over time at many sites (e.g., oceans, lakes and marshes) [12,13]. This naturally formed
diatomaceous earth (or diatomite) is an abundant mineral source and distributes widely on
earth [14,15], by which it can be easily obtained at a large scale and at a low cost. During
the time of forming fossil frustules (diatomaceous earth), there could be other elements
incorporated into the biosilica that become part of the chemical composition. Elemental
analysis showed the diatomaceous earth contains a high amount of oxygen (48 wt. %) and
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silicon (46 wt. %) with a small amount of aluminum (3 wt. %) and iron (3 wt. %), as well
as other elements [16]. However, the chemical composition of diatomaceous earth varies
from region to region [17,18].

Because fossil frustules are lightweight and their specific mechanical properties have
been optimized during evolution [19,20], they could be used as components in composites.
So far, the market of lightweight and high-strength composite materials is growing fast [21].
Many metal matrix composites use ceramic particles such as Al2O3, SiC, MO, B4C, and TiC
as reinforcing components. Only limited studies exist for SiO2-based composites [22–25].
To date, few studies have been conducted on the use of fossil frustules as reinforcement
components in metal matrix composites (MMCs). Before using fossil frustules as func-
tional materials in MMCs, the morphology and mechanical properties of the selected fossil
frustules must be known. However, because the size of most diatom species ranges from
3 µm to 200 µm [26], traditional mechanical test methods struggle to characterize individ-
ual frustules. Recently, new approaches on micro- and nanomechanical tests have been
developed and used to study the mechanical behavior of frustules [20,27–29]. Indentation
by atomic force microscopy (AFM) on pennate and centric diatoms showed that the elastic
modulus varied from several to hundreds GPa depending on the test locations [27,28].
In situ microindentation, in combination with scanning electron microscopy (SEM) on
pennate diatom frustules (Didymosphenia geminata), shows that the applied load to achieve
elastic deformation on the epivalve surface ranges from 100 µN to 1000 µN [29]. In three-
point bending experiments on the centric diatom (Coscinodiscus sp.), fracture was observed
at an average stress of 1.1 GPa [20]. So far, no studies on the mechanical behavior of a
whole fossil frustule under compressive load using a flat punch have been published. Such
experiments will provide an understanding of the fracture behavior of individual frustules
under compression. Only the study from Hamm et al. [30] using glass microneedles to load
and break three living species revealed that the force required to break the living diatom
is in the range from dozens to hundreds of µN depending on the diameter of diatoms.
Furthermore, one of the most critical points for the application of fossil frustules in MMCs
is to understand the exact intricate 3D morphologies of the frustules. SEM, also in combina-
tion with a focused ion beam (FIB), and AFM, were used to study the morphologies of the
diatom frustules [9,10,28,29,31,32]. However, these techniques cannot access the interior
structure nondestructively. To achieve the 3D morphology of the fossil frustules and to
correlate the structure to the mechanical properties, a combination of nondestructive 3D
imaging with in situ micromechanical tests is required.

In this study, the studied fossil frustules from diatomaceous earth belong to the genera
of Ellerbeckia and Melosira. All of them are centric diatoms with cylindrical shapes and
feature a diameter in the range from 40 µm to 80 µm. Nano-XCT is used to image these
frustules and to provide data to reconstruct their 3D structures. Furthermore, in situ
mechanical compression tests are combined with nano-XCT imaging to investigate the
maximum loading force for the whole fossil frustule and the fracture behavior of individual
fossil frustules. To obtain the nanostructure and the chemical composition of the fossil
frustules, thin lamellae were prepared by FIB and studied by TEM.

2. Materials and Methods
2.1. Morphology and Chemical Composition Study

Fossil diatom frustules were taken from diatomaceous earth (Perma-Guard Inc., North
Salt Lake, UT, USA, Batch No. 3/9/17305). This diatomaceous earth has a large frac-
tion of complete frustules. The particle density of the fossil frustules in diatomaceous
earth determined by the helium pycnometry technique is about 2.23 g/cm3. The bulk
density measured by the Hall flowmeter with an aperture of 2.5 mm in diameter is about
0.19 g/cm3. Complete frustules of Ellerbeckia and Melosira were selected for this study. For
nano-XCT (Xradia nano-XCT-100, photon energy = 8 keV, Xradia Inc., Pleasanton, CA, USA)
experiments, an intact frustule was selected and fixed on the tip of a sample holder. A gold
fiducial marker was carefully positioned on top of the frustule for alignment during the
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tomography and tomographic reconstruction. Individual images were acquired in Zernike
phase-contrast mode [33]. The detailed experimental setup of the nano-XCT tool was
described in [34]. All imaging was performed in a large field of view of 66.5 × 66.5 µm2

with 512 × 512 pixels per image. The complete tomographic data sets consist of 601 images,
collected over 180◦ (parallel beam geometry) with an exposure time of 230 s per image.
The images were aligned using a custom plugin in ImageJ [35] and subsequently recon-
structed using the Xradia Inc. (Pleasanton, CA, USA) commercial software package (Xradia
XMReconstructor).

For chemical composition analysis and nanostructure characterization of fossil Eller-
beckia and Melosira frustules, TEM lamellae were prepared using a Dual Beam SEM-FIB
system (NVision 40, Carl Zeiss AG, Oberkochen, Germany) and imaged using a scanning
TEM (Libra 200 MC Cs, Carl Zeiss AG, Oberkochen, Germany) at an accelerating voltage
of 200 kV. Element mapping of the lamellae was performed using energy-dispersive X-ray
spectroscopy (EDS) in the TEM.

2.2. Micromechanical Behavior Study

In situ micromechanical compression tests were performed inside the nano-XCT
system with an in-house-developed micromechanical test setup [36]. For the mechanical
testing, a single fossil frustule from genera of Ellerbeckia and Melosira was selected and
compressed between two flat surfaces (bottom: steel sample holder, top: diamond flat
punch) by stepwise increasing loads. The loading force was determined and a radiograph
with a 60 s exposure time was recorded at each step. Tomographies were acquired before
and after the compression test. The full tomography before the indentation test was used to
verify the integrity of the sample. The tomography data acquired after the indentation test
were to evaluate the 3D crack pattern. All tomographies of the samples from mechanical
tests consist of 401 images collected during 180◦ rotation with an exposure time of 120 s for
each image.

3. Results and Discussion
3.1. Morphology and Chemical Composition Study

Nano-XCT data of a fossil frustule from Ellerbeckia with a cylindrical shape and a di-
ameter of about 60 µm are shown in Figure 1. It is found from reconstructed 3D data of the
Ellerbeckia frustule that there are fultoportulae on the surface of the mantle wall, crossing
through the mantle wall and forming protrusions inside the frustule wall (Figure 1a,c,d
and Figure 2a). Light microscopy (LM) and SEM images show the morphology of the pro-
trusions on the surface wall (Figure S1a) and at the inside of the frustule wall (Figure S1b,c).
Furthermore, the 3D rendering of the frustule in girdle view (Figure 1f) shows a pseudosul-
cus (white arrow) at the rims of the two valve faces and a linking region of the epivalve
and hypovalve (orange arrow). By virtually unrolling the cylinder wall of Ellerbeckia
(Figure 2a), a flat view of the cylindrical wall shows the external openings of fultoportulae
(red arrow), the linking region of the valve faces (white arrow) and the region linking the
epivalve and hypovalve (orange arrow). With a higher magnification of the linking region
of the valve faces, interlocking series of ridges and grooves (black arrows) on the valve
are observed (Figure 2b). Applying fast Fourier transform (FFT) analysis on the unrolled
wall (red square area in Figure 2a), pores arranged in a periodic rhombus geometry with
around an 83◦ angle are revealed for this specific Ellerbeckia frustule (cylindrical diameter:
63 µm). However, the frustule with a cylindrical diameter of 60 µm shows an angle of 71◦

(Figure S2). These data demonstrate the wide variability of the structural parameters of the
frustules [32]. The average distance between two pores is about 0.6 µm, and the pore size
is about 0.1 µm in diameter.
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Figure 2. Data analysis of the Ellerbeckia mantle wall. (a) Part of the unfolded frustule wall, (b) 
magnified imaging of the morphology of the interlocking series of ridges and grooves (black ar-
rows) on the valve faces, (c) FFT analysis of pores on the frustule wall from the red square area in 
(a) and (d) reconstructed outer wall. 

Figure 1. Ellerbeckia frustule studied by nano-XCT. (a,b) Valve view of the frustule, (d,e) girdle view
of the frustule and (c,f) 3D rendering of Ellerbeckia in valve view and girdle view, respectively. Red
arrows: protrusions, white arrow: pseudosulcus, orange arrows: the region linking the epivalve
and hypovalve.
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Figure 2. Data analysis of the Ellerbeckia mantle wall. (a) Part of the unfolded frustule wall, (b) mag-
nified imaging of the morphology of the interlocking series of ridges and grooves (black arrows)
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reconstructed outer wall.

Nano-XCT images of a Melosira frustule with a cylindrical diameter of about 45 µm are
shown in Figure 3. Radial striae are found on the valve faces (Figure 3a, white arrow), and
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tube processes (Figure 3b, red arrows) are distributed through the mantle wall. Melosira in
girdle view (Figure 3c) shows the corresponding morphology of the two linked valve faces
(white arrow) and a linking region of the epivalve and hypovalve (orange arrow). Figure 3d
again shows the flat view of the unrolled cylindrical surface wall with distinguished striae
extending from the valve face to the mantle area (red arrows), the linking region of the
valve faces (white arrow) and the region to link the epivalve and hypovalve (orange arrow).
However, the pores here do not form a pattern as in the frustules of Ellerbeckia (Figure 2 and
Figure S3). Exploring from the surface to the interior of the unrolled wall, a few protrusions
(red arrows in Figure 3e) at the inside of the frustule wall are visible.
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view of the frustule, unfolded cylindrical wall of the Melosira frustule from the surface (d) to the
interior (e).

The study of Crawford and Sims [37] shows the species from the genus of Ellerbeckia
are different from the species from the genus of Melosira. Although the species from
the genus of Ellerbeckia are still under the name of genus of Melosira in the Algaebase
database [38–40], the morphological features derived from Figures 1–3 specifically show
that Ellerbeckia is a different genus than Melosira. For example, between the two frustules
of Ellerbeckia, there is a pronounced pseudosulcus (Figure 1f) and an interlocking series of
ridges and grooves on the outer rim of the valve faces (Figure 2b), while for the Melosira
frustules, there are special structures to link the two valve faces together (Figure 3c) with
no pseudosulcus. The mantle wall of Ellerbeckia is evenly thick with external openings
of fultoportulae and sharp protrusions inside (red arrows in Figure 1), while the mantle
wall of Melosira is unevenly thick with blunt and fewer protrusions at the inside wall (red
arrows in Figure 3b,e). Although there are different morphologies, the images of both the
Ellerbeckia and Melosira frustules show typical heavily silicified frustules with thick frustule
walls. Moreover, both genera form a cylindrical shape with the valve faces linking together
to form chains (Figures 1e,f and 3c, Figures S1a and S5a) [37–41]. Tube processes are present
in the mantle wall of these frustules. (Figures 1a,c and 3b), and they form protrusions at
the inside wall (Figures 1d and 3e). However, due to the limited resolution, no information
about the nanostructure inside the biosilica is provided by nano-XCT imaging. Therefore,
thin lamellae of three different fossil frustules were prepared by FIB and imaged by TEM:
(i) valvocopula, (ii) linking region of the two valve faces and (iii) the center of the valve
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face. Additionally, EDS mapping was performed to analyze the chemical composition of
these fossil frustules.

Figure 4a shows the TEM images of the valvocopula of Ellerbeckia. The substructure of
this region is shown in Figure 4b. In that area, nanopores with a diameter of about 15 nm
are found (Figure 4b). EDX (Figure 4c) shows that the frustule in this region contains only
O and Si, i.e., SiO2. (Figure S4c). TEM imaging of Melosira in the linking region of the two
valve faces shows tube processes under the radial striae of the valve surface (Figure 4d, red
arrows) and a special structure (Figure 4d, black arrows) to link the two valve faces, also
shown in Figure 3c (white arrow) by nano-XCT imaging. Nanopores with a diameter of
about 15 nm are also found in this area (Figure 4e, green arrows). Composition analysis of
the red area in Figure 4d shows again that the frustule material of the investigated sample
contains pure Si and O (Figure 4f). The valve face center of Ellerbeckia also has nanopores
with a diameter of about 15 nm and has the same chemical composition (Figure S6). The
EDS study in the TEM shows only Si and O without other elements (or beyond the detection
limit of about 0.1 wt. %) in fossil frustules, which proves that the source is very pure, similar
to the frustules from the cultured diatoms [20,29].
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Figure 4. TEM imaging and chemical composition analysis of Ellerbeckia (a–c) in the area of the
valvocopula and Melosira (d–f) in the linking region of the two valve faces. (a) Image of the region of
the valvocopula, (b) image of the green area in (a) at a higher magnification, (c) spectrum of elements
in the orange area of (a), (d) image of the linking region of the two valve faces, (e) high-magnification
image of the red area in (d,f) area spectrum of elements in the red area. Green arrows: nanopores;
red arrows: tube processes; black arrows: a special structure to link the two valve faces. Pt and Ga
content arises from the FIB preparation, and Cu is from the sample holder.

3.2. Uniaxial Static Compression Test of Fossil Frustules

In situ uniaxial compression tests (Figure 5) were performed by a nanomechanical
test device integrated into nano-XCT. More details of the setup are provided in [36,42].
As shown in Figure 5a, the whole compression setup allows acquiring radiographs from
a large tilt range for limited-angle tomography. The compression setup consists of a
piezomechanical actuator, a force gauge and two anvils. In this study, a diamond flat punch
was used as the upper anvil.
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Figure 5. In situ compression test in nano-XCT. (a) Schematic diagram of the compression loading on
the frustule inside the nano-XCT system and (b) photo of the compression loading sample stage, red
arrow: pin with sample.

The compression tests were carried out on either the whole valve face or on the
copulae area to determine the maximal loading force (Fmax) and to understand the crack
initiation of these individual fossil frustules (Figure 6, Table 1). Figure 6(1), (2) and (4)
represent the compression test on the valve face for Ellerbeckia frustules and the Melosira
frustule, with cylindrical diameters of 80 µm, 69.5 µm and 46 µm, respectively. Figure 6a
of these frustules shows the samples under load before any cracks happen. Figure 6b,c
of the Ellerbeckia frustule Figure 6(1) are two views from perpendicular directions of the
broken frustule. The crack of these three frustules started from the linking region of the
epivalve and hypovalve (Figure 6b, white arrows), and their maximum loading forces
under compression are 82.2 mN, 45.2 mN and 20.6 mN, respectively. For the Ellerbeckia
frustule Figure 6(2), a part of the hypovalve (Figure 6(2)b, red arrow) started to break
right after the crack initiation. It then cracked further, and the whole hypovalve shattered
(Figure 6(2)c). For the Melosira frustule Figure 6(4), a total collapse (Figure 6(4)c, red arrows)
took place at the initial crack region under Fmax.

Table 1. Structure parameters and maximal loading force (Fmax) of the frustules in mechanical tests.

Sample Fmax
Cylindrical

Diameter (CD)
Valve Thickness

(VFT)
Mantle Wall

Thickness (MT)
Copulae

Thickness (CT)

mN µm µm µm µm

Frustule 1 (Ellerbeckia) 82.2 ± 0.5 80.0 ± 0.9 2.43 ± 0.1 3.5 ± 0.2 0.81 ± 0.07
Frustule 2 (Ellerbeckia) 45.2 ± 0.3 69.5 ± 0.7 1.99 ± 0.07 2.9 ± 0.3 0.75 ± 0.03
Frustule 3 (Ellerbeckia) 44.1 ± 0.2 62.5 ± 0.7 1.71 ± 0.08 2.6 ± 0.2 0.67 ± 0.02
Frustule 4 (Melosira) 20.6 ± 0.5 46.0 ± 0.4 1.6 ± 0.3 1.16 ± 0.09 * 0.78 ± 0.08

* Because of the uneven mantle wall of the Melosira, the data are the average value from the linking region of the epivalve and hypovalve
on the mantle wall (orange arrow in Figure 3c).

Figure 6(3) shows the compression test on the copulae area of an Ellerbeckia frustule
with a cylindrical diameter of 62.5 µm. Here, the frustule started to crack at the right side in
the valve face (Figure 6b, white arrows), and a small collapse took place here (Figure 6(3)d).
As force increased, a large crack was observed (Figure 6(3)b, red arrow), and then the whole
diatom shattered from the valve faces of both sides (Figure 6(3)c, orange arrows) under the
maximum loading force of 44.1 mN (Figure 6(3)d, Table 1).
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Figure 6. In situ mechanical compression tests on studying the mechanical behavior of the four different fossil frustules
(1–4). (a–c) Radiographs recorded during the mechanical test and (d) corresponding load-displacement curves. The enlarged
data points in (d) correspond to the radiographs in (a–c). Dashed lines are a guide for the eye.

The results from compression tests (Figures 6 and 7b) show that the maximal force
is related to the cylindrical diameter of the frustules. For these specific fossil frustules
from genera of Ellerbeckia and Melosira, Fmax decreases as the structure geometry of these
frustules decreases (Table 1, Figure 7b). Hamm et al. [30] revealed that loading force and
size were inversely related not only within the same species of Thalassiosira punctigera
but also between different genera (Coscinodiscus and Fragilariopsis). However, the reason
behind the loading force–size tendency was not clearly stated in that study. In order
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to understand why the maximal loading force decreases as the cylindrical diameter of
the fossil frustules decreases, the structural parameters of valve thickness, mantle wall
thickness and copulae thickness from 3D reconstruction data were measured and compared
(Figure 7a, Tables 1 and 2). The absolute values of valve face thickness and mantle wall
thickness from both genera decrease as the cylindrical diameter decreases. However, the
ratio of valve face thickness (VFT), mantle thickness (MT) and copulae thickness (CT) to
cylindrical diameter (CD) for Ellerbeckia remains constant despite the different diameters.
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positions of crack initiation. (b) Graph of the tendency of the maximum loading force on the
cylindrical diameter. Blue points: Ellerbeckia, cyan point: Melosira.

Table 2. Comparison of the different structure parameters with the cylindrical diameter.

Sample VFT/CD MT/CD CT/CD

Frustule 1 (Ellerbeckia) 0.030 0.044 0.010
Frustule 2 (Ellerbeckia) 0.029 0.041 0.011
Frustule 3 (Ellerbeckia) 0.027 0.041 0.011
Frustule 4 (Melosira) 0.035 0.025 0.017

The radiographs recorded during the compression tests (Figure 6) show that the crack
initiates from either the linking region of the epivalve and hypovalve or from the valve face.
Average values for the ratios of VFT, MT and CT to CD from Ellerbeckia are 0.029 ± 0.002,
0.042 ± 0.002, and 0.010 ± 0.001, respectively. Among these ratios, MT/CD is larger than
VFT/CD and CT/CD, i.e., the weakest points for Ellerbeckia are the valve face and copulae.
Figure 6(1–3) shows that the crack starts from the valve face or the linking region of the
epivalve and hypovalve, i.e., the copulae. For Melosira (i.e., Frustule 4) with a similar
cylindrical architecture compared to Ellerbeckia, the absolute values of valve face thickness
and mantle wall thickness are smaller (Tables 1 and 2). Moreover, VFT/CD increases from
0.029 to 0.035, CT/CD increases from 0.010 to 0.017, while the MT/CD ratio decreases from
0.042 to 0.025. That means, the weak point for Melosira is the region of the mantle wall, i.e.,
the linking region of the epivalve and hypovalve (Figure 3c, orange arrow). Figure 6(4)b
shows that the crack starts exactly from that point (white arrow).

The observed maximum loading force in this study is hundreds of times higher than
in the study of Hamm et al. [30]. The reason could be that Ellerbeckia and Melosira are
heavily silicified frustules with valve faces linking together to form cylindrical chains, so
the 3D morphology is different from Thalassiosira. Thalassiosira is not heavily silicified and
does not form a cylindrical chain [43,44]. Additionally, the compression testing here is
on fossil frustules, while Hamm et al. performed compression tests on living diatoms.
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Furthermore, the analysis of 3D reconstruction data of Thalassiosira lacustris in Figure S7
and Table S1, the same genus as Thalassiosira punctigera in the study of Hamm et al., reveals
the absolute values of valve thickness, mantle wall thickness and copulae thickness do not
increase as the valve diameter increases. These values remain almost constant as the valve
diameter decreases.

4. Conclusions

The 3D morphology of fossils, centric frustules (genera: Ellerbeckia and Melosira), was
examined using nano-XCT. It was verified that Ellerbeckia is a different genus than Melosira.
The studied Ellerbeckia frustules lack striae on the valve faces and feature a pseudosulcus
at the rim between two frustules. The mantle wall is evenly thick with pores in rhombic
arrangement on the frustule wall. For Melosira frustules, the valve faces are linked by
special substructures. The mantle wall is unevenly thick with the thinnest structure on
the linking region of the epivalve and hypovalve. Additionally, there are fewer blunt
protrusions inside the mantle wall of the Melosira frustules. However, the 3D morphology
of both Ellerbeckia and Melosira frustules is cylindrical in shape, and the diatom cells are
connected to each other by their valve faces. EDS studies confirm that fossil frustules of
both genera contain Si and O only, with no other elements with a concentration above the
detection limit of 0.1 wt. %. TEM imaging reveals nanopores with a size of about 15 nm
distributed almost everywhere inside the biosilica.

In situ micromechanical experiments with uniaxial loading were carried out within a
nano-XCT tool to determine the mechanical properties of the individual fossil frustule. For
these heavily silicified fossil frustules, with similar cylindrical architecture and chemical
composition, the maximum loading force is related to the dimension of the fossil frustule.
Analysis of the morphological parameters shows that the absolute values of VFT, MT and
CT decrease as the cylindrical diameter decreases for both genera, except for the CT of
Melosira. The average values of the ratios VFT/CD, CT/CD and MT/CD and the results
from mechanical compression tests indicate the valve face, as well as the linking region of
the epivalve and hypovalve as weak spots. Together with the compression force data, a
relationship between the maximum applicable force inducing crack initiation and the size
of the fossil frustules is provided. This information might enlighten the studies when using
the fossil frustules for functional materials design, e.g., as a filler material in lightweight
metal matrix composites.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/nano11061615/s1, Figure S1: Light microscopy (LM) and SEM imaging of the Ellerbeckia
frustules, Figure S2: Data analysis of the Ellerbeckia mantle wall with a cylindrical diameter of 60 µm,
Figure S3: FFT analysis of the unrolled surface wall of the Melosira frustule, Figure S4: Chemical
composition analysis of Ellerbeckia in the area of the valvocopula, Figure S5: LM and SEM imaging
of the Melosira frustule, Figure S6: TEM imaging and EDX of Ellerbeckia in the center of the intaglio
valve face, Figure S7: Nano-XCT images of Thalassiosira lacustris, Table S1: Structure parameters of
the frustules from Thalassiosira lacustris.
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