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Abstract 

Spinal cord injury (SCI) is a devastating neurological state causing physical disability, psychological stress and financial 
burden. SCI global rate is estimated between 250,000 and 500,000 individuals every year, of which 60% of victims 
are young, healthy males between 15 and 35 years. A variety of pathological conditions such as neuroinflammation, 
mitochondrial dysfunction, apoptosis, glial scar formation, blood-spinal cord barrier disruption, and angiogenesis 
disruption occur after SCI leading to a limitation in recovery. MicroRNAs (miRs) are endogenous and non-coding RNAs 
consisting of 22 nucleotides that regulate 60% of all human genes and involve several normal physiological processes 
and pathological conditions. miR-21 is among the most highly expressed miRs and its expression has been shown to 
increase one day after SCI and this elevation is sustained up to 28 days after injury. Overexpression of miR-21 exerts 
many protective effects against SCI by inhibiting neuroinflammation, improving blood-spinal cord barrier function, 
regulating angiogenesis, and controlling glial scar formation. It also exhibits anti-apoptotic effects in SCI by down-
regulating the expression of PTEN, Spry2, and PDCD4. This review provides a novel therapeutic perspective for miR-21 
in SCI.
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Background
Spinal cord injury (SCI) is a destructive neurological 
state causing dysfunction in the primary motor, sensory 
and autonomic neural system affecting prevalently (60%) 
15–35  years old healthy males (van Den Hauwe et  al. 
2020). It is estimated to involve 250,000–500,000 indi-
viduals every year worldwide (Anjum et  al. 2020), and 
the costs for each patient can arrive at 3 million dollars 
in a whole lifetime perspective (Katoh et  al. 2019). So 
far, there is no treatment available due to SCI complex 

physiopathology. A better understanding of SCI at the 
molecular level can reveal recovery mechanisms and dis-
cover some biological therapeutics potentially promising 
to confront SCI.

MicroRNAs (miRs) are small nucleic acids involved 
in post-transcriptional regulatory mechanisms (Ras-
tegar-Moghaddam et  al. 2022a). These biomarkers are 
expressed in all body tissues with a higher level in the 
central nervous system (CNS) (Rastegar-Moghaddam 
et al. 2022b). Around 70% of known miRs are expressed 
in CNS (Kou et al. 2020). miRs play critical roles in sev-
eral cellular and molecular mechanisms, including angi-
ogenesis, energy-providing, neuronal differentiation, 
maturation, and survival (Rastegar-Moghaddam et  al. 
2022b; Tonacci et al. 2019).

miR-21 is one of the most expressed miRs. It contains 
22 nucleotides encoded by a sequence located within 
the Vacuole Membrane Protein-1 (VMP-1) gene on 
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chromosome 17 (Jenike and Halushka 2021; Surina et al. 
2021). It is expressed widely in various body tissues, 
including the spinal cord and its expression is altered fol-
lowing SCI (Liu et  al. 2018; Chung et  al. 2020). Several 
studies demonstrated that miR-21 has many protective 
roles against SCI by decreasing apoptosis and increasing 
neuron survival and can be considered a potential potent 
therapeutics (Kang et al. 2019; Zhang et al. 2019; Lv et al. 
2020; Wang et al. 2021).

Pathophysiology of SCI
Following SCI, neurons and glial cells die due to various 
factors, including ionic imbalance and glutamate exci-
totoxicity, proinflammatory cytokines release, free radi-
cal production, ATP depletion, and apoptosis (Alizadeh 
et al. 2019; Samandari et al. 2019; Anjum et al. 2020). A 
hallmark of SCI is vascular and angiogenesis disruption, 
resulting in reduced oxygen delivery and mitochondrial 
dysfunction. Subsequently, ATP depletion, calcium over-
load, excitotoxicity, and oxidative stress exacerbate injury 
(Vasiliadis et  al. 2014; Scholpa et  al. 2017; Anjum et  al. 
2020). Neurons depend highly on ATP for ion exchange 
and maintaining electrochemical and energy homeosta-
sis. Because energy demand in neurons is several times 
greater than in other cells, they are more vulnerable 
to ATP depletion (Mohammadipour et  al. 2020; Mal-
vandi et al. 2021). Inflammation is another phenomenon 
associated with SCI, which increases neural damage 
by causing edema, apoptosis, and reactive gliosis (Rong 
et  al. 2019; Anjum et  al. 2020). The local expression of 
interleukin (IL)-1, IL-6, IL-8, and tumor necrosis factor 
(TNF)-α increases following SCI (Rong et al. 2019; Slota 
and Booth 2019; Lv et al. 2020). In addition, the augment 
in the expression of apoptotic proteins such as Bax, cas-
pase-3, and caspase-9, phosphatase and tensin homolog 

(PTEN), and programmed cell death protein 4 (PDCD4) 
increase neuronal death (Kang et  al. 2019; Hausott and 
Klimaschewski 2019).

Anti‑neuroinflammatory effects
Although miR-21 has some inflammatory functions, it 
appears as predominantly anti-inflammatory miR in the 
nervous system and could effectively modulate neuroin-
flammation (Gaudet et  al. 2018; Slota and Booth 2019). 
Indeed, suppression of miR-21 promotes IL-1β, IL-6, 
TNF-α (Table 1), and receptor activator of nuclear factor 
kappa-Β ligand (RANKL), leading to severe inflammation 
(Zhou et  al. 2018). Conversely, miR-21 declines inflam-
matory factors such as IL-1β, IL-6, IL-8, TNF-α, and 
endothelial nitric oxide synthase (eNOS), and it enhances 
the anti-inflammatory cytokine IL-10 (Slota and Booth 
2019; Lv et al. 2020).

An experiment executed in a rat model of SCI showed 
that miR-21 overexpression could reduce the expres-
sion of IL-1β, IL-6, IL-8, and TNF-α (Lv et al. 2020). In 
the neonatal rat ischemia model, miR-21 showed repres-
sor activity on proinflammatory C–C motif chemokine 
ligand 3 (CCL3), favoring neuroprotection (Liu et  al. 
2020). CCL3 and its receptors are induced after SCI and 
contribute to progressive tissue damage and functional 
impairment during secondary injury (Pelisch et al. 2020). 
CCL3 also activates the nuclear factor kappa B (NF-κB) 
signaling pathway (Fig. 1), which is a hallmark of inflam-
mation (Mohammadipour et al. 2021). miR-21 negatively 
regulates CCL3, repressing -in turn- IKKα/β and p65 
phosphorylation, disrupting the NF-κB signaling pathway 
(Liu et  al. 2020). miR-21 also suppresses different tar-
get components of the toll-like receptor (TLR)/MyD88/
NF-κB and JAK-STAT pathways (Slota and Booth 2019).

Table 1  The biological effects and main related mechanisms of miR-21

Biological effects Main mechanisms References

Anti-inflammation • Reduces IL-1β, IL-6, IL-8, TNF-α, eNOS
• Downregulates CCL3

Lv et al. (2020)
Liu et al. (2020)

Anti-apoptotic • Reduces Bax/Bcl-2, and Caspase-3 and Caspase-9, and PTEN protein expressions
• Reduces PDCD4

Hu et.al. (2013)
Zhang et al. (2019)

Anti-glial scar formation • Modulates astrocytes’ secretion, proliferation, and apoptosis
• Modulates PI3K/Akt/mTOR
• Reduces astrocytes hypertrophy in the SCI

Liu et al. (2018)
Liu et al. (2018)
Bhalala et al. (2012)

Angiogenesis modulation • Inhibits TIMP3 and promotes MMP2 and MMP9
• Promotes expression of Ang-1, Tie-2, and VEGF
•Increases MMP-13 and p-ERK1/2
• Promotes the survival, migration and tube formation of endothelial cells

Hu et al. (2016)
Ge et al. (2014)
Ma et al. (2020)
Hu et al. (2016)

Neuroregeneration modulation • Promotes neural differentiation of NSPCs
• Enhances the expression of cyclin D1 in NSPCs
• Activates AKT/GSK-3β signaling Pathway
• Modulates Wnt/β-catenin signaling pathway

Gao et al. (2016)
Song et al. (2021)
Gao et al. (2016)
Zhang et al. (2018)
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Therefore, miR-21 overexpression seems to play a fun-
damental role in decreasing secondary injury after SCI by 
reducing the expression of inflammatory factors and sup-
pressing inflammation.

Glial scar formation
miR-21 has a protective effect on SCI by controlling glial 
scar formation. Glial scar is believed to play a dual role 
in the pathological process of SCI (Yang et  al. 2020). 
Although glial scar has some protective roles, they also 
have many detrimental effects after SCI. Glial scar is the 
most crucial inhibitor factor to neuroregeneration after 
SCI (Leal-Filho et  al. 2011) and is a significant limita-
tion in improving outcomes (Bhalala et al. 2012). In the 
uninjured spinal cord, miR-21 expression is neither 
silenced nor overexpressed in astrocytes, which indi-
cates that this miR is not essential for maintaining astro-
cyte homeostasis. However, its expression rate increases 
sharply after SCI and reaches its maximum five weeks 
after injury (Bhalala et al. 2012). miR-21 has been found 
to act in astrocytes to control their functions and regu-
late the astrocytic size and glial scar formation after SCI 
(Table  1), interacting with bone morphogenetic pro-
tein (BMP) and JAK-STAT signaling pathways (Bhalala 
et  al. 2012). This miR modulates astrocytes’ secretion, 

proliferation, and apoptosis (Fig. 1) to promote recovery 
through transforming growth factor (TGF)-β-mediated 
targeting of the phosphoinositide-3-kinase (PI3K)/Akt/
mammalian target of rapamycin (mTOR) pathway (Liu 
et al. 2018). Overexpression of miR-21 reduces astrocyte 
hypertrophy in the traumatic SCI, whereas conversely, 
suppression of this miR induces astrocyte hypertrophy 
(Bhalala et al. 2012; Su et al. 2019).

Angiogenesis
Immediately after SCI, damage to spinal cord microvas-
cular endothelial cells (SCMECs) occurs and not only 
disrupts the blood-spinal cord barrier (BSCB) but also 
results in disrupted angiogenesis and reduced blood sup-
ply (Zhong et  al. 2020; Jin et  al. 2021). Angiogenesis is 
necessary for axonal regeneration by facilitating tissue 
remodeling and survival. Although due to endogenous 
angiogenesis, blood vessel density transiently increases 
within two weeks after SCI but it is insufficient (Yao 
et  al. 2021). Vascular endothelial growth factor (VEGF) 
and metalloproteinases (MMPs), especially MMP-2, are 
among the pro-angiogenic mediators and play funda-
mental roles in preserving vascular integrity, regulating 
basal muscle capillarization, and microvascular remod-
eling (Vasiliadis et al. 2014).

Fig. 1  miR-21 global molecular mechanism of action leading to functional effects on neural cells’ status and function. ⊥ Represents 
inhibition, → shows induction/promotion of activity
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miR-21 is a potential pro-angiogenic factor and it 
is reported that decreased level of this miR inhib-
its angiogenesis in a rat model of SCI (Hu et  al. 2016). 
Overexpression of miR-21 promotes the expression of 
angiogenesis-related molecules, including angiopoietin-1 
(Ang-1), Tie-2 (receptor of Ang-1), and vascular endothe-
lial growth factor (VEGF) (Fig.  1) in the injured neural 
tissues (Ge et  al. 2014). In addition, this miR promotes 
angiogenesis by increasing the expression of MMP-13 
and p-ERK1/2 (Ma et al. 2020). Overexpression of miR-
21 also promotes the survival, migration and tube forma-
tion of endothelial cells by inhibiting tissue inhibitor of 
metalloproteinase-3 (TIMP3) expression and promoting 
MMP2 and MMP9 expression (Hu et al. 2016) (Table 1).

Neuroregeneration
Neural stem/progenitor cells (NSPCs) are essential for 
nerve regeneration after SCI (Wang et  al. 2018). The 
main issue related to NSPCs is their poor proliferation 
rate and low differentiation efficiency into neurons, and 
if their proliferation and differentiation are promoted, 
it can have beneficial effects on the treatment of SCI. 
Besides endogenous NSPCs, the therapeutic effect of 
stem cell transplantation in SCI has been considered in 
recent studies, and it has been shown that miR-21-con-
taining stem cell-derived exosomes promote the pro-
tective effects of stem cell transplantation against SCI, 
whereas miR-21 deficiency in stem cells did not exert 
such benefits (Ji et al. 2019). miR-21 overexpression has 
been found to promote neural differentiation of neural 
stem/precursor cells (NSPCs) (Gao et al. 2016). Overex-
pression of this miR enhances the expression of cyclin D1 
in NSPCs (Fig. 1), a protein that has a role in the differen-
tiation and survival of NSPCs (Song et al. 2021). A previ-
ous study showed that cyclin D1 expression is enhanced 
by Notch1, which promotes spinal NSPCs proliferation 
(Wang et al. 2018). Overexpression of this miR also posi-
tively regulates proliferation and neural differentiation of 
NSPCs by activating protein kinase B (AKT) and glyco-
gen synthase kinase-3 beta (GSK-3β) signaling pathways.

Conversely, knocking down miR-21 reduces neural dif-
ferentiation in NSPCs by preventing cyclin D1 expression 
and blocking AKT/GSK-3β (Table  1) (Gao et  al. 2016). 
In addition to mentioned pathways, the Wnt/β-catenin 
pathway has exhibited an important role in regulating 
NSPCs fate and activation of this pathway has been dem-
onstrated to promote NSPCs proliferation and differen-
tiation (Zhang et al. 2018). It has been found that miR-21 
can enhance the proliferation of neural stem cells and 
their differentiation into neurons and reduce stem cells’ 
differentiation into astrocytes via the Wnt/β-catenin 
signaling pathway (Zhang et al. 2018).

The exercise and miR‑21 after SCI
Exercise can be considered a non-invasive therapy for 
SCI due to its benefits for stabilizing rhythmic firing pat-
terns of spinal motoneurons, maintaining the muscle 
mass of paralyzed limbs (Ning et  al. 2014) and possibly 
bone mass (Sutor et al.2022) to improve functional recov-
ery. Several studies have shown the beneficial effects of 
physical activity on SCI (Vasiliadis et al. 2014; Ying et al. 
2021; Nash et al. 2022). Physical activity after SCI reduces 
inflammation (Donia et  al. 2019), neuronal and glial 
apoptosis (Jung et  al. 2014), and increases angiogenesis 
(Vasiliadis et  al. 2014) and cell survival (Li et  al. 2020), 
leading to improved recovery. Short-time physical activ-
ity also led to a significant increase in miR-21 expres-
sion, at the spinal cord level, after SCI (Ning et al. 2014). 
Li et al. recently showed that exercise after SCI increases 
miR-21 expression and decreases PDCD4 levels, lead-
ing to reduced apoptotic cell number (Li et  al. 2020). 
Since miR-21 reduces inflammation and apoptosis and 
increases cell survival and angiogenesis after SCI, exer-
cise can improve recovery by overexpressing this miR.

Exercising, regardless of the type, enhances the expres-
sion, and therefore the circulating levels, of miR-21 
(Horak et  al. 2018) and particularly the fraction associ-
ated with extracellular vesicles (Siqueira et  al. 2021). 
However, there is little knowledge about the effect of 
exercise on the expression of this miR in the nervous 
system. There are reports about the exercise-induced 
expression of miR-21 in the endothelial compartment 
with an intensity- (Wahl et al. 2016) and volume-depend-
ent manner (Kilian et al. 2016).

Exercise after SCI alters gene expression leading to 
increased spinal cord plasticity and recovery of spinal 
reflexes (Mendell et al. 2001; Ying et al. 2005; Côté et al. 
2011), and passive hindlimb exercise after SCI was shown 
to attenuate the SCI-induced increase in miR-199a-3p, a 
negative regulator of miR-21, with concurrent upregula-
tion of miR-21 (Liu et al. 2012). The dynamic equilibrium 
between miR-21 and miR-199a-3p is responsible for the 
regulation of mTOR and PTEN  (Hu et  al. 2013), which 
in turn has been shown to drive axon growth in vitro and 
in  vivo (Kar et  al. 2021). While the literature is poor in 
this field, there are reports about the exercise-depend-
ent miR-21-related effects on traumatic brain injury 
(TBI). As miR-21 is involved in the signaling pathways of 
inflammation, neuronal apoptosis, reactive gliosis, dis-
ruption of the blood–brain barrier, and angiogenesis in 
TBI (i.e., it is considered a marker and therapeutic target 
in TBI (Martinez and Pepolow 2017)), its induction by 
exercise, in the nervous system, can improve the recov-
ery process (Ji et  al. 2018). Further, in mice models of 
TBI, spontaneous wheel running enhanced hippocampal 
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expression of miR-21 is associated with improved recov-
ery (Bao et al. 2014).

Further, miR-21 is expressed by the skeletal muscle 
during exercise (D’Souza et  al. 2018). Muscle-derived 
miR-21 may act at the neuromuscular plaque, exerting 
effects in motoneurons and backward at the spinal cord 
level.

Conclusions and future perspectives
Paralleling the evidence can reveal the protective poten-
tial for miR-21 against the burden of SCI through 
suppressing the inflammatory milieu in neural cells, 
apoptosis inhibition, improving angiogenesis, and syn-
apsis protection (Fig.  1). It seems that miR-21 activates 
in response to the injury but declined in the following. 
The discovery of regulatory elements effective on miR-21 
seems crucial and requires more effort.

SCI usually occurs accidentally, and there is an acute 
trauma period, potentially a crucial time to manage the 
pathology in a better condition. Current understanding 
showed favorable effects of miR-21 overexpression in a 
preclinical setting. Considering recent successful RNA-
based therapeutics worldwide, it is worth exploring clini-
cally. In this context, RNA-containing particles can be 
delivered using a direct administration approach.

The role of miR-21 in axon regeneration is unknown 
and should be more explicit to be helpful for a (pre)
clinical investigation; however, the use of miR-21 as a 
neuroprotective along with other factors is suggested, 
for instance, inside a nanostructured scaffold can be 
mounted on the injury site-during the acute phase- to 
cure the consequences of the incident.

Notably, exercise, a therapeutic strategy commonly 
applied in the rehabilitation path of SCI patients, affects 
miR-21 expression at the nervous system levels. There-
fore, it would be possible to enhance this effect by opti-
mizing the rehabilitation program.

Last but not least, miR-21 is a crucial regulator of 
inflammatory conditions favoring metabolic resolution of 
the inflammatory milieu in the neural context. However, 
the effector target(s) and the microenvironment where 
miR-21 will be involved can revert the goal. The preclini-
cal studies addressing efficacy and safety will essentially 
answer this doubt.
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