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ABSTRACT The distribution of nicotinamide adenine dinucleotide (NAD) glycohydrolase in rat 
liver was investigated by subcellular fractionation and by isolation of hepatocytes and sinus- 
oidal cells. The behavior of NAD glycohydrolase in subcellular fractionation was peculiar 
because, although the enzyme was mainly microsomal, plasma membrane preparations 
contained distinctly more NAD glycohydrolase than could be accounted for by their content 
in elements derived from the endoplasmic reticulum or the Golgi complex identified by 
glucose-6-phosphatase and galactosyltransferase, respectively. When microsomal and plas- 
malemmal preparations were brought to equilibrium in a linear-density gradient, NAD glyco- 
hydrolase differed from these enzymes and behaved like 5'-nucleotidase and alkaline phos- 
phodiesterase I. NAD glycohydrolase was markedly displaced towards higher densities after 
treatment with digitonin. This behavior in density-gradient centrifugation strongly suggests 
that NAD glycohydrolase is an exclusive enzyme of the plasma membrane. NAD glycohydro- 
lase differed clearly from other plasmalemmal enzymes when the liver was fractionated into 
hepatocytes and sinusoidal cells; its specific activity was considerably greater in sinusoidal cell 
than in hepatocyte preparations. Further subfractionation of sinusoidal cell preparations into 
endothelial and Kupffer cells by counterflow elutriation showed that NAD glycohydrolase is 
more active in Kupffer cells. We estimate that the specific activity of NAD glycohydrolase 
activity is at least 65-fold higher at the periphery of Kupffer cells than at the periphery of 
hepatocytes. As the enzyme shows no structure-linked latency and is an exclusive constituent 
of the plasma membranes, we conclude that it is an ectoenzyme that cannot lead to a rapid 
turnover of the cytosolic pyridine nucleotides. 

The nicotinamide adenine dinucleotide (NAD) ~ glycohydro- 
lase reaction appears barely consistent with the metabolic role 

Abbreviations used in this paper: NAD, nicotinamide adenine di- 
nucleotide; NPC~ and NPC2, nonparenchymal cells; PC, parenchymal 
cells. 

of the pyridine nucleotides, particulady in the liver. Indeed, 
the high activity ofNAD glycohydrolase in hepatocytes should 
result in a rapid turnover of the pyridine coenzymes through 
the cycle proposed by Gholson (26). The resynthesis of NAD 
from nicotinamide requires three ATP molecules and expends 
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five high-energy phosphate bonds. So far there has been no 
identification of any cellular function that could justify the 
large expenditure of energy due to the rapid turnover of an 
NAD pool. 

Early studies by Alivisatos and Denstedt (1) showed that 
NAD glycohydrolase is located on the surface of blood cells. 
In order to explain the rapid destruction of endogenous 
pyridine nucleotides after grinding cells, the authors suggested 
that NAD glycohydrolase is an ectoenzyme in all tissues. The 
observation that NAD glycohydrolase is fully active, or sen- 
sitive to nonpenetrating inhibitors in undisrupted Ehrlich 
ascite cells (14, 17), peritoneal macrophages (7), and splenic 
cells (7, 31, 32) is in agreement with this surmise. 

However, at present it is thought that the subcellular distri- 
bution of the enzyme in liver cells is more complex. It was 
first found that NAD glycohydrolase is concentrated in the 
microsome fraction of the rat, mouse, hamster, rabbit, and 
pigeon liver (27). This distribution was confirmed by Naka- 
zawa et al. (35), who showed that the nuclear polyADPribose 
synthesis contributes only weakly to the breakdown of NAD 
in rat liver homogenates, and concluded that the authentic 
NAD glycohydrolase is localized essentially in the endo- 
plasmic reticulum membrane. Subsequently, Bock et at. (19) 
found that various membrane preparations, including rough 
and smooth microsomes and heavy and light plasma mem- 
brane fractions, demonstrate a distinctly higher specific activ- 
ity of NAD glycohydrolase than do whole liver homogenates; 
they came to the conclusion that NAD glycohydrolase is 
present in the endoplasmic reticulum and the plasmalemmal 
membrane of the hepatocytes. 

This dual localization of NAD glycohydrolase in liver is 
puzzling in several respects. The presence of NAD glycohy- 
drolase in the endoplasmic reticulum implies a rapid turnover 
of the cytosolic pyridine coenzymes, as recalled above, if no 
compartmental hindrance to their breakdown is present. In 
addition, except for minor differences in carbohydrate com- 
position, comparative studies on the plasmalemmal and mi- 
crosomal NAD glycohydrolase from rat liver did not reveal 

noticeable differences in their biochemical (24) and immu- 
nological (18) properties, and in their half-lives (19). Finally, 
there is at present no clear-cut example of an enzyme being a 
constituent of the endoplasmic reticulum and of plasma mem- 
branes in liver cells (11, 47). 

In this work, we have examined the distribution of NAD 
glycohydrolase in the rat liver at the cellular and subcellular 
levels. Our results show that the enzyme is present only in the 
plasma membranes, although its behavior in differential cen- 
trifugation is very similar to that of authentic enzymes of the 
endoplasmic reticulum. In fact, the enzyme is largely associ- 
ated with sinusoidal cells, mainly Kupffer cells. Some of these 
results have been presented in abstract form (3, 10, 37). 

MATERIALS AND METHODS 

Products were obtained from the following sources: [carbonyl-t4C]nicotinamide 
adenine dinucleotide (NAD), ammonium salt (sp act 59 Ci/mol), The Radi- 
ochemical Centre Ltd. (Amersham, England); collagenase type I, Triton X-100, 
and chromatographic alumina, neutral type WN-3, grade I, Sigma Chemical 
Co. (St. Louis, Mo); pronase, B grade, Calbiochem-Behring Corp. (San Diego, 
CA); Metrizamide, Nyegaard and Co., A/S (Oslo, Norway); Biofluor, New 
England Nuclear (Boston, MA). 

5ubcellular fractionation of Rat Liver: Livers from fasted female 
rats of the Wistar strain were perfused through the portal vein (2) and homog- 
enized (4). Differential centrifugation of the homogenate gave the nuclear 
fraction and the cytoplasmic extract, which was further fractionated into large 
granules, microsomes, and final supernate (4). Mierosomes were subfraction- 
ated by isopycnic centrifugation in the E-40 rotor (9) through the sucrose 
gradient without previous treatment (13), or after treatment with digitonin (5). 
Plasma membranes were prepared by flotation of low-speed sediments through 
sucrose layers (38) and were analyzed by density equilibration in a gradient of 
sucrose directly, or after treatment with digltonin (47). 

Isolation of Hepatocytes and 5inusoidal Cells: Three cell 
preparations, designated parenchymak nonparenchymal,, and non- 
parenchymal2 (PC, NPC,, and NPC2), were obtained as described by van Berkel 
(42) using male Wistar rats. This method (Fig. 1) combines the procedures 
developed by Berry and Friend (15), and by Mills and Zucker-Franklin (30). to 
isolate hepatocytes and sinusoidal cells, respectively. In short, the liver was 
perfused at 37"C for 8 min with Hanks' balanced salt solution. A small lobe 
(-~70 mg) was tied off and removed to determine the specific activities of 
enzymes in the whole tissue. Perfusion was then continued for 10 min. using 
the same solution supplemented with 0.05% collagenase. The liver was excised. 
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F~GURE 1 Flow diagram for the  isolation of PC, NPC,, and NPC2 ce[I preparations.  Adapted  from van Berkel (42). Centrifugations 
were  carried out  for 30 s at 50 g (a) or for 5 rain at 400 g (b). 
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cut into pieces, and incubated for 15 min at 37"C in Hanks' buffer with 0.05% 
collagenase. The cell suspension was filtered through nylon gauze. The filtrate 
was fractionated by differential pelleting giving the PC preparation enriched in 
hepatocytes (30 s at 50 g), the NPC~ preparation enriched in sinusoidal cells (5 
rain at 400 g), and residues which were saved (filtrate residues) to establish the 
enzyme distributions quantitatively. The material on the filter was removed 
and incubated for 1 h at 37°C in Hanks' balanced salt solution which contained 
0.25% pronase. Sinusoidal cells (NPC, preparation) were recovered by centrif- 
ugation (5 rain at 400 g) and washing; the supernates were saved for analysis 
(NPC, residues). 

In other experiments, sinusoidal cells were isolated and subfractionated by 
counterflow elutriation (Fig. 2), as described in detail by Nagelkerke et al. (34). 
To understand our results it is worth recalling that: (a) Kupffer and endothelial 
cells are isolated without incubation with pronase; (b) the yield in Kupffer cells 
in the filtrate is improved by extensive washing of the material retained on the 
filter: (c) cross-contamination by hepatocytes and large vesicles derived from 
hepatocytes (blebs) is minimized by counterflow etutriation and flotation in a 
Metrizamide solution. The second centrifugal elutriation step was carried out 
at 2,500 rpm, yielding three preparations (designated I, II, and III) at the flow 
speeds indicated in the legend of Fig. 2. 

Rat hepatocytes were also isolated and cultured in plastic Petri dishes coated 
with collagen, by a technique that combines the procedure of Seglen (39, 40) 
and of Wanson et al. (46), as described by Limet et al. (28). 

Before the biochemical assays, the various cell preparations were disrupted 
with a Dounce-type homogenizer (20 strokes with the tight-fitting pestle) in a 
medium consisting of 0.25 M sucrose, 3 mM imidazole-HCl, pH 7.4, and of 
the reagents introduced with the supernatants (filtrate residues and NPC, 
residues). 

Biochemical Assays: NAD glycohydrolase was assayed in a final 
volume of 0.25 ml in the presence of 1.5 mM [carbonyl-~4C]nicotinamide 
adenine dinucleotide (45,000--60,000 clam), 1 mM EDTA, and 50 mM 4- 
morpholinoethanesulfonic acid-KOH buffer, pH 6.5. After incubation for 30 
rain at 37"C, the reaction was stopped by refrigeration in melting ice and 
addition of 0.5 ml of a cold solution made of 0.1 M NaHCOrNa2CO3 buffer 
at pH l0 and 2 mM nicotinamide. The mixtures were quickly passed over 2- 
cm columns of alumina packed in Pasteur pipettes. Test tubes and columns 
were immediately rinsed with 2.5 ml of the cold bicarbonate-carbonate-nicotin- 

amide solution. Eluates were recovered in scintillation vials and added with 20 
mt of Biofluor for counting. Blanks were run in the same conditions except 
that the substrate was added after the alkaline reagent. 

Protein was assayed according to Lowry et al. (29), or when high sensitivity 
was needed according to B6hlen et al. (20). In both cases, bovine serum albumin 
was used as a standard. Glucose-6-phosphatase, galactosyltransferase, alkaline 
phosphodiesterase I, cytochrome c oxidase, and 5'-nucleotidase were assayed 
manually under the conditions described earlier (12). When specified the 
activity of giucose-6-phosphatase was corrected for that of other phosphatases 
still active after incubation for 15 rain at pH 5 and 37"C (22). 

Light Microscopy of the Isolated Cell Fractions: Cytochemical 
staining for peroxidase was done according to Wisse et al. (48), by incubation 
at 37°C for 20 min in the presence of diaminobenzedine (0.05%) and H202 
(0.02%). 

Cells were also fixed in suspension with 2.5% glutaraldehyde in 0.1 M 
cacodylate buffer at pH 7.2, recovered as a pellicle by centrifugation (5 rain, 
10,000 g) on a cushion of human plasma high-speed supernate, postfixed with 
osmium tetroxide (2%), stained with uranylacetate, and embedded in EPOn. 
Thin sections were stained with toluidine blue for light microscopy. Stereolog- 
ical analysis of the photomicrographs was made with the multipurpose test 
system of Weibel et al. (45) to determine the volumetric fraction corresponding 
to various types of liver cells. Equidistance was 0.94 cm in the hexagonal lattice 
which consisted in 120 lines arranged in 15 rows. 

RESULTS 

Enzyme Kinetics 
Factors that influence the NAD glycohydrolase reaction 

were examined in detail by using cytoplasmic extracts and 
microsomes. The enzyme was fully active in the presence of 
EDTA. This chelating agent was included in the reaction 
medium to inhibit the synthesis of polyADPfibose, which also 
produces nicotinamide but is MgE+-dependent (36). The re- 
action followed Michaelian kinetics. Almost identical Km 
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FtGURE 2 Flow diagram for the isolation of sinusoidal cell preparations by counterflow elutriation. Adapted from Nagelkerke et 
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TABLE I 

Distribution of NAD Glycohydrolase and Various Constituents after Differential Centrifugation of Rat Liver Homogenates* 

Constituent Experi- 
ments Nuclear fraction Large granules Microsomes Final supernate Recovery 

n % 

NAD glycohydrolase 5 15.9 4- 4.7 3.3 4- 2.0 69.0 4- 11.4 2.7 4- 2.0 90.9 4- 13.6 
Protein 5 18.1 ___ 3.4 24.7 + 1.3 20.7 4- 2.0 36.5 4- 3.8 100.0 4- 5.2 
Glucose-6-phosphate 5 9.2 4- 5.2 12.6 4- 2.9 77.4 4- 7.4 2.9 4- 1.4 102.1 ___ 8.9 
Galactosylt ransferase 1 3.2 1.5 79.3 7.3 91 
Alkaline phosphodiesterase I 5 42.9 4- 7.7 7.3 4- 4.0 52.1 4- 7.9 1.3 4- 0.4 103.6 4- 7.4 
5' -Nucleot idase 5 3 9 . 6 + 7 . 5  18.04-3.1 54 .04-6 .8  6 . 2 + 1 . 5  117 .8+14 .2  
Alkaline phosphatase 4 24.8 4- 5.1 11.0 + 1.1 32.0 4- 1.8 30.1 4- 4.5 97.9 4- 5.0 

* Results are given as means + SD, in percent of the sum of the absolute values found in the whole liver (cytoplasmic extract + nuclear fraction). Enzyme 
activities and protein content per gram of liver were similar to those reported earlier (4). The specific activity of NAD glycohydrolase was 14.8 _ 1.5 (23 
experiments) and 11.1 - 0.7 (five experiments) in liver homogenates from female and male animals, respectively. 

values (=50 uM) were measured with microsomes and cyto- 
plasmic extracts obtained from the same liver homogenate, 
indicating that endogenous NAD did not interfere with mea- 
surements although enzyme activities were assayed under 
nearly maximal velocity conditions (1.5 mM labeled NAD). 
The pH-activity curve had a broad maximum around 6.5. 
The enzyme showed no clear-cut evidence of structure-linked 
latency when the influence of Triton X-100 and of hypotonic 
conditions was examined. The increase in activity did not 
reach 10%. 

Distribution of NAD GIycohydrolase 
after Differential Centrifugation 

The centrifugation behavior of NAD glycohydrolase was 
compared with that of various reference enzymes, in partic- 
ular 5'-nucleotidase, alkaline phosphodiesterase I and alkaline 
phosphatase for plasma membranes, galactosyltransferase for 
Golgi complex elements, and glucose-6-phosphatase for the 
endoplasmic reticulum. Reference enzymes for mitochondria, 
lysosomes, and peroxisomes were also assayed in some cases, 
but are generally not considered here because they dissociated 
obviously from NAD glycohydrolase. 

Fractionation of liver homogenates by differential centrif- 
ugation into nuclear fraction, large granules, microsomes, and 
final supernate gave the distributions shown in Table I. The 
mean sedimentation profiles derived from the data for NAD 
glycohydrolase, alkaline phosphodiesterase I, and glucose-6- 
phosphatase are presented graphically in Fig. 3. Glucose-6- 
phosphatase and galactosyltransferase were recovered mainly 
in the microsomes, whereas alkaline phosphodiesterase I, 5'- 
nucleotidase, and alkaline phosphatase exhibited the nucleo- 
microsomal distribution characteristic of  various plasma 
membrane-associated enzymes (4, 5). NAD glycohydrolase 
was found mainly in the microsomes, with a yield of 76% of 
the total recovered activity, identical to that of  glucose-6- 
phosphatase. A slight excess of NAD glycohydrolase relative 
to glucose-6-phosphatase is noted in the nuclear fraction. 

NAD GIycohvdrolase in 
Plasma Membrane Preparations 

The results shown in Table I and Fig. 3 apparently question 
the occurrence of NAD glycohydrolase at the periphery of 
liver cells. Consequently, plasma membranes were prepared 
and assayed for NAD glycohydrolase and reference enzymes. 
As seen in Table II, the preparations contain a significant 
amount of cytochrome c oxidase and glucose-6-phosphatase, 
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TABLE II 

Yield and Relative Specific Activity of NAD Glycohydrolase Com- 
pared with the Values of Reference Enzymes in Plasma Mem- 
brane-rich Fractions Obtained from Rat Liver* 

Relative spe- 
Consti tuent Yield* cific activities ~ 

% 

NAD glycohydrolase 19.6 _ 5.3 5.7 + 0.9 
Protein 3.6 + 1.4 1 
Glucose-6-phosphatase  4.0 + 1.4 1.1 + 0.2 ~ 
Galactosyltransferase 3.8 4- 1.9 1.0 4- 0.2 a 
Cytochrome c oxidase 9.1 4- 2.5 2.7 4- 0.5 ~ 
Alkaline phosphodies terase  I 41.5 4- 10.6 12.2 4- 2.5 a 
5 ' -Nucleot idase 31.5 + 10.0 9.1 4- 1.7 ° 
Alkaline phosphatase  22.4 4- 7.6 6.5 4- 2.0 

* Values are given as means -+ SD in five experiments, except for galactosyl- 
transferase which was determined in three experiments. 

* Yield is the percent of the sum of the activities, or of the amounts in the 
case of protein, recovered in all fractions. These sums comprised between 
89 and 102% of values in the homogenate. 
Relative specific activity is defined in the legend of Fig. 3. Where indicated 
enzymes differ from NAD glycohydrolase at P < 0.001 (a), or P < 0.01 (b). 

indicating that inner mitochondrial membranes and endo- 
plasmic reticulum-derived membranes together account for 
half the protein. This preparation was preferred to the alter- 
native with its high purification and low yield, in view of the 
heterogeneity expected to occur among plasma membrane 
domains. The specific activity of the reference enzymes for 
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these membranes reaches l0 or more when the values are 
corrected for the fraction of enzyme activity in the final 
supernate (see Table I). NAD glycohydrolase was present with 
a distinctly greater yield and a correspondingly greater relative 
specific activity than glucose-6-phosphatase and galactosyl- 
transferase, but in both respects it remained significantly 
below the values arrived at for the particle-bound activity of  
the plasma membrane reference enzymes. These results sug- 
gest that at least a part of  the NAD glycohydrolase activity in 
liver is associated with plasma membranes. 

To investigate this tentative conclusion plasma membrane 
preparations were centrifuged in a linear sucrose gradient, 
either directly, or after treatment with digitonin. As seen in 
Fig. 4, NAD glycohydrolase was shifted to higher equilibrium 
density after reaction with digitonin. The increase in median 
density was similar to that of  other plasma membrane en- 
zymes (Table III). The behavior of protein reflects the contam- 
ination of plasma membranes by membranes that are not 
significantly shifted, or that are shifted less, such as the Golgi 
elements identified by galactosyltransferase. These results, 
which agree completely with those reported in more detail (2 
and 47), strengthen the conclusion that NAD glycohydrolase 
is present in plasma membranes. 

2o 

20 
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EQUILIBRIUM DENSITY 

FIGURE 4 Density distribution of NAD glycohydrolase (A) and 
protein {B) in control and digitonin-treated plasma membrane-rich 
fractions. Yields of NAD glycohydrolase, expressed in percent of 
the liver content, were 20.3 and 16.3 in the two plasma membrane 
preparations used; the relative specific activities were 5.6 and 6.0, 
respectively. The first preparation (thin line) was centrifuged in the 
E-40 rotor, through a sucrose-H20 gradient extending linearly from 
1.10 to 1.25, for 140 min at 40,000 rpm. Digitonin (0.25 mgJmg 
protein) was added to the second preparation (thick line) before 
subfractionation as above. Recoveries of NAD glycohydrolase after 
density gradient centrifugation were 110 and 100%, respectively. 

TABLE III 

Median Densities of Constituents in Untreated and Digitonin- 
treated Plasma Membrane Preparations Obtained from Rat Liver* 

Digitonin- 
Constituent Untreated treated Difference 

NAD glycohydrolase 1.170 1.205 0.035 
5'-N ucleotidase 1.163 1.197 0.034 
Alkaline phosphatase 1.181 1.214 0.033 
Alkaline phosphodiesterase I 1.173 1.205 0.032 
Galactosyltransferase 1.146 1.167 0.021 
Protein 1.178 1.191 0.013 

* Values derived from the density distributions of protein and enzymes in 
the experiments described in the legend of Fig. 4. 

FIGURE 5 Density distribution of NAD glycohydrolase, compared 
with that of glucose-6-phosphatase, galactosyltransferase, and 5'- 
nucleotidase after isopycnic centrifugation of microsomes in a 
sucrose gradient. The distributions shown on the left side are the 
average results of three experiments in which microsomes have 
been brought to density equilibrium in a linear gradient of sucrose, 
without previous treatment, under the conditions given in the 
legend of Fig. 4. The distributions shown on the right side are the 
average results of three other experiments in which the microsomes 
were subjected to the treatment with digitonin before subfraction- 
ation in the density gradient. The distributions obtained were 
normalized for averaging as described elsewhere (9). The mean 
yields of NAD glycohydrolase in the microsome fractions used were 
77% of the total activity in liver, and recoveries after density 
gradient centrifugation comprised between 71 and 115%. The 
distribution of NAD glycohydrolase is shown by the shaded histo- 
grams superimposed on the distribution profiles of the other en- 
zymes. 

Density Distribution of the 
Microsomal NAD Glycohydrolase 

Taken together, the results described in the preceeding 
sections were still consistent with a dual localization of NAD 
glycohydrolase in both the plasma membranes and the en- 
doplasmic reticulum. On the other hand, NAD glycohydro- 
lase could belong exclusively to a particular type of plasma 
membranes that are broken down into small-sized fragments. 
This second explanation is strongly supported by the density 
distribution of the microsomal NAD glycohydrolase shown 
in Fig. 5. When microsomes were subfractionated by iso- 
pycnic centrifugation in a linear sucrose gradient, NAD gly- 
cohydrolase followed closely 5'-nucleotidase. Its activity was 
low compared with that of glucose-6-phosphatase in subfrac- 
tions of density >1.2, making its occurrence in rough vesicles 
unlikely. In experiments performed on digitonin-treated mi- 
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crosomes, the density shift ofNAD glycohydrolase was slightly 
greater than that of 5'-nucleotidase. This shift led to a marked 
dissociation from galactosyltransferase and glucose-6-phos- 
phatase in the low-density subfractions. The average median 
density of NAD glycohydrolase increased by more than 0.04 
density units after digitonin treatment, in contrast to glucose- 
6-phosphatase, which was not perceptibly influenced. There- 
fore, the microsomal NAD glycohydrolase cannot be assigned 
to membranes of the endoplasmic reticulum or of the Golgi 
apparatus. The possible presence of NAD glycohydrolase in 
the Golgi complex was also ruled out by the finding that the 
yield of this enzyme in Golgi-rich fractions was no greater 
than that of other plasma membrane enzymes (results not 
shown). 

NAD Glycohydrolase Activity in 
Isolated Liver Cells 

Inasmuch as the liver parenchyma consists of hepatocytes 
and various types of sinusoidal cells, a possible explanation 
for the difference between NAD glycohydrolase and other 
plasma membrane enzymes in differential centrifugation was 
that NAD glycohydrolase belongs mainly to cells yielding 
small plasma membrane fragments upon homogenization. 
This possibility was investigated by isolating hepatocytes and 
sinusoidal cells according to van Berkel (42). A PC prepara- 
tion containing mainly hepatocytes (44) and two different 
NPC preparations enriched in sinusoidal cells (43) are ob- 
tained. NPCt is cleaner than NPC2 because the pronase treat- 
ment reduces the contamination by hepatocytes. However 
enzymes of the cell periphery were partially inactivated by 
this treatment. The loss of activity under the conditions used 
to isolate NPC~ was established in preliminary experiments 
and the values measured were corrected accordingly (see Table 
IV). Protein and enzymes were also assayed in the residue 
fractions to establish the distributions quantitatively. 

The distribution of enzymes and protein between the var- 
ious cell preparations is shown in Table IV. NAD glycohydro- 
lase differed from the other constituents in that its yield in 

TABLE IV 

Distribution of Enzymes and Protein after Fractionation of the 
Liver into PC, NPC1, and NPC2 Preparations* 

Cell preparation 

Filtrate NPCT 
Constituent PC NPC2 residues NPC~* residues* 

% 

NAD glycohydrolase 3.2 2.0 14.1 7.4 73.3 
Alkaline phosphodi- 22.2 10.7 31.7 7.0 28.4 

esterase I 
5'-Nucleotidase 16.7 5.0 30.7 5.1 42.5 
Glucose-6-phospha- 35.1 0.7 64.2 ND I ND I 

tase ~ 
Protein 21.2 1.0 52.8 0.8 24.2 

* Average results of two experiments in which PC, NPC1, and NPC2 
cell preparations were obtained as described in Materials and 
Methods. Figures give the percent of enzyme activity and protein, 
relative to the total amount in the cell preparations plus the 
residues. 

* Values were corrected for the loss of activity after pronase treat- 
ment: NAD glycohydrolase, 54%; alkaline phosphodiesterase I, 
67%; 5'-nucleotidase, 17%. 

* Activity labile at 37"C and pH 5. 
I ND, not detectable after incubation with pronase. 

194 THE IOURNAL OF CELL BIOLOGY . VOLUME 100, 1985 

PC was noticeably low and the bulk of its activity (=80%) 
was retained on the filter (NPC~ and NPCj-residues). This 
peculiar behavior is reflected in the specific activities given in 
Table V. NAD glycohydrolase is the only enzyme that has a 
much-reduced activity in PC compared with that in the 
unfractionated lobe (difference significant at P < 0.001). It 
also shows the highest increase in NPC1. Consequently, the 
specific activity in NPC~ is =70 times that in PC. This ratio 
is only =5 for alkaline phosphodiesterase I and =7 for 5'- 
nucleotidase. The differences are less sharp when the specific 
activities in NPC2 are compared with those in the PC prepa- 
ration. NAD glycohydrolase still shows the highest ratio, but 
mainly as a consequence of its low activity in PC. Glucose-6- 
phosphatase (Table V) and the fructose-l,6-diphosphate-ac- 
tivated pyruvate kinase (not shown) indicate that NPC2 is 
significantly contaminated by material of hepatocytic origin. 
Light and electron microscopy revealed that although intact 
hepatocytes were not observed in NPC2, sinusoidal cells were 
contaminated by membrane-bounded vesicles of hepatocytic 
origin, described earlier (33). These vesicles are of similar size 
to sinusoidal cells and contain membrane-associated enzymes 
at a higher concentration than do hepatocytes (33). Such 
vesicles may thus account for a significant fraction of the 5'- 
nucleotidase and alkaline phosphodiesterase I in the NPC 
preparations. 

Table V also shows that the specific activity of each enzyme 
is similar in the reconstituted tissue material (preparations 
plus residues) and in the unfractionated lobe, except for a 
tendency of NAD glycohydrolase to be more active in the 
former. The correction made for the loss of NAD glycohydro- 
lase on incubation with pronase might thus be somewhat 
excessive. This would not seriously weaken the singularity of 
this enzyme because the average NPC,/PC ratio is 32 without 
correction, a value still far above those of 5'-nucleotidase and 
alkaline phosphodiesterase I after correction. Alternatively, 
the unfractionated lobe may not be an exact reference for the 
bulk of this organ. Specific activities of NAD glycohydrolase 
in whole liver homogenates (see Table I) were closer to that 
found in the reconstituted tissue material. 

When hepatocytes isolated in a PC fraction were cultured, 
the activity of NAD glycohydrolase vanished within 24 h 
whereas glucose-6-phosphatase and alkaline phosphodiester- 
ase I activities remained at 87 and 134% of the initial values, 
respectively. 

NAD Glycohydrolase Activity in Sinusoidal Cells 
Obtained by Counterflow Elutriation 

Another procedure for isolating sinusoidal cells avoids the 
use of pronase. Although the many steps involved preclude 
quantitative work, the procedure results in cell preparations 
free from hepatocyte-derived structures (34). As can be seen 
in Table VI, this method yields sinusoidal cells (preparations 
I-III) similar to NPC~ with respect to the activity of NAD 
glycohydrolase, but with a much lower level of alkaline phos- 
phodiesterase I arid half the activity of 5'-nucleotidase. The 
low activity of alkaline phosphodiesterase I in these cell prep- 
arations may indicate a low degree of contamination by 
hepatocyte-derived vesicles if it is assumed that this enzyme 
is prominent in plasma membranes of hepatocytes. The av- 
erage ratios of the specific activities of NAD glycohydrolase 
in preparations II and III to those in the PC preparations were 
74 and 81, respectively. 



TABLE V 

Specific Activity of Enzymes in Various Cell Preparations* 

Alkal ine phosphodiester- Glucose-6-phospha- 
Preparation NAD glycohydrolase ase I 5 ' -Nucleot idase tase s 

mU/mg protein 

Unfract ionated lobe 9.73 + 2.50 (6) 112.5 + 30.3 (7) 71.8 ___ 8.6 (4) 47.4 ___ 10.8 (4) 
Preparations + residues* 13.8 _+ 4.6 (4) 144 + 27 (3) 76.5 (2) 50.3 + 6.1 (3) 
PC 2.49 _ 1.05 (7) 137 _+ 31.4 (7) 64.7 + 17.4 (4) 79.5 + 10.2 (4) 
NPC2 32.2 + 2.5 (4) 908 __+ 396 (3) 376 -&-_ 123 (3) 41 + 12.2 (3) 
NPC1 136 -4- 7.6 (4) 621 + 398 (3) 430 _+ 253 (3) ND I 

Specific activity relative to that in PC 

NPC2 16.7 + 6.4 (4) 6.9 + 1.4 (3) 6.2 + 1.4 (3) 0.51 - 0.08 (3) 
NPC1 69.4 + 24 (4) 4.9 --- 2.6 (3) 6.8 + 2.3 (3) 

* Cell preparations were obtained from per(used livers as described in Materials and Methods. Values give means +__ standard deviations, with the number of 
experiments in parentheses. Activities in the unfractionated lobes and in the PC preparations derived from the experiments shown in Table VI were included 
in the statistics. 

* Values estimated from the total activities and total protein recovered in the various cell preparations and in the residues. 
! Activity labile at pH 5 and 37"C. 
m ND, not detectable after incubation with pronase. 

TABLE Vl 

Morphology and Enzyme Properties of Cell Preparations Obtained by Counterflow Elutfiation* 

Cell preparations 

Unfract ionated 
lobe I II III 

Kupffer cells 
Endothelial cells 
Other  cells and unident i f ied cells 
Total number  of points lying in cells counted 

Test points lying in cells (% of tota/)* 

22 81 76 
55 2 1 
23 17 20 

167 155 108 

mUJmg protein j 

NAD glycohydrolase 8.9; 12.5 115; 157 185; 231 174; 266 
Alkaline phosphodiesterase I 107; 106 28; 70 27; 53 29; 64 
5 ' -N ucleotidase 73 254 217 186 

NAD glycohydrolase 
Alkaline phosphodiesterase I 
5 ' -Nucleot idase 

Relative specific activity m 

12.9; 12.5 20.8; 18.5 19.6; 21.3 
0.26; 0.66 0.25; 0.50 0.27; 0.60 
3.48 2.97 2.55 

* Sinusoidal cells and PC preparations were isolated from collagenase-perfused livers by a method including differential centrifugation, elutriation at 1,800 rpm 
and 18 ml/min flow rate, and flotation through 17.5% Metrizamide, exactly as described by Nagelkerke et al. {34). The cells were then injected in the 
elutriation rotor spinning at 2,500 rpm and different fractions were collected as described under Materials and Methods. 

t The cell fractions obtained in one experiment were examined by light microscopy as described in the Materials and Methods section. Photomicrographs at 
x810 magnification were analyzed with the multipurpose test system {45) for volumetric estimation of Kupffer cells and endothelial cells. 

! Values are the results of two experiments; in each set the first value corresponds to the preparation examined by light microscopy. 
m Ratio of the specific activity in the cell preparation to that in the unfractionated lobe. 

The cell composition of preparations I, II, and III was 
established by stereological analysis of light photomicrographs 
obtained from thin sections stained with toluidine blue. Iden- 
tification of Kupffer cells was confirmed by 3,3'-diamino- 
benzedine peroxidase staining (48). In agreement with Nagel- 
kerke et al. (34), endothelial cells were washed out at a lower 
flow speed (preparation I) than Kupffer cells (preparations II 
and III) in the final elutriation step. The morphological values 
given in Table VI are related to the volumetric fraction of 
each cell species, which is comparable with the specific activ- 
ities of enzymes. NAD glycohydrolase activity correlates with 
the content of the preparations in Kupffer cells, but the values 
suggest that the enzyme may occur in endothelial cells with a 
specific activity about three times lower. 

DISCUSSION 

NAD glycohydrolase is largely recovered in microsomes after 
differential centrifugation of liver homogenates, and its activ- 

ity in plasma membrane preparations exceeds the value ob- 
tained for enzymes associated with contaminating endo- 
plasmic reticulum and Golgi complex elements. Similar re- 
sults reported by others have been interpreted as indicating 
either attachment of the enzyme to the endoplasmic reticulum 
membrane (35) or a dual location in the endoplasmic reticu- 
lum and plasma membrane of hepatocytes (19). 

Although compatible with the data presented earlier, this 
conclusion must be reconsidered because the microsomal 
NAD glycohydrolase differs strikingly from authentic en- 
zymes of the endoplasmic reticulum in density gradient anal- 
ysis (Fig. 5). Like 5'-nucleotidase, but unlike glucose-6-phos- 
phatase, NAD glycohydrolase is recovered essentially in low- 
density subfractions (<1.2 density units) when microsomes 
are brought to equilibrium in a sucrose gradient, and it is 
shifted to subfractions of higher density after treatment of the 
microsomes with digitonin. It is clear that the amount of 
NAD glycohydrolase associated with the endoplasmic reticu- 
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lum, if any, must be small in comparison with the total 
amount present in the microsomes, and cannot explain the 
high yield of this enzyme in the microsomal fraction. Our 
earlier studies (5, 41, 47) have brought biochemical and 
morphological evidence that the digitonin shift is typical of 
the plasma membranes, including possibly endocytotic or 
other cytoplasmic vesicles closely related with the cell periph- 
ery. In spite of its microsomal character, NAD glycohydrolase 
is thus specifically associated with that kind of subcellular 
entity, which we have designated a2 (13). Vesicles derived 
from the Golgi complex and bearing several glycosyltransfer- 
ases are also shifted by digitonin (5, 47), but the magnitude 
of the shift is smaller, and the dissociation between galacto- 
syltransferase and NAD glycohydrolase after treatment with 
digitonin (Fig. 5) is sharp enough to exclude this alternative 
localization. Other studies on the rat liver enzyme failed to 
demonstrate a clear-cut difference between the NAD glyco- 
hydrolase of microsomes and that of plasma membrane prep- 
arations. Both enzymes have nearly the same half-life (19), 
give a single continuous precipitation line in Ouchterlony 
double-diffusion immunochemical tests (18), and show simi- 
lar biochemical characteristics (24). Such experimental data 
are consistent with NAD glycohydrolase being a constituent 
of a single membrane entity in the liver. 

The question thus became how to explain that NAD gly- 
cohydrolase is recovered in microsomes in great excess over 
5'-nucleotidase. A similar question has been raised earlier by 
the distribution of cholesterol (4) and protein-bound sialic 
acid (2), which were both partly assigned to the endoplasmic 
reticulum (8, 25). The explanation had to be sought in the 
differentiation of the hepatocyte periphery into biochemically 
distinct domains, or in the existence of several varieties of 
cells within the liver parenchyma. Plasma membrane prepa- 
rations obtained from low-speed sediments are derived from 
the peribiliary border, junction complexes, and adjoining 
portions (reviewed in reference 23); the extent to which the 
sinusoidal border of hepatocytes and the plasma membranes 
of sinusoidal cells contribute to these preparations is not 
known exactly. 

The answer is mainly that NAD glycohydrolase is promi- 
nently present in Kupffer cells, less so in endothelial cells, and 
low in hepatocytes. This is shown by the relative yields in 
NAD glycohydrolase and protein in PC preparations (Tables 
IV and V). In some experiments the specific activity fell to 
15 % of that in the whole liver (Table V). The presence of a 
minor part of NAD glycohydrolase in hepatocytes might 
explain the difference between the density profiles in micro- 
some and plasma membrane preparations (compare Figs. 4 
and 5). Further evidence for the association of the bulk of 
NAD glycohydrolase with Kupffer cells is the recovery of up 
to 80% of the enzyme activity in the material retained on the 
nylon filter. This property of adherence has been utilized to 
separate macrophages from other cells of the spleen (6). Such 
selective retention allowed the specific activity of NAD gly- 
cohydrolase in NPCt to be raised by a factor of 10-13 over 
its value in the whole liver and of =70 over PC. Finally, the 
assignment of the enzyme to Kupffer cells is supported by the 
counterflow elutriation results (Table VI). The enrichment 
factor in NAD glycohydrolase activity was =21 in prepara- 
tions II and III. It is a minimum value for Kupffer cells, as 
they make up no more than 80% of the cell volume in these 
preparations. Comparison of the cell composition and enzyme 
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properties of preparation I suggests an enrichment factor of 7 
in endothelial cells. 

An approximation of the distribution of NAD glycohydro- 
lase between various liver cells is obtained when our results 
are combined with the stereological data reported by Blouin 
et al. (16). Hepatocytes, endothelial cells, and Kupffer cells 
make up 78.8, 2.8, and 2.1% of the parenchymal volume, 
respectively, and their respective contributions to the plasma 
membrane surface area are 73.5, 15.2, and 4.3%. Assuming 
that the percent volume is equivalent to the percent protein, 
and that the relative specific activities derived for NAD gly- 
cohydrolase in the various cell types are valid for the whole 
liver despite the low yields in the sinusoidal cell preparations, 
the percentage of the enzyme activity that may be assigned to 
hepatocytes, endothelial cells, and Kupffer cells is 14, 24, and 
53, respectively. In reference to the surface areas of the 
respective plasma membranes, these estimates indicate that 
the activity of NAD glycohydrolase per unit surface area of 
membrane in Kupffer cells may be 8 times higher than in 
endothelial cells, and 65 times higher than in hepatocytes. In 
this sense, NAD glycohydrolase may be taken as a reference 
enzyme for the plasma membrane of Kupffer cells. The true 
differences between these various cells may be greater than 
estimated, as the PC preparations may contain some ghosts 
of sinusoidal cells. It is perhaps significant that the NAD 
glycohydrolase activity fell on cultivation of hepatocytes. In- 
terestingly, the specific activity reaches 510 mU/mg of protein 
in resident peritoneal macrophages of the mouse (21), a value 
30 times that of mouse liver homogenates (unpublished results 
ofC. Darte). In these macrophages, also, NAD glycohydrolase 
is associated with subcellular elements characteristically 
shifted by digitonin (21). The microsomal distribution of 
NAD glycohydrolase shows that the plasma membranes of 
Kupffer cells are largely reduced to microsomal elements 
when the liver is homogenized, and explains how authentic 
constituents of plasma membranes, e.g., cholesterol and pro- 
tein-bound sialic acid, occur in microsomes in excess over 5'- 
nucleotidase and other enzymes characteristic of plasma 
membranes. 

The activity of NAD glycohydrolase within the cytosol 
would lead to a rapid turnover of the pyridine coenzymes and 
to a large expenditure of cellular energy (26). In agreement 
with others (18), we have found no evidence for a structure- 
linked latency of NAD glycohydrolase in rat liver. This en- 
zyme would therefore act freely on the pyridine nucleotides 
of the cytosol if it were present in the endoplasmic reticulum, 
but because it is inserted in the plasma membrane, it is 
probably shielded from these coenzymes. Recently, Muller et 
al. (32) have shown convincingly that NAD glycohydrolase 
is, indeed, an ectoenzyme in beef splenocytes. The exclusive 
localization of the liver NAD glycohydrolase in elements 
derived from the plasma membrane and its prominent asso- 
ciation with sinusoidal cells rule out a major role for this 
enzyme in the breakdown of cytosolic pyridine nucleotides in 
liver parenchymal cells. 
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