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Objective: The Joint United Nations Programme on HIV/AIDS-supported Spectrum
software package is used by most countries worldwide to monitor the HIV epidemic. In
Spectrum, HIV incidence trends among adults (aged 15–49 years) are derived by either
fitting to seroprevalence surveillance and survey data or generating curves consistent
with case surveillance and vital registration data, such as historical trends in the number
of newly diagnosed infections or AIDS-related deaths. This article describes develop-
ment and application of the case surveillance and vital registration (CSAVR) tool for the
2019 estimate round.

Methods: Incidence in CSAVR is either estimated directly using single logistic,
double logistic, or spline functions, or indirectly via the ‘r-logistic’ model,
which represents the (log-transformed) per-capita transmission rate using a logistic
function. The propensity to get diagnosed is assumed to be monotonic, following a
Gamma cumulative distribution function and proportional to mortality as a function of
time since infection. Model parameters are estimated from a combination of historical
surveillance data on newly reported HIV cases, mean CD4þ at HIV diagnosis and
estimates of AIDS-related deaths from vital registration systems. Bayesian calibration
is used to identify the best fitting incidence trend and uncertainty bounds.

Results: We used CSAVR to estimate HIV incidence, number of new diagnoses, mean
CD4þ at diagnosis and the proportion undiagnosed in 31 European, Latin American,
Middle Eastern, and Asian-Pacific countries. The spline model appeared to provide the
best fit in most countries (45%), followed by the r-logistic (25%), double logistic (25%),
and single logistic models. The proportion of HIV-positive people who knew their
status increased from about 0.31 [interquartile range (IQR): 0.10–0.45] in 1990 to
about 0.77 (IQR: 0.50–0.89) in 2017. The mean CD4þ at diagnosis appeared to be
stable, at around 410 cells/ml (IQR: 224–567) in 1990 and 373 cells/ml (IQR: 174–475)
by 2017.

Conclusion: Robust case surveillance and vital registration data are routinely available
in many middle-income and high-income countries while HIV seroprevalence
surveillance and survey data may be scarce. In these countries, CSAVR offers a simpler,
improved approach to estimating and projecting trends in both HIV incidence and
knowledge of HIV status.
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Introduction
The Joint United Nations Programme on HIV/AIDS
(UNAIDS) works with country partners to produce
global, regional, and country-specific estimates of HIV
burden annually to guide national and global planning
and monitoring [1,2]. Methods, tools, and assumptions
that underpin these estimates are developed with
guidance from the UNAIDS Reference Group on
Estimates, Modelling and Projections, which works
to advance the development of statistical and mathe-
matical approaches to modelling the HIV epidemic [3].
Most countries use Spectrum, a UNAIDS-supported
modelling software tool, to generate these annual
estimates.

The case surveillance and vital registration (CSAVR) tool,
first introduced in Spectrum in 2014 under the name fit
to program data, was developed as an alternative curve
fitting tool to the Estimates and Projection Package (EPP)
for countries with robust historical vital registration and
case-based HIV surveillance systems. The tool was used in
2019 to estimate HIV incidence trends among adults aged
15–49 years in 43 of the 170 countries that contribute to
UNAIDS regional and global estimates, an increase from
2014 where it was used by just 16 countries. Before 2014,
most country models relied on EPP to derive national
incidence curves from HIV seroprevalence surveillance
and survey data among key populations at higher risk of
HIVexposure (such as female sex workers, gay men, and
other MSM and people who inject drugs) and pregnant
women attending antenatal care clinics, alongside
estimates of the size of each population subgroup
[1,4–6], supplemental file http://links.lww.com/QAD/
B513.) EPP-derived estimates have been critiqued in
settings where prevalence data among key populations are
not routinely available, not nationally representative, or
where accurate key population size estimates are not
available [7,8]. In countries with very low-level epidemics
where few historical, repeated measures of HIV
prevalence are available among key populations, estima-
tion of HIV incidence using EPP was not possible.

The CSAVR tool overcomes the challenges of scarce HIV
serosurveillance and survey data and key population
size estimates by offering countries with robust vital
registration and case-based HIV surveillance systems an
alternative approach for deriving HIV incidence estimates
from these data. Many middle-income and high-income
countries have reasonably complete vital registration
systems [9] and low misclassification of AIDS-related
deaths to other causes [9,10]. Although published
evaluations of the quality and completeness of HIV case
surveillance systems are more limited, studies have shown
that HIV incidence curves derived from robust case
surveillance data are a good alternative to fits in EPP
[11,12].
A key challenge of CSAVR and other back-calculation
approaches to estimating incidence is that the number of
new diagnoses is assumed to represent past incidence.
Therefore, either estimates of time from infection to
diagnosis or the proportion of HIV-positive people who
die undiagnosed are needed to accurately infer past
incidence from new diagnoses. In previous iterations of
the CSAVR tool, users were required to enter informa-
tion about the expected time from infection to diagnosis
and the proportion of HIV-positive people who died
undiagnosed; however, in practice, that information was
typically not available. However, data that are usually
available in many countries are CD4þ cell count at
diagnosis. This measure has been shown to be a
reasonably good proxy for time since infection at the
population level [1].

In the 2017 version of CSAVR, we improved the tool by
developing an approach to fitting incidence that uses
Spectrum’s AIDS Impact Model key assumptions and
available information on number of new diagnoses,
deaths and/or mean CD4þ at diagnosis to estimate
incidence trends, mean time from infection to diagnosis,
CD4þ at diagnosis and the proportion of people living
with HIV who have been diagnosed over time. This
article describes this extension as well as other advances in
the development of methods and a new approach for
incorporating uncertainty in 2019 estimates.
Methods

Modelling HIV incidence among adults aged
15–49 years
Previous versions of CSAVR used the double logistic or
single logistic family of parametric functions to model
HIV incidence over the course of the epidemic [1]. This
family was suitably flexible to capture HIV epidemic
trends in many countries. However, this family was
inadequate for several countries, for example, countries
where data suggested more than one wave of infection. To
address this limitation, two additional options were made
available in Spectrum for 2019: a semiparametric spline
and a single logistic function for the HIV transmission
rate, termed ‘r-logistic’.

Double logistic curve
In CSAVR, HIV incidence may be modelled as a double
logistic function:

I tð Þ ¼ exp a t � t0ð Þð Þ
1þ exp a t � t0ð Þð Þ

� 2a
exp �b t � t0ð Þð Þ

1þ exp �b t � t0ð Þð Þ þ b

� �
; (1)
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where a> 0 defines the initial epidemic growth, a> 0
modulates the peak incidence level, b> 0 defines the
asymptote (i.e., the incidence value over time), b> 0
defines the rate of convergence to the asymptote, and
t0> 0 is a location parameter, at which the value of the
function is aþ bð Þ=2. Many infectious disease models
either lead to the double logistic function or to functions
that closely resemble it. We fitted this model with the
following prior distribution on its parameters:

log að Þ�N �2; 2ð Þ; log bð Þ�N �2; 2ð Þ;
log t0 � 1970ð Þ�N log 10ð Þ; 1ð Þ;

log �log að Þð Þ�N 2:44; 2ð Þ;
log �log bð Þð Þ�N 1:95; 2ð Þ:

The double logistic curve [Eq. (1)] was first proposed by
Stover et al. [11] and describes a flexible class of functions.
However, these functions assume that incidence eventu-
ally converges to a constant level, which is not consistent
with case notification data in some countries. Alternately,
in settings with very scarce case surveillance and vital
registration data, the parameter dimension may be too
large for incidence to be well identified.

Single logistic curve
When there is no evidence of an inflection point in case
notifications or there are too few data points, a single
logistic curve may be warranted. In the 2016 version of
CSAVR, we added a second option that models incidence
as follows:

IðtÞ ¼ exp �cþ a t � t̃0ð Þð Þ
1þ exp �cþ a t � t̃0ð Þð Þ ; (2)

where t̃0 ¼ 1970, c> 0 defines the incidence at time t̃0
and a> 0 defines the rate of increase of the trend. We
fitted this model, which is a straightforward extension of
cumulative form of logistic function, with the following
prior distributions on its parameters:

log cð Þ�N 3; 1ð Þ; a�N �5; 5ð Þ: (3)

Splines
We included second order segmented polynomial
functions as a more flexible alternative to the single
and double logistic functions. That class of functions was
first proposed for age-specific HIV incidence estimation
by Mahiane et al. [13] and belongs to the wide family of
splines. In the approach considered here, we set the
number of knots to three and estimate their positions.
Although this family of functions is very flexible, the
number of parameters needed can be relatively large and
are not naturally constrained to be nonnegative. To
overcome these limitations, we transformed the spline,
modelling incidence as follows:

I tð Þ ¼ Imax
i2 tð Þ

1þ i2 tð Þ
(4)

where Imax is the largest possible value allowed for the
incidence rate,

i tð Þ ¼ ak þ bk t � tkð Þ þ ck t � tkð Þ2 for t in tk�1; tkð Þ;

t0 ¼ 1970;

and ak; bk; k ¼ 0 . . . 3 and tk; k ¼ 1 . . . 3 are parameters
to be estimated. The model is fitted with the following
prior distribution on its parameters:

a0�N �30; 2ð Þ; b0�N �10; 2ð Þ;
ck � �1ð Þkþ1N 0:005; 1ð Þ; for all k

and zk

tk � tk�1

tmax � t0

� �
�N 0;

1

3

� �
; for k ¼ 1 . . . 3

(5)

where tmax is the final year of the projection and z ¼
z1; z2; z2ð Þ is the inverse of the transformation

x1; x2; x3ð Þ! ex1ð Þ= 1þ ex1 þ ex2 þ ex3ð Þ;ð
ex2ð Þ= ex1 þ ex2 þ ex3ð Þ; ex3ð Þ= ex1 þ ex2 þ ex3ð ÞÞ

.

Transmission model using the ‘r-logistic’ function
Instead of directly modelling the HIV incidence rate,
we can also model the transmission rate r tð Þ as in the
EPP model [14]. In this case, the incidence rate is given by

I tð Þ ¼ r tð Þ p tð Þ 1� 0:7k tð Þð Þ (6)

where p tð Þ is the prevalence at time t, k is the
antiretroviral therapy (ART) coverage, and 0.7 is the
average reduction in transmission per additional person
on ART. We use a logistic function to model the
logarithm of r tð Þ, termed rlogistic with four parameters:

log r tð Þð Þ ¼ r0 � r1 � r0ð Þ 1

1þ exp �a t � tmidð Þð Þ (7)

where exp r0ð Þ is the initial exponential growth rate of the
epidemic, exp r1ð Þ is the equilibrium value for r tð Þ, a is
the rate of change of r tð Þ in the log-scale and tmid is the
inflection point. For this model, we specify a fifth
parameter, i, as the incidence rate at time t ¼ t0,
providing the initial pulse of infections. This model is
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fitted with the following prior distributions on its
parameters:

r0�Nðlogð0:5Þ; 0:5Þ r1�Nðlogð0:09Þ; 0:3Þ
logðaÞ� ðlogð0:2Þ; 0:5Þ

tmid�N 1993; 5ð Þ; i�N �13; 5ð Þ
(8)
Modelling the diagnosis rate, mean CD4R cell
count at infection and mean time from infection
to diagnosis
We assume that the diagnosis rate is proportional to
mortality rate in absence of treatment (i.e., the rate at
which individuals aged a, infected at time w are diagnosed
at time v) increases over time and that the rate of diagnosis
by CD4þ category increases proportional to mortality
rate in absence of treatment, which is given by the
formula:

dðv;w; aÞ ¼ Z2G ðv � to; Z1; 1Þ munðv;w; aÞ; where
G is the Gamma cumulative distribution function with
shape z1, z2 is a scale factor, and t0 is the first year of
diagnosis, and mun is the mortality rate as a function of
time and age at infection.

We obtain the CD4þ trajectory as a function of age at
infection and duration of infection using Spectrum’s
assumptions on CD4þ progressions rates and CD4þ

distribution at infection. Details of the approach can be
found in the Supporting Information. Finally, we assume
that, when ART becomes available, individuals who are
diagnosed initiate treatment at a rate 3 exp(e)/1þ exp(e),
before they reach WHO eligibility criteria.

We assigned relatively weak priors to the diagnostic
parameters as described below:

log z1ð Þ�N 2:7; 10ð Þ;
log z2ð Þ�N 1:5; 10ð Þ; e�N 0; 1ð Þ:

(9)

Estimation procedures
The model estimates the following parameters
u¼ (u0,z1,z2,e), where u0is the component related to
the selected functional form for incidence (i.e., the
parameters determining the shape of the single or double
logistic, segmented polynomials, or r-logistic models) and
z1,z2,e are the parameters determining diagnosis and
treatment initiation.

Let us assume that data consist of numbers of new diagnoses
ni ti j
� �

; j ¼ 1 . . . ji
� �

, deaths nd tidð Þ; j ¼ 1 . . . jdð Þ,
and number of people on ART nh tihð Þ; j ¼ 1 . . . jhð Þ,
where j ¼ 1 . . . ji or j ¼ 1 . . . jd or j ¼ 1 . . . jhð Þ are
observation times and follow Poisson distributions. We
further assume that the observed CD4þ cell counts at
diagnosis follow a Gamma distribution and that the mean
CD4þ cell count at diagnosis can only be measured in years
when there is at least one new diagnosis. Then, if
gk tk j

� �
; j ¼ 1 . . . jk

� �
is the mean CD4þ cell count

observed at times j ¼ 1 . . . jk, the loss function is given by

nllik uð Þ ¼ �
X

u¼i;d;h

Xju

j¼1

nu tu j

� �
log n̂u u; tu j

� �� �
� n̂u u; tu j

� �� �

�
Xjk

j¼1

nd td j

� �
gk tk j

� �
� 1

� �
log ĝk tk j

� �� �
� nd td j

� �
ĝk tk j

� �� �

(10)

We adjusted the parameters by maximizing the posterior
distribution, which is equivalent to minimizing

L uð Þ ¼ �P1 u0ð Þ � P2 z1; z2; eð Þ þ nllik uð Þ;

where P1 is the log prior distribution for the incidence
model parameters u0 determined by [Eq. (3), Eq. (5)
or Eq. (7)], and P2 is the log prior distribution for
the diagnosis model parameters determined by [Eq.
(9)].

We used the Kernel Hamiltonian Monte Carlo [15]
approach for a full Bayesian calibration. Our preliminary
analyses suggested that 2000 burn-in samples were
necessary. We stopped the procedure when the number
of accepted samples reached 1000.

Akaike information criterion (AIC) [16] was used for
model selection. For each candidate model, AIC (u)¼ 2
nllik (u)þ2 p where p is the dimension of the parameter,
was evaluated at the parameter minimizing Eq. (10) then,
the model with the smallest AIC was chosen; that is,
estimates obtained using this latter model were used for
estimations and projections.

Analysis
We applied the new CSAVR model to data from 31
countries (Table 1) which used CSAVR during the 2018
UNAIDS estimates round. Countries were selected for
inclusion on the basis that they have high-quality vital
registration since 1980, which is a robust source of data
for HIV deaths [9]. Raw AIDS-related deaths among all
ages from the vital registration system in the 2018
Spectrum files were replaced with the most recent
estimates of AIDS-related deaths adjusted for incom-
pleteness and misclassification among adults 15 years
and older from the Institute for Heath Metrics and
Evaluation Global Burden of Disease study or the
WHO. Preference was given to IMHE estimates, which
provided a longer time series of data from 1990
compared with WHO where published estimates are
available only from 2000. Modelled estimates rather
than raw numbers of AIDS-related deaths were used in
CSAVR starting in 2019.



Spectrum’s ‘case surveillance and vital registration’ tool Mahiane et al. S249

Table 1. Best incidence modela for countries included in the
analysis.

Eastern Europe
Western
Europe

Latin America
and the Caribbean Other

Czech Republic3 Austria3 Costa Rica4 Australia1

Estonia1 Greece4 Panama4 Israel1

Hungary3 Finland1 Cuba2 Japan3

Latvia4 Iceland3 Bahamas3 Kuwait3

Poland4 Ireland1 Belize1 New Zealand4

Romania3 Sweden3 Argentina1

Spain3 Barbados4

Luxembourg2 Chile3

Switzerland4 Mexico3

Portugal1

Norway3

1Double logistic curve; 2logistic curve; 3spline; 4r-logistic.
aBest incidence model chosen based on the AIC. AIC, Akaike infor-
mation criterion.
Results

We fitted the four incidence models (double logistic,
single logistic, segmented polynomial, and r-logistic) for
each country. The fits are illustrated with data from
Panama in Fig. 1. Table 1 shows the best model for each
country included in the analysis. Based on the AIC, the
spline model for incidence appeared to provide the best fit
in most countries (45%), followed by the r-logistic (25%),
the double logistic (25%), and the single logistic models.

The proportion of HIV-positive people who knew their
status increased from about 0.31 [interquartile range
(IQR): 0.10–0.45] in 1990 to about 0.77 (IQR: 0.50–
0.89) in 2017. Figure 2a–d display the trends of the
distributions of the proportions of people living with HIV
who do not know their statuses as a function of time, for
Western European, Eastern European, Latin America and
Caribbean, and other countries, respectively, together
with the regions’ aggregated estimates and their 95%
confidence regions.

They suggest a decrease of the proportion of HIV-
infected and undiagnosed individuals in most countries in
Western Europe, with the aggregated proportion
decreasing from about 43% [95% confidence interval
(CI): 25–52%] in 1990 to 80% (95% CI: 78–89%) in
2017. Aggregated proportions are very noisy in the other
regions. However, the sample of countries (9) in Latin
America and the Caribbean region appeared to have the
largest cohort of countries with less than 60% of HIV-
infected people knowing their status.

The mean CD4þ at diagnosis across countries appeared to
be stable, decreasing from 410 cells/ml (IQR: 224–567)
in 1990 to 373 cells/ml (IQR: 174–475). Figure 3a–d
display the trends of the distributions of the mean CD4þ

cell count at diagnoses for Western European, Eastern
European, Latin America and Caribbean, and other
countries, respectively, together with the regions’
aggregated estimates and their 95% confidence regions.
They suggest that the estimated mean CD4þ at diagnosis
has been stable since 1990 and that levels are similar across
regions, except in Latin America and Caribbean.
Discussion

In this article, we reviewed the CSAVR methods and
described the recent model developments for Spectrum
in 2019. The newly added r-logistic model and spline for
incidence improved fits to the program data in eleven
countries. Overall, our results suggested an increase of
status awareness and a decrease in mean CD4þ at
diagnosis. This may imply that most of the newly
diagnosed individuals have been infected for a longer
period. The aggregated estimates presented in this study
do not represent regional estimates because the analysis
was restricted to countries with medium-to-high-quality
vital registration data.

The use of CSAVR, with its ongoing expansion and
improvements in methods, has offered a number of
benefits. Perhaps the most important for countries is the
transparent fitting process to routinely available surveil-
lance and vital registration data and the acceptability of
modelled results. Another benefit of CSAVR as
implemented in 2019 compared with 2016 is that some
assumptions were relaxed. For example, information on
the estimated time from infection to diagnosis or the
proportion of HIV-positive individuals who died
undiagnosed is no longer required from the user as an
input but is instead estimated in the fitting process.
Uncertainty was also previously obtained using asymp-
totic properties of the maximum likelihood estimation
method, which failed under some conditions, whereas in
this round, the Bayesian calibration offered a more robust
approach by incorporating prior information.

The tool has some limitations and additional work is
planned to improve the CSAVR tool and its application by
countries in future estimation rounds. One of the main
priorities will be to work with countries to document the
quality and completeness of program data inputs and to
more accurately incorporate uncertainty in the inputs into
the uncertainty bounds around the final incidence
estimates. It might also be useful document the events
associated with sequentially dated events and how these
event-times are ascertained (e.g., prospectively or retro-
spectively). These are part of the data generating process
that also need to be statistically modelled. However, this
will demand more resources and due diligence.

The spline curve appeared to fit data the best in more
countries than any other options available in the tool. It
has the advantage of producing flexible curves to fit to
time-series data that are not confined to specific
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Fig. 1. Numbers of new HIV diagnoses and AIDS deaths in Panama. Dots show the reported numbers of (left column)
new diagnoses or (right column) AIDS deaths. Solid lines show model fits using (a) double logistic, (b) single logistic, (c) spline,
or (d) r-logistic curves. Grey regions show the 95% credible regions around model fits.
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Fig. 2. Trends of the distributions of the proportion of people living with HIV who have not been diagnosed yet by regions (a)
Western Europe, (b) Eastern Europe, (c) Latin America and Caribbean, (d) Others. The grey lines represent countries trends, the
solid black lines represent the regions’ aggregated medians and their 95 confidence regions obtained using the bootstrap
resampling method represented by the greyed areas.
functional shapes as other parametric models. However,
although the AIC was chosen for model selection, this
option is not immune to overfitting. In fact, the spline
model implemented (with three knots) uses more
parameters than its concurrent model. The possibility
for users to try different number of knots or to use
generalizations of logistic and double logistic options will
be explored in future work.

The current version of the tool only uses information
from adult populations. Furthermore, the tool assumes
that migration does not differ by HIV status. This may
not be the case in some settings, especially when there is a
large influx of refugees from countries with higher or
lower HIV prevalence. Recent studies in Colombia,
Australia, and some European countries, reported for
example, higher HIV prevalence among migrants [17–
19]. Because the models used belong to the family of
back-calculation methods, assigning a wrong place of
infection to migrants can lead to wrong past incidence
which in turn leads to wrong estimates and projection of
AIDS deaths.

The models also assumed that the propensity to be tested
increased with AIDS-related mortality and that the
diagnosis rate over time increases and stabilizes
proportional to a simple parametric form given by the
cumulative gamma function. Although this assumption
seems reasonable, it is possible that testing campaigns
makes the model unsuitable for some years. Nevertheless,
our estimates seem to agree with those obtained from
other models. For instance, our analysis suggested that
about 17% of infected individuals in Western Europe
didn’t know their status in 2016; this is comparable with
the 15% estimated for the same year Centre for Disease
Prevention and control/van Sighem et al. [20], for
the European Union and European Economic Area.
Improvements are needed to account for information on
HIV-related migrations, new diagnoses among children,
and/or testing campaigns, when available. These devel-
opments are left for future research.

Another area for future work is to explore how countries
might produce HIV incidence curves by key populations
or within smaller level geographic areas using this tool.
Although the functionality could be incorporated within
the model, it would require countries to introduce
changes in case notification forms that capture the likely
location and suspected route of transmission of the
infection. As countries begin to realize the benefits of
using case reporting and vital registration system data to
produce more robust estimates of the impact of the HIV
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Fig. 3. Trends of mean CD4R at diagnosis by regions (a) Western Europe, (b) Eastern Europe, (c) Latin America and Caribbean,
(d) Others. The grey lines represent countries trends, the solid black lines represent the regions’ aggregated medians and their 95
confidence regions obtained using the bootstrap resampling method represented by the greyed areas.
epidemic, the level of effort required to achieve more
granular estimates may not seem so extraordinary.
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