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Alzheimer’s disease (AD) is the most common neurodegenerative disease nowadays that causes memory impairments. It is
characterized by extracellular aggregates of amyloid-beta (Aβ), intracellular aggregates of hyperphosphorylated Tau (p-Tau),
and other pathological features. Trilobatin (TLB), a natural flavonoid compound isolated from Lithocarpuspolystachyus Rehd.,
has emerged as a neuroprotective agent. However, the effects and mechanisms of TLB on Alzheimer’s disease (AD) remain
unclear. In this research, different doses of TLB were orally introduced to 3×FAD AD model mice. The pathology, memory
performance, and Toll-like receptor 4- (TLR4-) dependent inflammatory pathway protein level were assessed. Here, we show
that TLB oral treatment protected 3×FAD AD model mice against the Aβ burden, neuroinflammation, Tau
hyperphosphorylation, synaptic degeneration, hippocampal neuronal loss, and memory impairment. The TLR4, a pattern
recognition immune receptor, has been implicated in neurodegenerative disease-related neuroinflammation. We found that TLB
suppressed glial activation by inhibiting the TLR4-MYD88-NFκB pathway, which leads to the inflammatory factor TNF-α, IL-
1β, and IL-6 reduction. Our study shows that TLR4 might be a key target of TLB in AD treatment and suggests a multifaceted
target of TLB in halting AD. Taken together, our findings suggest a potential therapeutic effect of TLB in AD treatment.

1. Introduction

Alzheimer’s disease (AD) is the most common neurodegen-
erative disease in the elderly [1]. The AD patient number
will reach 100 million worldwide by 2050, which creates an
enormous burden on societies and families [2]. Evidence
shows that amyloid-β (Aβ), oxidative stress, synaptic degen-
eration, and neuroinflammation play central roles in AD
progression [3, 4]. However, drugs that target Aβ deposition
or Tau phosphorylation would not efficiently halt AD

progression in recent years [5, 6]. Besides synthetic drugs,
many traditional Chinese medicines and natural products
are found available for AD management [7–12]. These
research studies shed new light on the discovery of natural
products to alleviate AD pathologies.

Recently, there has been increasing evidence showing
that the immune system function alters in AD cases [13].
In AD patients, chronic neuroinflammation is remarkable
and leads to immune system dysfunction [14]. Toll-like
receptors (TLRs) are a class of highly conserved receptors
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that modulate innate immune responses [15]. Among the 13
TLRs in mammals, the Toll-like receptor 4 (TLR4) has been
well studied in neurodegenerative disease. TLR4 can activate
downstream signals through MYD88 and non-MYD88
pathways [16]. The nuclear factor kappa B (NFκB) pro-
moter, which transcribes inflammatory factors including
TNF-α, interleukin 1β (IL-1β), and interleukin 6 (IL-6), is
the downstream protein of TLR4 [17]. In the central nervous
system, TLR4 is mainly expressed in glial cells with very low-
level expression in neurons [18]. TLR4 is seen upregulated in
the brains of AD patients and AD model mice [19]. The
toxic Aβ leads to glial activation and enhances the phagocy-
tosis function of glial cells through TLR4 [20]. Given that the
TLR4 alters in AD progression, targeting TLR4 is a promis-
ing direction in halting AD. It has been demonstrated that
suppressing TLR4 shows a protective effect in AD pathology
through an anti-inflammatory mechanism [21, 22].

Trilobatin (TLB), isolated from Lithocarpuspolystachyus
Rehd., has been shown to alleviate neuroinflammation and
oxidative stress in an ischemia/reperfusion brain injury
mouse model [23]. In this model, TLB exerts neuroprotec-
tive effects through the Nrf2/Kelch-like ECH-associated pro-
tein 1 (Keap-1) signaling pathway. A recent study shows that
TLB can delay aging through an antioxidative mechanism in
Caenorhabditis elegans [24]. Moreover, TLB was found to
modulate TLR4 function in the ischemia/reperfusion brain
injury mouse model [23]. Thus, we hypothesize that TLB
can alleviate AD-related neuroinflammation through the
TLR4 pathway and attenuate AD pathology. To address this
hypothesis, we treated 3×FAD AD model mice with TLB
and evaluated the effects of TLB on AD-related pathology
and memory function. We found that TLB attenuated mem-
ory deficits, alleviated Tau and Aβ pathology, modulated
spine plasticity, protected neuronal loss, and inhibited gliosis
in the 3×FAD AD mouse model. We think that TLB might
alleviate glial activation through the TLR4 pathway. Our
results uncovered a natural compound TLB that might halt
AD progression through multiple pathways. It might
provide a potential therapeutic approach involving TLR4
inhibition in AD treatment.

2. Materials and Methods

2.1. Animals. C57BL/6J mice (male, 18∼26 g, 6∼8 weeks old)
were purchased from the Laboratory Animal Center of
GuizhouMedicalUniversity (Guizhou, China). 3×FAD trans-
genic AD mice (APP Swedish, MAPT P301L, and PSEN1
M146V) were purchased from Beijing iBio Logistics Co.,
Ltd. (Beijing, China). Mice were kept under a 12h light-dark
cycle with full access to food andwater. All procedures involv-
ing animals were preapproved by the Institutional Animal
Care and Use Committee of Guizhou Medical University.

2.2. Drug Treatment and Experimental Groups. Four-month-
old wild-type (WT) mice and 3×FAD transgenic AD mice
were used for all experiments. TLB was dissolved in saline
for gavage. The 10mg/kg or 20mg/kg dose of TLB (10mg/kg
and 20mg/kg) was given as reported in earlier studies [23].
Mice were divided into five groups:

WT: saline was administered by gavage in place of TLB
solution.

WT+TLBH: WT mice were treated with TLB (high dose)
by gavage at a dose of 20mg/kg once a day for 12 weeks.

3×FAD: the 3×FAD transgenic AD mice were treated
with saline by gavage in place of TLB.

3×FAD+TLBL: the 3×FAD transgenic AD mice were
treated with TLB (low dose) by gavage at a dose of 10mg/kg
once a day for 12 weeks.

3×FAD+TLBH: the 3×FAD transgenic AD mice were
treated with TLB (high dose) by gavage at a dose of 20mg/kg
once a day for 12 weeks.

After 12 weeks of TLB gavage, the mice were humanely
killed with an overdose of sodium pentobarbital (80mg/kg,
i.p.). Then, samples were perfused with 0.9% saline transcar-
dially for 5min. Mouse brains were removed. One hemi-
sphere of each brain was used for biochemical analysis,
and the other hemisphere was fixed in 4% paraformaldehyde
for morphological analysis.

2.3. Morris Water Maze (MWM) Test. The effect of TLB on
the memory performance of mice was analyzed by the
MWM test [25]. The maze (110 cm in diameter) was filled
with ~20°C opacified water. Before the test, mice were
trained to habituate the maze. During training, the mice
were allowed to swim for 60 s to find the platform (10 cm
in side length) in the second quadrant. The platform was
set 1 cm beneath the water surface. The mice were reset at
the platform when they failed to find the platform in 60 s.
The mice were trained twice a day with a 30min interval
between training sessions. The platform was removed one
day after the training. The mice were left in the fourth quad-
rant and allowed to swim. The swimming trials were
recorded using a camera set above the maze. The time spent
in the target quadrant (second quadrant) and times of cross-
ing the platform were analyzed as an indicator of memory
performance. The test of each mouse was repeated 3 times,
and the average time of these three trials was recorded.

2.4. Congo Red Staining. Congo red staining was conducted
using a Congo red amyloid stain kit (G1532, Solarbio Life
Science, Beijing, China). Paraffin-embedded brains were
sectioned using a microtome (RM2235, Leica, Germany),
immersed in Congo red solution for 25min, and then
washed with 0.1M PBS. After being stained with hematoxy-
lin for 30 sec, the sections were dehydrated in gradient alco-
hol. Pictures were acquired using a microscope (CX23,
Olympus, Japan). Six mice per group were included in the
experiment. Three separate serial sections per mouse were
processed for Congo red staining analysis.

2.5. Immunohistochemical (IHC) Staining. Brain tissues were
sectioned using a microtome (RM2235, Leica, Germany).
After antigen recovery using sodium citrate, the sections
were incubated with primary antibodies mouse anti-GFAP
(3670s, 1 : 200, Cell Signaling Technology, USA), Aβ
(ab201060, 1 : 200, Abcam, USA), phosphor-Tau (ab32057,
1 : 150, Abcam, USA), and rabbit anti-NeuN (ab128886,
1 : 200, Abcam, USA). The sections were developed with
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3,3′-diaminobenzidine (DAB) kits (Cat#CW2069, CWBio,
China) according to the manufacturer’s protocol. Images
were obtained using a microscope (CX23, Olympus, Japan).
Six mice per group were included in the experiment. Three
separate serial sections per mouse were processed for immu-
nostaining analysis.

For immunofluorescence labeling, frozen sections
(25μm) were cut using a freezing microtome (CM1950,
Leica, Wetzlar, Germany). After blocking with 5% BSA con-
taining 0.5% Triton X-100 for 40min, the floating sections
were incubated with primary antibodies Aβ (ab201060,
1 : 200, Abcam, USA) and Iba1 (ab178846, 1 : 200, Abcam,
USA). After being rinsed in water, the sections were incu-
bated in the secondary antibody Alexa Fluor 488 (A-21206,
Thermo Fisher Scientific, MA, USA). Nuclei were labeled
using DAPI (H-1020, Vector Labs, CA, USA). Images were
acquired using a confocal microscope (LSM 900, Carl Zeiss,
Germany). Six mice per group were included in the experi-
ment. Three separate serial sections per mouse were proc-
essed for immunostaining analysis.

2.6. Nissl Staining. The Nissl staining was conducted using a
Nissl staining kit (G1434, Solarbio Life Science, Beijing,
China) according to the manufacturer’s protocol. Paraffin-
embedded brain tissues were sectioned using a microtome
(RM2235, Leica, Germany). Then, the sections were
dewaxed and rehydrated before being immersed into meth-
ylene blue stain solution for 10min. After being immersed
into the Nissl differentiation solution for 3 sec, the sections
were rinsed in water. At last, the sections were dehydrated
in pure alcohol. Pictures were acquired using a microscope
(CX23, Olympus, Japan). Six mice per group were included
in the experiment. Three separate serial sections per mouse
were processed for Nissl staining analysis.

2.7. Western Blot. Hippocampal tissue was homogenized in
the protein extraction buffer containing protease and phos-
phatase inhibitors. After centrifugation, the protein superna-
tant was collected. Protein concentration was measured with
a Protein Quantitative Analysis Kit (Biocolors, Shanghai,
China). The supernatant was then mixed with the loading
buffer and boiled at 99°C for 10min. The samples were sep-
arated by SDS-PAGE and transferred to PVDF membranes
(Millipore, Billerica, MA, USA). The membranes were
blocked in 5% nonfat milk at room temperature for 1 h, then
incubated overnight at 4°C with the following primary anti-
bodies: Aβ (ab217153, 1 : 1000, Abcam, USA), BACE1
(ab108394, 1 : 1000, Abcam, USA), sAPPβ (ab32136,
1 : 1000, Abcam, USA), p-GSK3β Y216 (ab68476, 1 : 1000,
Abcam, USA), GSK3β (ab93926, 1 : 1000, Abcam, USA), p-
Ser396 Tau (9632S, 1 : 1000, Cell Signaling Technology,
USA), p-Ser202 Tau (39357S, 1 : 1000, Cell Signaling Tech-
nology, USA), Tau (ab80579, 1 : 1000, Abcam, USA),
PSD95 (ab2723, 1 : 1000, Abcam, USA), SNAP25
(ab109105, 1 : 1000, Abcam, USA), Syn1 (ab254349,
1 : 1000, Abcam, USA), SYP (ab32127, 1 : 1000, Abcam,
USA), VAMP1 (ab151712, 1 : 1000, Abcam, USA), TLR4
(ab13556, 1 : 1000, Abcam, USA), MYD88 (ab219413,
1 : 1000, Abcam, USA), TRAF6 (ab33915, 1 : 1000, Abcam,

USA), p-NFκB (ab76302, 1 : 1000, Abcam, USA), NFκB
(ab32536, 1 : 1000, Abcam, USA), TNF-α (ab66579,
1 : 1000, Abcam, USA), IL-1β (ab200478, 1 : 1000, Abcam,
USA), IL-6 (ab208113, 1 : 1000, Abcam, USA), and β-actin
(ab8226, 1 : 1000, Abcam, USA). After incubating with the
secondary antibody at room temperature for 1 h, the
membranes were interacted with electrochemilumines-
cence reagents (Bio-Rad, Hercules, CA, USA) to visualize
the immunoblot signals. ImageJ software was used to
measure band densities, and protein expression levels were
normalized to β-actin intensity.

2.8. Dendritic Spine Analysis. Brain tissues were fixed in 4%
PFA for 4 hrs. Sections of 250μm were made using a vibra-
tome (VT1200S, Leica, Germany) and were mounted on
glass slides. Lucifer yellow fluorescent dye (4% in lithium
chloride, L453, Thermo Fisher Scientific) was loaded into a
pipette and injected into the neurons in the hippocampal
area. Briefly, the dye was injected into a neuron with a
~2nA current for 20min until the whole dendritic branches
were visualized under a fluorescent microscope. The 3D z
-stack dendritic spine images were obtained using a confocal
microscope (LSM 880, Carl Zeiss, Germany). The number of
dendritic spines was analyzed using Imaris software (Oxford
instruments). Six mice per group were included in the exper-
iment. Three separate serial sections per mouse were proc-
essed for dendritic spine analysis.

2.9. Statistical Analysis. Results were collected from three
independent experiments. The data were presented as
mean ± SD and were analyzed using SPSS 25.0 (IBM Corpo-
ration, Armonk, NY, USA) and GraphPad Prism 7.0
(GraphPad Software, Inc., CA, USA). The differences were
assessed by one-way analysis of variance. p < 0:05 was
defined as statistically significant.

3. Results

3.1. TLB Ameliorated Cognitive Deficits in 3×FAD Mice. The
MWM test was conducted to determine whether the cogni-
tive impairments of 3×FAD AD mice were rescued by
TLB. The MWM test showed that the escape latency was
progressively decreased from day 1 to day 5 (Figure 1(d)).
However, the 3×FAD mice showed an elevated escape
latency compared to WT mice on day 5. In contrast,
3×FAD AD mice treated with a low level of TLB (10mg/kg)
showed a decreased escape latency compared to 3×FAD
mice (Figure 1(e)). Moreover, the 3×FAD mice treated with
a high dose of TLB (20mg/kg) showed a significantly lower
escape latency compared to 3×FAD mice treated with a
low dose of TLB (Figure 1(e)). It is noteworthy that the
escape latency in 3×FAD mice treated with a high dose of
TLB has no differences compared to that in WT mice.
Furthermore, we compared the time spent in the target
quadrant from each mouse group. The 3×FAD mice showed
a shorter time in the target quadrant than WT mice. And the
3×FAD mice treated with low-dose TLB showed a longer
swimming time in the target quadrant compared to
3×FAD mice. The 3×FAD mice treated with high-dose
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Figure 1: TLB ameliorated cognitive deficits in 3×FAD mice. (a) Chemical structure of TLB (C21H24O10, molecular weight = 436:4). (b)
Experimental design. (c) Representative paths in the MWM test. (d) The escape latency of each mouse group tested from day 1 to day
5. (e) The escape latency on day 5. (f) Time spent in the target quadrant in the MWM test. n = 6 per group. ∗p < 0:05; ∗∗p < 0:01;
∗∗∗p < 0:001.
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Figure 2: Continued.
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TLB showed a longer swimming time in the target quadrant
compared to low-dose TLB-treated mice (Figure 1(f)).

3.2. TLB Alleviated Aβ Deposition in 3×FAD Mice. To inves-
tigate the effect of TLB on Aβ deposition, the Congo red
staining and Aβ IHC staining were performed. Both
revealed that the Aβ plaque load is significantly increased
in 3×FAD AD mice. Compared to the 3×FAD mice, the
mice treated with a low dose of TLB showed a significant
decrease of the Aβ plaque load in the cortex and hippocam-
pus. Furthermore, a high dose of TLB showed a remarkable
Aβ load alleviation effect than a low dose of TLB in 3×FAD

mice (Figures 2(a)–2(d)). Next, we examined the effect of
TLB on amyloidogenic processing in 3×FAD mice. We
found that the BACE1 and sAPPβ protein levels were
increased in 3×FAD mice compared to WT mice. And both
a low dose and a high dose of TLB decreased the BACE1 and
sAPPβ levels in 3×FAD mice. Furthermore, TLB reversed
the phosphorylation of GSK3β levels in 3×FAD mice
(Figures 2(e)–2(i)).

3.3. TLB Inhibited Tau Phosphorylation in the AD Mouse
Model. The Tau pathology was assessed in the 3×FAD AD
mouse model. Tau IHC staining showed that p-Ser396 Tau
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Figure 2: TLB alleviated Aβ deposition in 3×FAD mice. (a) Congo red staining and Aβ IHC staining in the hippocampal area and cortex.
(b) Comparison of Congo red staining analysis in the hippocampal area. (c) Comparison of Aβ-positive plaque in the cortex. (d) Aβ plaque
load in the hippocampal CA1 area. (e–i) Western blot and quantitative analysis of Aβ, BACE1, sAPPβ, p-GSK3β, and GSK3β in
hippocampal tissues. n = 6 per group. ∗p < 0:05; ∗∗p < 0:01; ∗∗∗p < 0:001.
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pathology was remarkable in 3×FAD mice. The intensity of
p-Ser396 Tau was significantly lower in hippocampal subre-
gions of low-dose TLB-treated AD model mice than in those
of WT mice. And a high dose of TLB showed a much stron-
ger Tau pathology alleviation effect than a low dose of TLB
(Figures 3(a) and 3(b)). Western blots further revealed that
Tau phosphorylation at Ser396 and Ser202 sites was remark-
ably decreased in 3×FAD+TLBL and 3×FAD+TLBH mice
compared to 3×FAD mice (Figures 3(c)–3(f)).

3.4. TLB Reduced Neuronal Loss and Synaptic Degeneration
in 3×FAD Mice. In order to assess whether oral administra-
tion of TLB affects the neuronal number in 3×FAD mice, we
performed neuronal marker NeuN IHC staining and Nissl
staining in the cortex and hippocampus. We found a
remarkable reduction of the NeuN-positive cell number in
the cortex and hippocampus of 3×FAD mice compared to
WT mice. Consistently, Nissl staining showed that the
Nissl-positive cell number was suppressed in 3×FAD mice
compared to WT mice. In contrast, treatment with low
and high doses of TLB clearly increased the NeuN- and
Nissl-positive cell number in the AD mouse model. Note
that the neuronal number in the 3×FAD+TLBH group was
higher than that in the 3×FAD+TLBL group (Figure 4).

To further test the effect of TLB on synaptic density, we
conducted spine morphology analysis. The total spine
number and mushroom spine number were suppressed in
3×FAD AD model mice compared to WT mice. However,
low and high doses of TLB oral treatment reduced the total
and mushroom spine density loss in hippocampal areas of
AD model mice (Figures 5(a)–5(c)). Western blot further
revealed that the synapse-associated protein including
PSD95, SNAP25, Syn1, SYP, and VAMP1 expression was

suppressed in 3×FAD AD model mice. In contrast, low and
high doses of TLB treatment reversed the synapse-associated
protein loss in 3×FAD AD model mice (Figures 5(d)–5(i)).

3.5. TLB Alleviated Glial Activation in AD Model Mice. In
order to test the effect of TLB on glial activation, hippocam-
pal sections were immunostained with antibodies including
astrocyte marker GFAP and microglial marker Iba1. A sig-
nificant increase of the GFAP- and Iba1-positive cell number
was detected in the 3×FAD mouse brains compared with WT
mice. And a remarkable reduction of the GFAP- and Iba1-
positive cell numberwas detected in the hippocampalCA1 area
of the 3×FAD mice compared with the vehicle-treated mice.
Furthermore, a significant difference of the GFAP- and Iba1-
positive cell number was noticed between the low- and high-
dose TLB-treated 3×FAD ADmice (Figure 6).

3.6. TLB Ameliorated Neuroinflammation through Reducing
TLR4 in AD Model Mice. To further study the potentialmech-
anism underlying the effect of TLB on AD pathology-related
neuroinflammation, we tested the TLR4 signaling pathway
proteins. We found that TLR4, MYD88, TRAF6, p-
NFκB/NFκB, TNF-α, IL-1β, and IL-6 were elevated in
3×FAD mice compared to WT mice. And TLB treatment
induced a reduction ofTLR4,MYD88,TRAF6, p-NFκB/NFκB,
TNF-α, IL-1β, and IL-6 levels compared to the vehicle-treated
3×FAD mice. Furthermore, a significant difference was
observed between the low and high-dose TLB-treated mice.

4. Discussion

In the present study, we identified that TLB might alleviate
Aβ deposition, Tau pathology, synaptic degeneration, glial
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Figure 3: TLB inhibited Tau phosphorylation in the AD mouse model. (a) Representative images of p-Ser396 Tau IHC staining. (b) Relative
intensity of p-Ser396 Tau in hippocampal subregions. (c–f) Western blot and quantification for phosphorylated Tau at Ser396 and Ser202
sites and total Tau in the hippocampus. n = 6 per group. ∗p < 0:05; ∗∗p < 0:01; ∗∗∗p < 0:001.
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activation, and memory impairment in the AD mouse
model. And the TLR4-MYD88-NKκB pathway might be
involved in the anti-neuroinflammatory effect in the process.
We show for the first time that TLB reverses AD pathology

and memory impairment in 3×FAD mice, indicating a
promising drug candidate for halting AD progression.

In a recent study, Chen et al. [26] showed that TLB
protects HT22 cell death induced by Aβ25-35 through the
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Figure 4: TLB reduced neuronal loss in 3×FAD mice. (a) Representative figures of NeuN staining in the cortex and hippocampus and
Nissl staining in hippocampal regions. (b, c) Quantification of neuronal content in the cortex and hippocampus from NeuN IHC
staining results. (d) Quantitative analysis of the surviving neuron number in the hippocampus from Nissl staining results. n = 6 per
group. ∗p < 0:05; ∗∗p < 0:01; ∗∗∗p < 0:001.
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Figure 5: Continued.
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ROS/p38/caspase 3 pathway. However, the study has not
shown the effect of TLB in the AD in vivo model. In the
present study, we showed that TLB has reversed the memory
impairment phenotype in the 3×FAD AD mouse model
using the MWM test. Notably, the high dose of TLB
improved the memory function of 3×FAD mice to the level
of WT mice (Figures 1(c)–1(f)).

Since AD is a neurodegenerative disease characterized by
Aβ deposition and p-Tau aggregation, we therefore tested
the effect of TLB on Aβ and p-Tau pathology. Specifically,
we applied Congo red and Aβ IHC staining in hippocampal
and cortical regions. We found that TLB dramatically
reduced the Aβ burden (Figures 2(a)–2(d)). More impor-

tantly, we observed that TLB inhibited the expression of
BACE1 and sAPPβ, suggesting that TLB can break the loop
of the BACE1-mediated amyloidogenesis. And TLB also
suppressed the hyperphosphorylation of GSK3β, which acts
as a Tau kinase (Figures 2(e)–2(i)). As we know, GSK3β
modulates BACE1 expression, and Aβ can drive the BACE1
level to increase. Thus, it is likely that the reduced amyloid
deposition by TLB might be through breaking the vicious
cycle of the Aβ burden, Aβ-induced GSK3β activation,
and GSK3β-induced BACE1 expression. Moreover, TLB
inhibited the Tau hyperphosphorylation at Ser396 and
Ser202 sites, as evidenced by western blot and IHC staining
(Figures 3). TLB may also suppress the activation of GSK3β,
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Figure 5: TLB alleviated synaptic degeneration in AD model mice. (a) Representative images of spine morphology in each group. (b, c)
Quantitative analysis of total spine density and mushroom-type spine density. (d) The representative blots of PSD95, SNAP25, Syn1,
SYP, and VAMP1 in each group. (e–i) Quantitative analysis of PSD95, SNAP25, Syn1, SYP, and VAMP1 protein levels. n = 6 per group.
∗p < 0:05; ∗∗p < 0:01; ∗∗∗p < 0:001.
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which is characterized by GSK3β hyperphosphorylation.
This finding suggests that TLB ameliorates Tau hyperpho-
sphorylation by inhibiting GSK3β activation.

The neuronal loss in the hippocampal region accounts
for memory deficits in AD [27]. We examined the effect of
TLB on neuronal density in the hippocampus and cortex.
We found that a low dose and high dose of TLB treatment
rescued the neuronal loss in 3×FAD AD mice, as examined
by NeuN IHC and Nissl staining methods (Figure 4). This
neuroprotective effect of TLB is consistent with the finding
in an earlier study of oxygen deprivation and reoxygenation
on primary cortical neurons [23].

Given that synaptic degeneration is also involved in the
process of AD-related memory impairment [28], we then
tested the effect of TLB on synaptic pathological plasticity.
Spine density analysis unexpectedly revealed synaptic
pathology in the 3×FAD AD mouse hippocampal area
(Figures 5(a)–5(c)). Our finding of rescued total spine
density and mushroom spine density in TLB-treated
3×FAD mice showed a synaptic protective effect of TLB.
Additionally, western blot analysis revealed that the loss of
synaptic proteins in 3×FAD mice was attenuated by orally
treated TLB (Figures 5(d)–5(i)). It is likely that the memory
improvement by TLB was due to the spine density increase
and synaptic protein upregulation. In line with this, preserv-
ing dendritic spine density leads to cognitive improvement

and memory loss attenuation in the 5×FAD AD mouse
model [29].

Extracellular Aβ deposition and intracellular p-Tau
aggregation might trigger reactive gliosis which leads to
inflammatory factors [30]. And reactive gliosis has been
proved to drive the pathogenic cascades of AD [31]. Previ-
ous studies of anti-inflammatory strategies showed improve-
ments in neurodegenerative disease models [32]. Thus, we
applied GFAP and Iba1 immunostaining analysis to observe
the number of astrocytes and microglia. Increased astrocyto-
sis and microgliosis were observed in 3×FAD mouse brains,
whereas reduced gliosis was observed in the TLB-treated AD
model brain samples, suggesting a strong anti-inflammatory
effect of TLB (Figure 6). The data from Gao et al. [23] are
consistent with ours in that TLB exerts an inactivation effect
on glial cells. Studies have shown that, in AD, glial cells’
phagocytosis function is impaired, which leads to the toxic
Aβ burden [33]. Thus, we reckoned that the glial phagocyto-
sis function is enhanced after TLB treatment, and the Aβ
burden is reduced finally.

Although we found that TLB can inhibit reactive gliosis
in AD mouse brains, the molecular mechanisms responsible
for this inhibition remained unknown. Earlier studies
revealed that the anti-inflammatory effect of TLB correlates
with inhibiting NFκB phosphorylation in vivo and in vitro
[34]. Based on this notion, we detected the TLR4-MYD88-
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NFκB pathway proteins. As expected, we found that, in
3×FAD mouse brains, TLR4-MYD88 pathway proteins were
overexpressed, accompanied by NFκB hyperphosphoryla-

tion. TLB reversed the changes in this AD mouse model,
suggesting that the anti-inflammatory effect might be
TLR4-MYD88-NFκB pathway-dependent (Figure 7).
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Figure 7: TLB ameliorated neuroinflammation through reducing TLR4 in AD model mice. (a) Representative western blots of TLR4,
MYD88, TRAF6, p-NFκB, and NFκB. (b) Representative western blots of TNF-α, IL-1β, and IL-6. (c–f) Quantification of TLR4, MYD88,
TRAF6, and p-NFκB/NFκB levels in each group. (g–i) Quantification of TNF-α, IL-1β, and IL-6 levels in each group. n = 6 per
group. ∗p < 0:05; ∗∗p < 0:01; ∗∗∗p < 0:001.
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Moreover, we demonstrated that TLB reduces the inflamma-
tory factors which are regulated by NFκB phosphorylation.
In line with this, studies have found that the loss of function
or inhibition of TLR4 suppresses AD progression in the
mouse model [35, 36]. Moreover, previous studies showed
that inhibiting the TLR4 pathway alleviated motor impair-
ment and dopaminergic neuron death in the Parkinson’s
disease mouse model [37]. And Kwilasz et al. showed that
TLR4 antagonists prevented the production of proinflam-
matory factors and motor dysfunction in the experimental
autoimmune encephalomyelitis mouse model [38]. All these
studies have shown that TLR4 might be a promising target
in neuroinflammation treatment. Given the fact that inflam-
matory factors contribute to neuronal loss, synaptic loss, and
behavior impairments in AD progression, we think that the
TLR4-MYD88-NFκB-dependent anti-inflammatory effect of
TLB might be accountable for its neuroprotective effect.

Due to the complicated pathophysiological changes in AD
progression, drugs targeting Aβ failed in halting AD-related
memory deficits and pathological changes. We think that tar-
geting multiple pathways for AD intervention, such as anti-
inflammation, Aβ reduction, and Tau hyperphosphorylation
inhibition, might be an effective treatment plan. According to
the experiments above, we have a reason to consider that TLB
seems to have multiple targets on halting AD progression.

5. Conclusion

In summary, we uncovered TLB for AD therapy by explor-
ing multiple pathway mechanisms including Aβ burden
reduction, Tau hyperphosphorylation inhibition, and anti-
inflammation. TLB was effective in reducing neuronal loss,
alleviating synaptic degeneration, and ameliorating memory
deficits in the AD mouse model. More studies and further
clinical trials to test its efficacy would be necessary.
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