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Abstract

To combine a feedforward neural network (FNN) and Lie group (symmetry) theory of differ-

ential equations (DEs), an alternative artificial NN approach is proposed to solve the initial

value problems (IVPs) of ordinary DEs (ODEs). Introducing the Lie group expressions of the

solution, the trial solution of ODEs is split into two parts. The first part is a solution of other

ODEs with initial values of original IVP. This is easily solved using the Lie group and known

symbolic or numerical methods without any network parameters (weights and biases). The

second part consists of an FNN with adjustable parameters. This is trained using the error

back propagation method by minimizing an error (loss) function and updating the parame-

ters. The method significantly reduces the number of the trainable parameters and can

more quickly and accurately learn the real solution, compared to the existing similar meth-

ods. The numerical method is applied to several cases, including physical oscillation prob-

lems. The results have been graphically represented, and some conclusions have been

made.

1 Introduction

Various fields, such as science, finance, and engineering, can transform several problems into

a set of ordinary differential equations (ODEs) or partial DEs (PDEs) through mathematical

modeling. Usually, the analytical solutions of these equations are unavailable. Therefore, solv-

ing the numerical solution of ODEs becomes particularly important to explore real world

problems. Several off-the-shelf methods (e.g., Euler [1], Runge-Kutta [2], Finite difference [3],

Adomian decomposition [4], and Lie group [5] methods) are available for solving numerical

solutions of DEs [6]. Several new studies are being conducted to obtain more efficient algo-

rithms. A class of them is the methods based on artificial neural networks (ANNs) or deep

learning models [7–22]. The main idea used in these methods is the use of the highly accurate

approximation capability of an ANN to a continuous function [8]. This has been used in vari-

ous ways. Considering [9, 10], a representative ANN method for solving ODEs and PDEs is

presented. Regarding the method, the trial solution is expressed as the sum of two terms. The
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first term satisfies the initial or boundary values, and it does not contain network parameters.

The second term is a feedforward NN (FNN) to be trained to satisfy the given ODEs or PDEs.

However, the first term is constructed synthetically by observing the given initial or boundary

values. Such free selection of the first term in the trial solution may not be suitable for captur-

ing nonlinearity information of the real solution in the domain of the initial point. Regarding

[11], He et al. used the extended back propagation algorithm to train the derivative of an FNN

to solve a class of first-order PDEs. Moreover, Li-ying et al. proposed an ANN algorithm based

on cosine basis functions to solve ODEs [12]. Ioannis et al. created a trial solution in the form

of a neural network based on a syntactic evolution scheme to solve ODEs and PDEs [13]. Fur-

thermore, Shekari et al. determined the approximate solutions of time-dependent PDEs based

on ANNs and a hybrid method of minimization techniques and configuration methods [14].

Chakraver et al. proposed a regression-based NN model to solve the initial or boundary value

problems (IBVPs) for ODEs [15]. Additionally, Mall et al. proposed a new method based on a

single-layer Legendre NN model to solve the IBVP for nonlinear ODEs [16]. Dockhorn proved

that small NNs (parameters <500) can accurately learn the solutions of practical problems

(Poisson and Navier-Stokes equations) [17]. Shangjie [18] obtained the approximate solutions

of DEs through an ANN. In [19], a deep learning algorithm is provided to solve the IBVP of a

class of high dimensional stochastic PDEs. Multi-layer physical information NN deep learning

was used to investigate data-driven peakon solutions and periodic peakon solutions of

Camassa-Holm (CH) equation, Degasperis-Procesi equation, etc, with initial conditions [20].

The goal of using ANN to solve ODEs or PDEs is to make it computationally cheaper. Gen-

erally, performing ANNs to solve ODEs or PDEs involves a number of parameters to be

trained with a lot of data. Considering several DEs, there is prior knowledge that is currently

not being used in ANN algorithms or machine learning practice. These include some mathe-

matical principles, solution expressions, or physical information. This prior information can

act as a regularization agent that reduces the number of trainable parameters or the demand

for a large number of training data. Therefore, using such useful information in a network

algorithm results in amplifying the information content of the solution that the algorithm

guides itself towards the accuracy approximation, even when only small network models or a

few training samples are available. The physics-inspired NNs for solving DEs are proposed,

where physical conservation laws and prior physical knowledge are encoded into the NNs

(refer to [21] and references therein). For example, the logarithmic nonlinear Schrödinger

(LNLS) equation is solved by a deep learning method of physical information NN. This is an

important physical model in several fields such as quantum optics and nuclear physics in [22].

On the other hand, because the solution of DE is a continuous function, it is also important to

find a trial function expression that is closer to the properties of the true solution. This makes

the ANN effective and can quickly capture the implied properties of the real solution.

Lie group (symmetry) of DEs, universally known as one parameter transformation group

method of DEs, has had a profound impact on all areas of mathematics (both pure and

applied), physics, engineering, and other mathematically based sciences [5, 23, 24]. The groups

can be found using symbolic computational method, and they are used to construct the explicit

solutions of the corresponding DEs [25]. They also reduce the dimension in order of equations

or number of involved variables, making the method efficiently solve nonlinear DEs within a

certain range. Particularly, regarding an IVP of a first-order system of ODEs, this method also

provides an explicit formal formula of the solution. This point is used in the present study. The

advantages of the Lie groups in numerical analysis are extensively discussed in [26–28].

This study presents a method for solving the IVP of ODEs by combining the Lie group the-

ory of ODEs and an FNN, which is significantly computationally cost effective. Moreover, the

method leads to a differentiable, closed analytic form solution of the problem on whole interval

PLOS ONE Solving initial value problems of ordinary differential equations based on Lie group neural networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0265992 April 6, 2022 2 / 20

between the designated author and the editors,

reviewers and readers of this magazine.

https://doi.org/10.1371/journal.pone.0265992


of independent variables. Considering the method, using Lie group theory, the trial solutions

to the IVP are expressed by the sum of two parts. The first part is the solution to an IVP of

other ODEs with the initial value of the original problem. The ODEs in the IVP are from the

part terms of the original ODEs selected by obeying some solvable principles so that the first

part of the solution can easily be solved in advance by Lie group method, some known sym-

bolic or numerical methods. Owing to the specific feature of the IVP, the first part itself can

capture the essential properties of the real solution in an interval of initial point of independent

variable. Moreover, the first part contains no training parameters because it does not take part

in training the networks. The second part of the solution is constructed by an FNN, without

being required to satisfy any specific initial value.

The study makes the following contributions. This is first time that the Lie theory and ANN

method are being combined to solve IVP of ODEs. Because the first part of the solution bears

part of the workload and detects the nonlinearity of solution, small-scale networks and a small

amount of training data (samples) can solve the IVP more accurately. The algorithm signifi-

cantly increases efficiency of the network method to solve the IVP of ODEs. On the other

hand, the method provides new idea and enlighten on how to add “complementary elements”

and design an ANN to increase the efficiency of ANN algorithm to solve DEs by incorporating

with mathematical theory. Furthermore, the method can be applied to more a general form

IVP or BVP of ODEs. Moreover, after modifying or combining some of the existing methods

[29], the approach can be applied to IVP and BVP of PDEs.

The rest of the paper is structured as following. In Section 2, we introduce the Lie group

method for solving IVP of ODEs and an expression of solution to the IVP is proved. In Section

3, the general process of the proposed method is given. In Section 4, numerical experiments on

the application of our method to some problems are given, including the oscillation model in

physical problems. Finally, in Section 5, some discussions as well as future research directions

are presented.

2 Lie group expression for solution to the IVP of a DEs

2.1 A basic theorem

Let G1 = {Ta} be a one parameter (denoted by a) transformations x� = Ta(x) from x ¼
ðx1; x2; � � � ; xnÞ 2 R

n
to x� ¼ ðx�

1
; x�

2
; � � � ; x�nÞ 2 R

n
with components

Ta : x�i ¼ fiðx; aÞ; i ¼ 1; 2; . . . ; n: ð1Þ

Here functions f = (f1, f2, � � �, fn) are continuous and differentiable with respect to (w.r.t) inde-

pendent variables xi and parameter a varying in a neighborhood O of 0 2 R1
.

Let

D ¼
X

i¼1

xiðxÞ@xi ð2Þ

be a linear partial differential operator generated from the auxiliary functions defined by

x
i
ðxÞ ¼

@fiðx; aÞ
@a

�
�
�
�
a¼0

; i ¼ 1; 2; . . . ; n: ð3Þ

From [24], we know that set G1 form an one parameter transformation group with genera-

tor D from Rn
to itself if fi satisfy additional conditions: i) fi(x, 0) = xi; ii) fi(f(x, a), b) = fi(x, a +

b); iii) fi is differential w.r.t parameter a. In the group case, by Taylor expansion at a = 0, we
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have expressions of x�i as follows

x�i ¼ fiðx; aÞ ¼ xi þ xiðxÞa þ Oða2Þ ¼ eaDxi; i ¼ 1; 2; � � � ; n: ð4Þ

Here formal notation eaD ¼
P1

k¼0
ak
k!
Dk is used.

The correspondence between set G1 and an one parameter transformation group is given in

the following theorem (The more details can be seen in [5, 23, 24]).

Theorem 1 The set G1 with functions x�i ¼ fiðx; aÞ in (1) defining an one parameter trans-

formation group satisfies the IVP of ODEs

dx�

da
¼ Dx�; x�ja¼0 ¼ x: ð5Þ

Conversely, for any given continuously differentiable functions ξi(x), i.e., the operator D deter-

mined by (2), the function x� = f(x; a) obtained by solving the problem (5) determines an one

parameter transformation group with D as generator. Moreover, the transformations Ta : x� =

f(x; a), i.e. the solution of (5) can be expressed as formula (4), i.e., x� = eaD x.

2.2 An expression of solution to IVP of an ODEs

Effectively finding solution of IVP (5) depends on the complexity of the operator D. To reduce

this difficulty, let’s assume that D in (5) can be decomposed into summands of two parts as

D ¼ D1 þ D2: ð6Þ

Thus, we have

Theorem 2 (A solution expression) For an operator D in (5) with decomposition part D1 ¼
Pn

i¼1
giðxÞ@xi

in (6) and initial values x 2 Rn, the solutions to (5) have expression as

x� ¼ eaDx ¼ �xðx; aÞ þ ~N ðx; aÞ; ð7Þ

where �x ¼ �xðx; aÞ ¼ eaD1x and ~N ðx; aÞ ¼
R a

0
D2ðeða� tÞDxÞjx!�xðt;xÞdt.

The proof of the theorem is obtained by Grobner’s formula in [26] given by

eaD ¼ eaD1 þ
X1

a¼1

X1

k¼a

ak

k!
Dk� a

1
D2D

a� 1:

Obviously, the first part �x ¼ eaD1x of the above formula (7) is the solution to new IVP

d�x
da
¼ D1�x; �xja¼0 ¼ x; ð8Þ

by Theorem 1.

Evidently, by suitably choosing the first part D1 of D in (6), IVP (8) is more easily solved

than original IVP (5) by Lie group method as well as various symbolic or numerical methods

[6]. Moreover, in [24, 26], it is proved that under probably selection D1, the solution of (8)

higher accurately approximates the real solution of (5) in some interval of initial point a = 0.

Although the second part ~N in (7) will computed by symbolically in some simple cases, in

general it is extremely complicate if one directly solve it. In this article, we use the formula (7)

to design a FNN to solve the term.

Remark 1: It is notice that from (7), we have ~N ðx; 0Þ ¼ 0. Hence without loss of generality

we suppose ~N ðx; aÞ ¼ a �N ðx; aÞ for a differential function �N ðx; aÞ.
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3 Method

In the section, we describe the scheme of our Lie group based on FNN method which relies on

the expressions (7) of the solutions to an IVP of ODEs given in Theorem 2.

3.1 Scheme

Our method, first, is designed for the IVP of an autonomous system of ODEs

dyi
dx
¼ fiðy1; y2; � � � ; ynÞ; yið0Þ ¼ ai 2 R

1
; i ¼ 1; 2; � � � ; n; ð9Þ

where x 2 O 2 R1 is independent variable and yi = yi(x) are dependent variables and fi are dif-

ferential functions of own arguments. Then, we extend the method to solve different form

ODEs or PDEs problems.

We rewrite IVP (9) as operator form

dy
dx
¼ Dy; yð0Þ ¼ a; ð10Þ

by introducing notations y = (y1, y2, � � �, yn), α = (α1, α2, � � �, αn) and operator

D ¼
Pn

i¼1
fiðyÞ @

@yi
, which has the same form with (5). Consequently, by Theorem 2, the solu-

tion of IVP (9) can be written as

y ¼ exDa ¼ exD1aþ x �N ðx; aÞ ð11Þ

for a decomposition D = D1 + D2 and functions �N ðx; aÞ ¼ f �N iðx; aÞg
n
i¼1

with x as group

parameter. Here we understand that exD α = exD y|y!α.

We use this expression of the solution y to design a FNN method to approximate y(x) by a

neural network ŷðx; yÞ, where θ is the neural network parameters. To this end, we require that

the network (trial solution) has the expression

ŷðxÞ ¼ �yðxÞ þ xN ðx; yÞ; ð12Þ

where N ðx; yÞ is a differential function to be determined and �yðxÞ ¼ exD1a which is solution of

the following new IVP

d�y
dx
¼ D1�y ¼ gð�yÞ; �yð0Þ ¼ a; ð13Þ

by Theorem 1 for D1 ¼
Pn

i¼1
gið�yÞ@�yi

.

Therefore, the deviations between the trial solution ŷ in (12) and exact solution y in (11) is

characterized by

Dy ¼ jxðyðxÞ � ŷðxÞÞj ð14Þ

for x in considered interval.

Remark 2: We call IVP (13) as an associated IVP of original IVP (9) or (10). Its solution

�yðxÞ is determined in advance by solving IVP (13) and by applying the Lie group method or

other acknowledged various methods after appropriately selecting operator D1. The solvability

and good approximation capability of the associated IVP solution �y are main considerations of

choosing operator D1.

Consequently, compared with synthetic ways to give the first part of the trial solution in lit-

eratures, here the first part of the trial solution is constructed by a solution of the associated

IVP which more accurately approximates the real solution of IVP (9) to be solved in an interval
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of initial point x = 0. Due to the promising feature of efficient approximation of the first term

in (12) to exact solution, the construction of the second term in (12) by networks algorithm

takes much less a computational burden than that of solving the overall solution with big scale

training parameters. Hence, in automatic learning (training) procedure, the network detecting

quickly tunes itself to approach the natural properties of the solution. This is the main our

motivation why we combine the Lie group method with ANN. Therefore, our attention

focuses on determining the second part of solution (12).

This unknown function N ðx; yÞ in the second part of the trial solution (12) is constructed

by a FNN through optimizing the loss (error) function

LðyÞ ¼
1

N

XN

k

Xn

i¼1

dŷki
dx
� fiðŷ

k
1
; ŷk

2
; � � � ; ŷknÞ

� �2

; ð15Þ

where ŷki ¼ ŷiðxk; yÞ;
dŷki
dx ¼

dŷki ðx;yÞ
dx jx!xk

and the data set S ¼ fxkg
N
k¼1

is a set of train points

obtained from training interval O in some distributive sense.

Assuming that the operator D = D1 + D2 in (10) has expressions

D1 ¼
Xn

i¼1

giðyÞ@yi; D2 ¼
Xn

i¼1

hiðyÞ@yi with fi ¼ gi þ hi; ð16Þ

Thus the loss function (15) is rewritten as

LðyÞ ¼
1

N

XN

k

Xn

i¼1

gið�y
kÞ þ

dðxNiðx; yÞÞ

dx
jx¼xk � fiðŷ

kÞ

� �!2

;

0

@ ð17Þ

obtained by substituting (12), (13) and (16) into (15).

In the loss function (17), the gið�ykÞ is independent of training parameters θ. This saves

more computational effort. This is another benefit of combining Lie expression of DE solution

and ANN algorithm.

In our case (9), the network models should have one- input x and an n- output N ðx; yÞ ¼

fN iðx; yÞg
n
i¼1

layer. We use the network possessing m neurons as model to present our pro-

posed method scheme.

For each input x, there are outputs N iðx; yÞ as follows

N ðx; yÞ ¼ dðN̂ 1; N̂ 2; � � � ; N̂ n; Þ; N̂ j ¼
Xm

i¼1

vji � sðx � wi þ biÞ þ cj; ð18Þ

where trainable parameters θ = {wi, vji, bk, cj} and wi is the weight from the input x to the ith
neuron in the hidden layer and vj = {vj1, vj2, � � �, vjm} and vji is the weight vector from the ith
neuron in the hidden layer to the jth neuron in output layer, bj is the bias of the jth neuron in

hidden layer and cj is the bias of the jth output neuron. The both σ(�) and δ(�) are activation

functions for outlets of hidden and output layers respectively. In our examples given next sec-

tion, we use a Sigmoid function as hidden layer activation and take a linear activation in the

output layer for our networks.

In training the networks, the values of loss function are obtained by the forward training

with formula (18), and the gradient descents of loss function (17) are obtained in the backpro-

pagation; minimizing the loss function involves not only the network output N ðx; yÞ, but also

the derivatives of the network output N ðx; yÞ w.r.t the input and network parameters; while

these derivatives are given recursively by the ones of N̂ i and functions δ and σ; the update
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network parameters are using unified formula as

y
kþ1
¼ y

k
þ Dy

k
¼ y

k
� Z

@LðyÞ
@y

k ;

where η is the learning rate and k is the iteration step (refer to [9]).

3.2 Principle to select operator D1

The efficiency of the proposed method above depends on the selecting of operator D1 in

decomposition D = D1 + D2. The main principles in choosing D1 are given in the following

considerations.

1. The associated IVP (13) is easily solved explicitly or numerically. In particular, we choose gi
in (16) as part terms of fi in (9) so that the associated IVP (13) yields explicit or numerical

solutions.

2. The operations of calculation on loss function (17), such as calculation of derivatives and

values of them, are not expansive as possible as.

3.3 Extension

The method proposed above can be applied to any IVP or BVP of DEs which as long as can be

transformed to the form of (9).

3.3.1 Non-autonomous case. For the non-autonomous case

dyi
dx
¼ fiðx; y1; y2; � � � ; ynÞ; yið0Þ ¼ ai 2 R

1; i ¼ 1; 2; � � � ; n; ð19Þ

we introduce a new variable y0 = x and add an equation
dy0

dx ¼ 1 and initial value y0(0) = 0

to (19). Then, the current IVP turns to the standard IVP (9) with n + 1 unknown functions

y0, y1, � � �, yn and operator D ¼
Pn

i¼1
fi@yi
þ @x.

3.3.2 High-order case. For the general IVP of an n-order non-autonomous ODE

dnyðxÞ
dxn

¼ f ðx; y; y0; . . . ; yðn� 1ÞÞ;

yðkÞ ¼ akþ1; k ¼ 0; 1; . . . ; n � 1;

ð20Þ

we can transform it to the standard IVP (9) by introducing transformations y0 ¼ x; y1 ¼

y; y2 ¼ y0
1
; . . . ; yn ¼ y0n� 1

with correspondingly f0 = 1, f1 = y2, . . ., fn−1 = yn, fn = f(y0, y1, . . ., yn).

3.3.3 Nonzero start points. In nonzero start point x = x0 in (5), we do a translation

x! x − x0 to change the problem into standard form.

3.3.4 PDE case. The most intuitive idea is to convert the PDE to the ODE and then solve

the original problem indirectly. For example, use symmetries of PDE, traveling wave transfor-

mations, etc to decrease the order of the PDEs and number of independent variables involved

in the PDEs. Another idea is to combine existing semi-discrete methods for solving PDE [29].

Discrete the underline PDEs in spatial variables approximately so that the resulting semi-dis-

crete equation can be cast into an ODEs (9), then use the proposed method on the resulted

ODEs.

3.3.5 Two point problem case. To two points problem of ODEs, we firstly regard the

problem as an IVP with using a point value as initial value problem, then put another point

value in the loss function so that the network automatically learn the boundary value.
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Next section, by applying the given method on solving some physical problems, we illus-

trate the superiority of the method.

4 Numerical experiments and applications

In this section, we provide some examples to show the effectiveness of our proposed method.

Considering each example, we evaluate the method by calculating the error between our

results and the exact solutions (if available) or numerical solutions obtained from known

numerical methods. Regarding all the examples, a small architecture FNN with one hidden

layer of only three neurons, a linear output, and a small training data is used. To illustrate the

feature of the solution obtained by our method, we provide figures displaying the graph of the

solution and the exact solution of the training interval. In addition, we draw the compared fig-

ures of first terms of the trial solutions given in present article and literatures to show the capa-

bilities of the terms to capture nonlinear properties of the real solutions. Moreover, we

consider points outside the training interval (some extensions of the training interval) to show

the generalization and stability of our method.

Example 1. The first example shows the procedure and efficiency of our proposed method

by comparing it with the methods provided in previous studies. We solve the IVP of two cou-

pled first-order nonlinear ODEs considered in [9].

dy1

dx
¼ cosðxÞ þ y2

1
þ y2 � 1þ x2 þ sin2ðxÞð Þ;

dy2

dx
¼ 2x � 1þ x2ð ÞsinðxÞ þ y1y2;

ð21Þ

with x 2 [−1, 1] (training interval) and initial values y1(0) = 0 and y2(0) = 1. The IVP has exact

solutions y1(x) = sin(x) and y2(x) = 1 + x2.

To apply our method, let’s turn the problem into the form of (9), i.e., an autonomous sys-

tem of equations

y0
1
ðxÞ ¼ f1ðy0; y1; y2Þ ¼ cosðy0Þ þ y2

1
þ y2 � ð1þ y2

0
þ sin2ðy0ÞÞ;

y0
2
ðxÞ ¼ f2ðy0; y1; y2Þ ¼ 2y0 � ð1þ y2

0
Þsinðy0Þ þ y1y2;

y0
0
ðxÞ ¼ f0ðy0; y1; y2Þ ¼ 1;

8
><

>:
ð22Þ

with introducing variables y0 = x and using initial values y0(0) = y1(0) = 0, y2(0) = 1.

From (16), the differential operator D of this equation is D = f1@y1 + f2@y2 + f0@y0. We select

the linear parts of functions fi to construct operator D1 = g1@y1 + g2@y2 + g0@y0 in which

g1ðy0; y1; y2Þ ¼ cosðy0Þ þ y2 � ð1þ y2
0
þ sin2ðy0ÞÞ, g2 ¼ 2y0 � ð1þ y2

0
Þsinðy0Þ, g3 = 1. Hence,

the associated IVP of (22) corresponding to operator D1 is a linear system

d�yi
dx
¼ exD1�yi ¼ gið�y0; �y1; �y2Þ; i ¼ 0; 1; 2; ð23Þ

with initial values �y0ð0Þ ¼ �y1ð0Þ ¼ 0; �y2ð0Þ ¼ 1. Its exact solutions �y0 ¼ x and

�y1ðxÞ ¼ x2 sinðxÞ þ x=2 � 4 sinðxÞ þ sinð2xÞ=4þ 4x cosðxÞ;

�y2ðxÞ ¼ 2þ x2 þ x2 cosðxÞ � 2x sinðxÞ � cosðxÞ;

are easily obtained by Computer algebra system Mathematica. Now, the trial solutions of the

PLOS ONE Solving initial value problems of ordinary differential equations based on Lie group neural networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0265992 April 6, 2022 8 / 20

https://doi.org/10.1371/journal.pone.0265992


two neural networks are supposed to be

�y1ðxÞ ¼ �y1 þ xN 1ðx; yÞ; �y2ðxÞ ¼ �y2 þ xN 2ðx; yÞ: ð24Þ

The first parts of the trial solutions are simply adopted as �y1 ¼ 0 and �y2 ¼ 1 [9]. Consider-

ing Fig 1, the degrees to which the various first parts �y1;2 used in both our trial solutions (24)

and reference [9] approximate the true solutions near the initial point x = 0 are shown. The

first parts used in (24) efficiently capture the nonlinear properties of the real solutions. This

accelerates the convergence of the subsequent neural computations in our method.

Our networks consist of one hidden layer with three neurons trained on a set of only 21

equidistant points in the interval [−1, 1]. They yield higher accuracy approximate solutions of

IVP (24) as shown in the left figure of Fig 2. Moreover, the solutions obtained by our method

can approximate the exact solutions very well outside the training set till at least interval [−1.5,

Fig 1. Comparison of the efficiencies of the first terms �y1;2 in the trial solutions approximating the exact ones y1,2

in an interval of x = 0 in Example 1. A:Comparison of �y1 and y1 at the initial point t = 0. B:Comparison of �y1 and y1 at

the initial point t = 0.

https://doi.org/10.1371/journal.pone.0265992.g001
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1.5] as shown in the right figure of Fig 2. This indicates that this method has a higher accuracy

on the whole training interval, better generalization (inertia), and stability, even when using

small-scale networks and data set for the training.

Considering Fig 3, the accuracies by computing the deviations Di ¼ yi � ŷi between the

trial solutions ŷi obtained by our method and the exact solutions yi on the training set are con-

trolled in 10−5 order of magnitudes. This shows that our method admits strong robustness on

the training interval by fewer training samples. Regarding the predicted (no training) intervals

[−1.5, −1] and [1, 1.5], although the errors are increasing, the accuracies are maintained in

10−3 order of magnitudes without the training data.

Regarding Fig 4, the dependence of the network errors on the number of iteration steps in

our methods is shown. Considering the figure, when the iteration is approximately 130 step,

the error is close to 0, and this state is persisted. This shows that the convergence of our

method is faster, demonstrating the stability of our algorithm.

Compared to the method in a previous study [9] in which network architecture consisted of

one hidden with ten neurons, our method achieves higher accuracy solutions in a shorter

computational time by using fewer network parameters and small scale training data.

Fig 2. Comparison between our solutions ŷ1;2 and the exact solutions y1,2 in Example 1.

https://doi.org/10.1371/journal.pone.0265992.g002
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Example 2. We consider the linearly forced oscillation problem

€y þ 2� _y þ y ¼ f ðtÞ; yð0Þ ¼ a; _yð0Þ ¼ b; ð25Þ

where f(t) is a known function and a and b are constants and � is damping parameter with 0<

� < 1. Since the solution of the problem is sensitive to the parameter �! 0. It is well known

that it was solved by Multiple scales and averaging methods [30]. To apply our method, let’s

turn the problem into the form of (9)

_y0 ¼ 1; _y1 ¼ y2; _y2 þ 2�y2 þ y1 ¼ f ðy0Þ; ð26Þ

with initial values y0(0) = 0, y1(0) = a, y2(0) = b by letting y0 = t, y1 = y, which yields the opera-

tor D ¼ y2@y1
þ ðf ðy0Þ � y1 � 2�y2Þ@y2

þ @y0
. In order to its associated IVP more accurately

approximate the real solution of (26) and be solved easily, we take D1 ¼ y2@y1
� ðy1 þ

2�y2Þ@y2
þ @y0

and D2 ¼ f ðy0Þ@y2
as in (16).

By symbolic computation, one obtains the exact solutions of the associated IVP of (26) for

selected the D1 as �y ¼ ð�y0; �y1; �y2Þ ¼ etD1ðy0; y1; y2Þjy0!0;y1!a;y2!b, i.e., �y0 ¼ t; �y1 ¼
R t

0
�y2ðtÞdt

with

�y1 ¼ s
� 1e� �tðða�þ bÞsinðstÞ þ as cosðstÞÞ; with s ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1 � �2
p

:

Fig 3. Accuracies of the ŷ1;2 approximating exact ones y1,2 in Example 1.

https://doi.org/10.1371/journal.pone.0265992.g003
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Therefore, we have trial solution as

ŷ1 ¼ �y1 þ tN ðt; yÞ:

To concretely computation, we take example � = 0.2, a = 0, b = 1 and f(t) = −0.4e−0.4t cos t. In

this situation, IVP (25) has exact solution

yðtÞ ¼ e� 0:4t sinðtÞ

Regarding the previous studies, the first part of the trial solutions should be simply consid-

ered �y1 ¼ 0 or x or x(1 + x). The degrees to which these first terms of the trial solutions

approximate the exact solution in the neighborhood of initial point are shown in the Fig 5.

This shows that the first term in the trial solution ŷ1 more accurately captures the nonlinearity

of the exact solution y in an interval of the initial point.

We use a grid of 21 equidistant points in [0, 2] as the training and testing data for training

our networks N ðt; yÞ. Using such a small-scale network and fewer training data, our method

obtains more accurate results.

The comparisons between the exact solutions y1,2 and approximated ones ŷ1;2 provided by

our method on the training interval [0, 2] and its extension [0, 2.5] are shown in Fig 6.

Considering Fig 7, the trend of the network errors LðyÞ as the number of iteration steps

increases is shown. The graph reflects the rapid decline in the algorithm, and the error is close

to zero at approximately 220 iterations, reaching 10−7. This indicates that the algorithm con-

verges quickly and is stable.

Considering Fig 8, the deviations Δyi of solution yi on the training and test points are

shown. It can be observed that the algorithm has a good generalization performance and a

higher accuracy even on few training samples and a small network structure.

To show the robustness of our method, we investigate the performances of our method on

different values of parameter � in (25) for the same nonhomogeneous term f(t). The results are

shown in the following Table 1. For more information, see S1 File.

From the table, we can see that the strong stability of our algorithm is presented.

Fig 4. Trend of training errors with iteration steps in Example 1.

https://doi.org/10.1371/journal.pone.0265992.g004
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Fig 5. Comparison of the efficiencies of first term �y1 in trial solutions ŷ1 approximating the exact one y in an

interval of t = 0 in Example 2.

https://doi.org/10.1371/journal.pone.0265992.g005

Fig 6. Comparison of the exact solutions yi and our ŷ i in Example 2.

https://doi.org/10.1371/journal.pone.0265992.g006
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Example 3. Consider the following nonlinear initial value problem of Duffing equation

[30]

u00 þ uþ 2�u3 ¼ 0 ð27Þ

with initial conditions u(0) = 1, u0(0) = 0 and 0< � < 1. In mechanics, it is solved by

Fig 7. Trend of training the errors with iteration steps in Example 2.

https://doi.org/10.1371/journal.pone.0265992.g007

Fig 8. Accuracies of the ŷ1;2 to exact ones y1,2 in Example 2.

https://doi.org/10.1371/journal.pone.0265992.g008
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perturbation techniques, such as strightforward expansion, multiple scales, averaging methods,

etc to analysis the different resonance phenomenons.

Here, as an application of our proposed method, we consider the case with parameter values

� = 0.5.

One of the standard forms (9) for Eq (27) is

y0
1
ðtÞ ¼ y2ðtÞ;

y0
2
ðtÞ ¼ � y1ðtÞ � y3

1
ðtÞ;

ð28Þ

with initial values y1(0) = 1, y2(0) = 0 by introducing variables y1 ¼ u; y2 ¼ _u. Obviously, we

have operator D ¼ y2@y1 þ ð� y1ðxÞ � y3
1
ðxÞÞ@y2. As before, one splits the operator into the

sum of two parts and select first part as D1 = y2@y1 − y1@y2. It produces the associated IVP

_�y1
¼ �y2; _�y2 ¼ � �y1 � �y3

1
; �y1ð0Þ ¼ 1; �y2ð0Þ ¼ 0; ð29Þ

and the trial solutions ŷ1ðtÞ ¼ �y1 þ tN 1ðt; yÞ and ŷ2ðtÞ ¼ �y2 þ tN 2ðt; yÞ of (28) where �y1 and

�y2 are solutions of (29). The IVP (29) has an obvious exact solution. However, it corresponds

to (27) which is easily solved by the known numerical methods, such as Runge-Kutta method.

This numerical solutions approximate the real solution more well than that given in literatures

at initial point t = 0 shown in Fig 9.

By using the exact solutions as first part of the trial solutions, we train NNs for N 1ðt; yÞ and

N 2ðt; yÞ with a grid of 21 equidistant training points in [0, 2]. Fig 10 compares the training

results with the Runge-Kutta method. It shows that higher accuracy approximation and

quicker convergence are made throughout the whole domain.

Considering Fig 11, the decreasing trend of train errors as iteration steps increasing is dis-

played showing the quick convergence and stability of our algorithm.

It shows that the proposed method can also capture the fluctuation wave properties of the

solution to a strong nonlinear dynamics system.

Table 1. Robustness of our method.

� Ave.Error Ave.Deviation

Training Data (21 samples) 0.01 7.604 × 10−6 1.958 × 10−3

0.2 4.736 × 10−7 9.122 × 10−5

0.5 2.174 × 10−6 3.166 × 10−5

0.8 1.646 × 10−6 8.282 × 10−5

Predict Data (21 samples) 0.01 6.671 × 10−6 9.546 × 10−4

0.2 2.507 × 10−7 6.366 × 10−5

0.5 1.268 × 10−6 3.565 × 10−5

0.8 2.168 × 10−6 6.601 × 10−5

Test Data (26 samples) 0.01 2.318 × 10−5 1.925 × 10−3

0.2 6.549 × 10−5 5.018 × 10−4

0.5 2.806 × 10−4 1.409 × 10−4

0.8 1.922 × 10−5 1.870 × 10−4

The Training Data are 21 sample points uniformly distributed in the training interval, the Predict Data are 21 sample

points randomly distributed in the training interval, and the Test Data are 26 sample points uniformly distributed in

the test interval.

https://doi.org/10.1371/journal.pone.0265992.t001
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5 Discussion and conclusions

In this study, we propose a new NN method based on the Lie group theory of ODEs to solve

the IVP of ODEs. Examples are used to verify the effectiveness of the method, and the superi-

ority of the method is proven by comparing the exact solutions and other numerical methods.

The examples also prove that even when the network structure is small, this method can

achieve higher accuracy solutions than that of the methods in [9]. Moreover, the combination

of the Lie group and NN methods is easy to implement.

1. The success of the method can be attributed to two aspects. The first is the employment of

the Lie group expression of the real solution to the IVP of ODEs. These expressions provide

a two-part summation form of the solution. Considering the first part, the initial values can

be easily determined before the network calculation stage and is independent of the train-

able parameters. Moreover, the first part yields approximate solutions to the real solution to

be determined at least in an interval of the initial point of the independent variable. These

Fig 9. Comparison of the approximate efficiencies of first terms �y1; �y2 to the exact solution y1, y2 at initial point

t = 0 in Example 3. A:Comparison of �y1 and y1 at the initial point t = 0. B:Comparison of �y2 and y2 at the initial point

t = 0.

https://doi.org/10.1371/journal.pone.0265992.g009
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Fig 10. Comparison between our solutions ŷ i and Runge-Kutta results yi in Example 3.

https://doi.org/10.1371/journal.pone.0265992.g010
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features of the first part of the trial solution save much workload in machine learning,

which results in higher efficiency of the method. The second is the use of NNs that are

excellent function approximators to determine the second part of the solution. The

training (learning) procedure is implemented by optimizing the loss functions derived

from the original ODEs and the additional initial or boundary values satisfied by the trial

solutions.

2. Contrary to most previous methods, the proposed method is more general and can be

extended to solve various problems of ODEs and PDEs by the appropriate selection of Lie

group expressions of trial solutions and the loss functions.

3. As indicated by the applications in the numerical experiments, the method exhibits excel-

lent generalization and stability performance. This is because the deviations in the training

and testing data are of lower values and are uniformly stable.

4. The NN architectures employed were one hidden layer with three neurons, indicating that

the trainable parameters are fewer. This indicates that the effect of the NN architectures on

the quality of the solution depends on the structure of the trial solutions. Moreover, this

demonstrates the importance of using the additional information of solutions in the net-

work method instead of directly using the network approach.

5. The applications also show that the method can be applied to strong nonlinear cases and

more accurately detect the severe nonlinearities of the physical phenomena.

6. The randomness of the selection D1 in the decomposition D = D1 + D2 may be a drawback.

However, Theorem 1–2 proves that the solution expressions used always exist for any selec-

tion D1. Hence, the method always works well at least in the accuracy range of previous sim-

ilar methods. If the operator D1 is selected well, then the efficiency of the method is

ensured. Because the possible selections of D1 are finite for a concrete IVP of ODEs, one of

the efficiencies can always be selected after several times of computations. This leads to

future studies of how to use more sophisticated theories to design an ANN algorithm for

solving problems of DEs.

Fig 11. Trend of training errors with iteration steps in Example 3.

https://doi.org/10.1371/journal.pone.0265992.g011
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These benefits and the ideas in this study will stimulate future studies on solving DEs’ prob-

lem by using the Lie theory of DEs and ANN.
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