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M7G‑Related lncRNAs predict prognosis 
and regulate the immune microenvironment 
in lung squamous cell carcinoma
Junfan Pan1†, Zhidong Huang2†, Hancui Lin1†, Wenfang Cheng1†, Jinhuo Lai3* and Jiancheng Li1* 

Abstract 

Background:  N7-Methylguanosine (m7G) and long non-coding RNAs (lncRNAs) have been widely studied in cancer 
and have been found to be useful for assessing tumor progression. However, the role of m7G-related lncRNAs in lung 
squamous cell carcinoma (LUSC) remains unclear. Thus, it is crucial to identify m7G-associated lncRNAs with definitive 
prognostic value. This study aimed to investigate the prognostic value, correlation with tumor mutation burden, and 
impact on the tumor immune microenvironment of m7G-related lncRNAs in LUSC. 

Methods:  LUSC transcriptome data and clinical data were downloaded from The Cancer Genome Atlas, and an m7G-
related lncRNA-mRNA co-expression network was constructed using Pearson’s correlation analysis. Cox regression 
analyses were used to determine a risk model for m7G-associated lncRNAs with prognostic value. The risk signature 
was verified using the Kaplan–Meier method, receiver operating characteristic curve analysis, and principal compo-
nent analysis. A nomogram based on risk scores and clinical characteristics was then developed. Gene set enrichment 
analysis was used for functional annotation to analyze the risk signature. The association among the risk signature, 
tumor mutational burden, and tumor-infiltrating immune cells was then analyzed. RT-qPCR was used to investigate 
the expression of 6 m7G-related lncRNAs in LUSC cells. The cytological function of SRP14-AS1 was verified by wound-
healing assay and transwell assay.

Results:  A total of 293 m7G-related lncRNAs were identifed, 27 candidate m7G-related lncRNAs were signifcantly 
associated with overall survival (OS). Six of these lncRNAs (CYP4F26P, LINC02178, MIR22HG, SRP14-AS1, TMEM99, 
PTCSC2) were selected for establishment of the risk model. The OS of patients in the low-risk group was higher than 
that of patients in the high-risk group (p < 0.001). Multivariate cox regression analysis indicated that the model could 
be an independent prognostic factor for LUSC (HR = 1.859; 95% CI 1.452–2.380, p < 0.001). The ROC curve analysis 
revealed that the AUCs for OS in the 3-, and 5-year were 0.682, 0.657, respectively. GSEA analysis revealed that the risk 
model was closely related to immune-related pathways. Compared with normal lung epithelial cells, four m7G-related 
lncRNAs were higher expressed in cancer cells and two were lower expressed, among which knockdown of SRP14-
AS1 promoted the proliferation and migration of LUSC cells.
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Background
Lung cancer is the leading cause of cancer-related death 
worldwide, with 1.8 million incident cases and 1.6 mil-
lion related deaths reported annually worldwide [1, 2]. 
The non-small cell lung cancer (NSCLC) subtype is the 
predominant type of primary lung cancer, accounting for 
85% of all lung cancer cases [3]. NSCLC is divided into 
adenocarcinoma, squamous cell carcinoma, and large-
cell carcinoma. Lung squamous cell carcinoma (LUSC) 
accounts for approximately 40% of all NSCLC cases. The 
5-year survival rate of LUSC patients is closely related 
to their smoking and economic status [4]. Compared to 
lung adenocarcinoma (LUAD), LUSC has a poorer clini-
cal prognosis and lacks targeted drugs. Therefore, a more 
comprehensive understanding of the molecular mecha-
nisms underlying LUSC progression is critical for the 
development of new therapeutic approaches.

Post-transcriptional modifications play key roles in 
various physiological and pathological processes [1–3]. 
To date, more than 170 types of RNA modifications, 
including N6-methyladenosine (m6A), 5-methylcytosine 
(m5C), and N7-methylguanosine (m7G) post transcrip-
tional modification have been identified. m7G modifica-
tion, usually located in the 5 cap and internal positions 
of eukaryotic messenger RNAs (mRNAs) or within ribo-
somal RNAs and transfer RNAs (tRNAs) of all species, 
is one of the most prevalent RNA modifications. Owing 
to the continuous development of high-throughput 
sequencing technologies, methods for detecting m7G 
modifications, including m7G-MeRIP-Seq, m7G-Seq, 
and m7G-miCLIP-Seq, are constantly being updated. 
Recent studies have found that m7G methylation also 
occurs in microRNAs and mRNAs [4, 5] and is criti-
cal for maintaining RNA processing metabolism, stabi-
lization, nuclear export, and protein translation [6, 7]. 
Increasing evidence indicates that abnormal expression 
of m7G-related genes is closely related to tumorigenesis 
and progression [8].

In mammals, the most studied m7G regulator is 
methyltransferase-like 1 (METTL1) [9]. METTL1 nor-
mally binds to WD repeat domain 4 (WDR4) and reg-
ulates gene modifications [10]. Ying et  al. found that 
METTL1-mediated m7G tRNA modification alters the 
expression of certain target genes, including EGFR/
EFEMP1, and promotes bladder cancer development 
[11]. The expression levels of METTL1 and WDR4 are 

elevated in hepatocellular carcinoma (HCC) and are 
associated with advanced tumor stage and poor patient 
survival [10]. The expression levels of METTL1 and 
WDR4 are also significantly higher in lung cancer than 
in normal lung tissue, and this is closely related to poor 
prognosis [12]. METTL1 promotes cell proliferation 
and autophagy through the AKT/mTORC1 signaling 
axis to promote lung cancer progression [13]. How-
ever, some studies have also shown that upregulation 
of METTL1 impairs the migration ability of A549 cells, 
thereby inhibiting cell migration [14]. Further in-depth 
studies are required to reveal the complex functions of 
METTL1 in LC. Other m7G regulators such as RNMT 
and RAM are also involved in tumor progression.

Long non-coding RNAs (lncRNAs), which are tran-
scripts over 200 nt in length, are the most important 
non-coding RNAs [15]. They play key roles in chroma-
tin remodeling, transcription, and post-transcriptional 
regulation [15]. In addition, the RNA methylation of 
lncRNAs has been shown to affect cancer progres-
sion. In HCC, m5C-modified H19 lncRNA may pro-
mote tumorigenesis and development by recruiting 
G3BP1 oncoproteins [16]. The m6A “eraser” ALKBH5 
increases the invasion and metastasis of gastric can-
cer cells by inhibiting the methylation of lncRNA 
NEAT1 [17]. Studies of lncRNAs in LUSC have also 
been widely reported [18, 19]. However, the detailed 
molecular mechanisms of m7G-related lncRNAs in 
LUSC treatment and prognosis remain unclear. Many 
cancer-specific biomarkers have been identified using 
bioinformatics analysis. However, the association of 
m7G-related lncRNAs with LUSC prognosis has rarely 
been reported.

Therefore, this study aimed to investigate the differ-
ent gene characteristics, prognostic value, correlation 
with tumor mutation burden and impact on the tumor 
immune microenvironment of m7G-related lncRNAs in 
LUSC and provide guidance for the treatment of LUSC. 
Towards this goal, we screened m7G-related lncRNAs, 
performed univariate and multivariate Cox regression 
analyses, identified lncRNAs associated with prognosis, 
and constructed a prognostic signature to further ver-
ify the prognostic value and clinical significance of the 
model. In addition, the association of the constructed 
prognostic signature with immune infiltration, somatic 
mutation, and tumor mutational burden was analyzed.

Conclusion:  A risk model based on six m7G-related lncRNAs with prognostic value may be a promising prognostic 
tool in LUSC and guide individualized patient treatment.

Keywords:  Lung squamous cell carcinoma, Prognosis, m7G, lncRNA, Tumor immune, Microenvironment
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Materials and methods
Data acquisition
The fragments per kilobase of per million (FPKM) of LUSC 
transcriptome, lncRNA counts data and corresponding 
clinical data were downloaded from The Cancer Genome 
Atlas (TCGA) data portal (https://​portal.​gdc.​cancer.​gov/). 
A total of 551 patients, including 502 patients with LUSC 
and 49 healthy individuals, were evaluated. In total, 403 
patients had complete follow-up and clinical data. TMB 
was defined as the total number of somatic mutations per 
million bases. The dataset of tumor mutations was also 
downloaded from TCGA (simple nucleotide variation-
masked somatic mutations). The R package “ggpubr” was 
used to analyze the difference in TMB between the high 
and low risk groups of the risk model built based on m7G-
related lncRNAs. The R package “survminer” was used to 
analyze the impact of the combined risk model and TMB 
on overall survival (OS) of patients.

Screening m7G‑related genes and lncRNAs
Forty m7G-related genes were obtained from published 
articles [6, 20–22] and the gene set enrichment analy-
sis (GSEA) website (http://​www.​gsea-​msigdb.​org/​gsea/​
login.​jsp) [23], using the keywords “GOMF_M7G_5_
PPPN_DIPHOSPHATASE_ACTIVITY,” “GOMF_
RNA_7_METHYLGUANOSINE_CAP_BINDING,” 
and “GOMF_RNA_CAP_BINDING.” lncRNAs were 
screened from 551 patients with LUSC using Straw-
berry Perl (version 5.30.0.1). The “limma” package was 
used to filter m7G-related lncRNAs. The criteria for fil-
tering using Pearson’s correlation analysis were |Pear-
son R |> 0.4 and p < 0.001. Univariate Cox regression 
analysis was performed to identify prognostic m7G-
related lncRNAs using the Kaplan–Meier “survival” 
package with a cutoff value of p < 0.05.

Constructing the prognostic risk model of m7G‑related 
lncRNAs
TCGA expression and clinical data files were used to 
investigate the predictive utility of m7G-related lncR-
NAs in clinical prognosis. Multivariate Cox analysis 
was used to establish the risk scores, calculated using 
the following formula:

where coef(lncRNAn) and expr(lncRNAn) repre-
sent the survival correlation regression coefficient and 
the expression value of each m7G-related lncRNA, 
respectively.

Riskscore = coef (lncRNAn)× expr(lncRNAn)

Evaluation of the risk model of six m7G‑related lncRNAs
The patients were divided into the high- and low-risk groups 
based on the median risk score. Kaplan–meier survival anal-
ysis was performed to estimate survival differences between 
the two groups using the survminer R package. Prognostic 
analysis using univariate and multivariate Cox regression 
analyses and the survival R package were used to deter-
mine whether clinical characteristics (age, gender, TNM 
stage) and risk scores could be used as independent prog-
nostic variables. Using rms and survival R packages, age,T 
stage and risk score were used to create a nomogram for the 
1-, 3-, and 5-year OS. Principal component analysis (PCA) 
was used to perform efficient dimensionality reduction, 
pattern recognition, and exploratory visualization of total 
gene expression profile, m7G-related lncRNAs, and risk 
model lncRNAs expression profiles. The “limma” and “scat-
terplot3d” packages to perform this process. The receiver 
operating characteristic (ROC) curve uses the survival R 
package. Calibration curves use the survival, regplot, and 
rms R package. Concordance Index curve using survival, 
rms, pec R package. The ROC curve, calibration curves and 
C-index curve were used to test the validity of the model.

Cell culture and quantitative real‑time PCR (RT‑qPCR)
LUSC cells (H226, SK‐MES‐1) and a normal lung epithe-
lial cell line (BEAS-2B) were purchased from the Pro-
cell (Wuhan, China). All cells were cultured in DMEM 
(meilunbio, Dalian, China) supplemented with 10% fetal 
bovine serum (Hyclone, Logan, UT, United States). Cells 
were maintained at 37 °C, 5% CO2.

RNAs were isolated using TRIzol reagent (Invitrogen, 
USA), Reverse transcription was done using Prime-
ScriptTM RT reagent Kit (Takara, Japan). SYBR Green 
PCR Master Mix (Takara) was employed for quantitative 
PCR on StepOnePlus System (Applied Biosystems).Fold 
change of gene level was determined by 2−ΔΔCT method, 
with GAPDH as normalization. The primer sequences 
involved in this study were shown in Supplementary 
Table 1. Each PCR reaction was performed in triplicate.

RNA interference (RNAi) and plasmid transfection
Small interfering RNAs (siRNAs) targeting the SRP14-
AS1 sequence were obtained from hippobio (Chaozhou, 
China) and transfected into SK-MES-1 cells using Lipo-
fectamine 2000 (Invitrogen, CA, USA). The plasmid were 
transfected into SK-MES-1 cells. The sequences of siRNA 
were shown in Supplementary Table 2.

Gene set enrichment analysis and tumor mutation burden
GSEA was used to analyze the biological functions of 
the two subgroups. Gene sets with a false discovery 
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rate (FDR) of < 0.25 and normalized p value < 0.05 were 
considered significant. GSEA 4.2.1 was used for enrich-
ment analysis in the Kyoto Encyclopedia of Genes and 
Genomes (KEGG). Tumor mutational burden (TMB) 
reflects the frequency of gene mutations in tumor tis-
sue. In this study, the “maftools” and “ggpubr” packages 
in R software were used to visualize mutational data and 
TMB, respectively, in the risk groups.

Analysis of immune cell characteristics
The CIBERSORT algorithm was used to investigate the 
relationship between the risk scores and 22 types of 
immune cells and their functions. The TCGA tumor 
immune cell infiltration file was downloaded from 
TIMER 2.0 and analyzed using the packages E1071, Par-
allel, PheATMap, CorrPlot, and Vioplot. The TIMER 
database (https://​cistr​ome.​shiny​apps.​io/​timer/) was 
applied to the analysis of 6 types of immune cells and 
risk scores, including B cells, CD4+ T cells, CD8+ T 
cells, neutrophils, macrophages, and dendritic cells [24]. 
Using the TIDE (Tumor Immune Dysfunction and Exclu-
sion) (http://​tide.​dfci.​harva​rd.​edu/) algorithm to predict 
the immune checkpoint reaction inhibitors in scores 
between high and low risk group.

Wound‑healing assay
Cell viability was measured using a wound-healing assay. 
Cells in siRNAs group and control group were cultured in 
6-well plates with 1%FBS. When the cell density reached 
100%, the cell monolayer was scratched with 10ul pipette 
tip, and then washed three times with PBS. The distance 
between the two edges of migrating cells was photo-
graphed at 0 h and 24 h using a microscope. All experi-
ments were repeated at least thrice.

Transwell assay
For the migration assay, approximately 1.5 × 104 cells 
were placed in 200ul serum-free medium in the upper 
chamber of the tranwell system. For the invasion assays, 
the upper chamber was covered with matrigel and placed 
in a 37℃ incubator for 4  h to allow matrigel to solid-
ify. Approximately 1.5 × 104 cells were placed in 200ul 
serum-free medium in the upper chamber of the tranwell 
system. 600 mL RPMI 1640 medium containing 10% FBS 
was placed in the lower chamber as a chemoattractant. 
After 24 h of incubation, cells in the upper chamber were 
removed, and the lower chamber was fixed with formal-
dehyde and stained with crystal violet. The number of 
cells was counted using ImageJ software. All experiments 
were repeated at least thrice.

Statistical analysis
Pearson correlation analysis was used to investigate 
the correlation between m7G-related genes and m7G-
related lncRNAs. Cytoscape was used to visualize m7G 
genes and m7G-related lncRNAs. Ggpubr R pack-
age was used to analyze the correlation between the 
expression of six m7G-related lncRNAs and clinico-
pathological factors. Wilcoxon rank sum test was used 
to compare the expression levels of lncRNAs between 
unpaired samples, and wilcoxon signed rank test was 
used to compare the expression levels of lncRNAs 
between paired samples.Univariate Cox regression 
analysis was used to calculate hazard ratios (HR). Mul-
tivariate Cox regression analysis was used to determine 
independent prognostic factors for the risk score. ROC 
curves were generated to evaluate the specificity and 
sensitivity of the prognostic model. Strawberry Perl was 
used to synthesize data matrices. All statistical analyses 
were performed using the R software (version 4.2.1). 
The threshold of significance was set at p < 0.05.

Results
Screening m7G‑related lncRNAs with prognostic value
The workflow of prediction model analysis was shown 
in Fig.  1. In this study, we used data from 551 patients 
with GC from the Cancer Genome Atlas (TCGA) cohort 
(T = 502, N = 49). In total, 293 m7G-related lncRNAs 
combined with LUSC survival data were identified from 
TCGA. The correlations between these lncRNAs and 
m7G methylated genes are summarized in Supplemen-
tary Table  3. Subsequently, univariate Cox regression 
analysis was performed to determine m7G-related lncR-
NAs with important prognostic values. Among the 27 
m7G-related lncRNAs screened (p < 0.05) (Fig.  2a), 23 
and 4 m7G-related lncRNAs were proven to be high- 
(HR > 1) and low-risk (HR < 1) factors, respectively.

Multivariate Cox regression analysis was used to 
screen six lncRNAs associated with prognosis, and the 
respective coefficients of these lncRNAs were calcu-
lated (Table 1).

A co-expression network of m7G-related lncRNA-
mRNAs was then constructed, and we detected the 
highest number of lncRNAs co-expressed with mRNA 
EIF4A1 (n = 2), and the highest number of mRNAs co-
expressed with lncRNA SRP14-AS1 (n = 3), followed by 
lncRNA TMEM99 (n = 2) (Fig.  2b). We also established 
a Sankey diagram that showed the relationship among 
m7G mRNA, lncRNAs and their roles in LUSC (Fig. 2c). 
Pearson correlation analysis was then used to analyze the 
expression intensity of related genes in the co-expression 
network (Fig.  2d, e and Supplementary Fig.  1). m7G-
related mRNAs and lncRNAs showed moderate and 

https://cistrome.shinyapps.io/timer/
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weak positive correlations. Among them, EIF4A1 and 
CYP4F26P showed the strongest correlation (r = 0.414), 
followed by SNUPN and TMEM99 (r = 0.404), NCBP1 
and PTCSC2 (r = 0.362), and TRMT112 and TMEM99 
(r = 0.324).

Construction of m7G‑related lncRNA signature for LUSC
The TCGA-LUSC cohort was divided into the high- and 
low-risk groups based on the median risk score. Kaplan–
Meier survival analysis showed that the OS was lower in 
the high-risk group than in the low-risk group (p < 0.001) 
(Fig. 3a). Visualization of the distribution of the risk score 
and survival status showed that the higher the risk score 
value, the higher was the mortality rate (Fig. 3b). Hence, 
m7G-related lncRNAs with important prognostic value 
were identified, and the prognostic value of the signature 
based on the six m7G-related lncRNAs was determined.

Correlation between differential expression of m7G‑related 
lncRNAs and clinicopathological variables
The expression levels of six m7G-lncRNAs in the tumor 
and normal samples are shown in Fig.  4a. In unpaired 
samples, the expression levels of CYP4F26P, LINC02178, 
TMEM99, and PTCSC2 were higher in cancer tissues 
than those in adjacent normal tissues (p < 0.001), and 
the expression levels of MIR22HG and SRP14-AS1 were 
higher in adjacent normal tissues than those in cancer 

tissues (all p < 0.001). Similar results were obtained in the 
paired samples (Fig. 4b). Using RT-qPCR to further verify 
at the cytological level, it can be seen that the expression 
level of CYP4F26P, LINC02178, TMEM99, and PTCSC2 
in LUSC cells was higher than that of Beas-2b, and the 
expression level of SK-MES-1 was higher than that of 
H226. The expression of MIR22HG and SRP14-AS1 in 
LUSC cells was lower than that of Beas-2b (Supplemen-
tary Fig.  2).  As shown in the heatmap, our gene signa-
ture was significantly associated with fustate xpression 
(Fig.  4c).The correlation between m7G-lncRNA expres-
sion and clinicopathological features was then analyzed. 
In the T stage, SRP14-AS1 exhibited significant differ-
ences across groups (p < 0.05); in the N stage, MIR22HG 
showed differences among groups (p < 0.001); in the 
M stage, LINC02178 had differences among groups 
(p < 0.05). MIR22HG was also significantly different 
between the two groups according to Stage (p < 0.001) 
(Fig.  4d). Overall, the above results showed that, m7G-
related lncRNAs are associated with the development of 
LUSC and may be an effective tool for the clinical man-
agement of patients.

Verification of the prognostic model constructed 
with m7G‑related lncRNAs
Univariate and multivariate Cox regression analyses 
were performed to determine whether the constructed 

Fig. 1  Study workflow. First, m7G-related lncRNAs in LUSC are screened using the TCGA database, and the screened lncRNAs are analyzed using 
Cox regression to develop a prognostic model of m7G-related lncRNAs. Second, the reliability of the model is verified using various methods. Based 
on this model, Gene set enrichment analysis (GSEA), tumor mutational burden (TMB) analysis, and immune correlation analysis were performed to 
determine the potential function of prognostic signatures
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risk model could independently predict prognosis. In 
univariate Cox regression analysis, age (HR: 1.204, 95% 
CI: 1.004–1.045, p < 0.05), T stage (HR: 1.268, 95% CI: 
1.033–1.557, p < 0.05), and risk score (HR: 1.949, 95% 

CI: 1.521–2.497, p < 0.001) were significantly associated 
with OS (Fig. 5a). In multivariate Cox regression anal-
ysis, age (HR: 1.024, 95% CI: 1.003–1.045, p < 0.05), T 
stage (HR: 1.242, 95% CI: 1.010–1.526, p < 0.05) and risk 

Fig. 2  Identification of m7G-related lncRNAs with significant prognostic value in LUSC. a In total, 27 lncRNAs associated with prognosis are 
screened using univariate Cox regression analysis (p < 0.05). b, c Correlation network of prognostic m7G-related lncRNAs and their associated 
mRNAs. d, e Co-expression intensity of prognostic m7G-related lncRNAs and their associated mRNAs
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score (HR: 1.859, 95% CI: 1.452–2.380, p < 0.001) were 
independent prognostic factors in patients with LUSC 
(Fig. 5b).The area under the ROC curve (AUC) value of 
the risk score was determined to evaluate its specific-
ity and sensitivity in predicting LUSC prognosis. The 
AUC values of the risk scores for predicting 3-, and 
5-year prognosis were 0.682, and 0.657, respectively, 
indicating moderate predictive accuracy. These values 
were higher than those of the other clinicopathologi-
cal factors (Fig.  5c). Simultaneously, age, T stage and 
the risk score were used to construct a nomogram to 

quantitatively predict patient prognosis (Fig.  5d). The 
C-index of the risk score was higher than that of the 
other clinical indicators (Fig. 5e). In addition, we used 
calibration curves to compare the agreement between 
actual and predicted patient survival at 1, 3, and 
5  years. We found that the actual and predicted lines 
almost agree within 5  years (the closer the line was 
to 45 degrees or the gray line in the figure, the better 
the fit) (Fig.  5f ). These results indicate that the m7G-
related lncRNA risk model can independently predict 
the prognosis of patients with LUSC.

Table 1  The six m7G-related prognostic lncRNAs

ID Coef HR HR.95L HR.95H p Value

CYP4F26P 0.291726709 0.746972649 0.60359396 0.924409744 0.007301158

LINC02178 0.208888617 1.232307733 1.026935409 1.47875157 0.024722689

MIR22HG 0.176669348 1.193236482 0.9711053 1.466178076 0.092765893

SRP14-AS1 0.453016364 0.635707731 0.429342656 0.941262913 0.023681998

TMEM99 0.224038278 0.799284539 0.635426839 1.005396271 0.055621829

PTCSC2 0.155877204 0.855664256 0.720764796 1.015811709 0.074954294

Fig. 3  Prognostic value of risk models based on m7G-related lncRNAs. a Kaplan–Meier OS curves of the high- and low-risk LUSC patients. b Scatter 
plot of survival status and risk score (X-axis shows the risk score of the LUSC patients; Y-axis indicates the survival time for each patient)

Fig. 4  Correlation between the expression of the 6 m7G-related lncRNAs and clinicopathological factors. a, b Differences in the expression of the 6 
m7G-related lncRNAs between LUSC cancer tissues and adjacent normal tissues. c Heatmap showing the clinicopathological characteristics of the 
high- and low-risk groups. d Differences in the expression of the 6 m7G-related lncRNAs according to T, N, M, and S stage groups. *p < 0.5, **p < 0.01, 
and ***p < 0.001. ns, no sense

(See figure on next page.)
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Fig. 4  (See legend on previous page.)
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Fig. 5  Verification of the risk model. a, b Univariate and multivariate Cox regression analysis of the prognostic value of risk scores and clinical 
characteristics. c Clinicopathological features and the predictive accuracy of risk models. d Construction of the nomogram based on age, T stage 
and the risk score. e C-index of the predictive reliability of the risk model. f Calibration curves illustrated agreement between predicted 1-, 3-, and 
5-year survival rates and observed outcomes
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PCA verification and GSEA
PCA was used to evaluate the differences in three expres-
sion profiles (total gene expression profiles, m7G-related 
lncRNAs, and risk model-related lncRNAs) between the 
low- and high-risk groups. The separation between the 
high- and low-risk groups was clearer in the risk model 
related to the lncRNA expression profile than in the other 
two expression profiles (Fig.  6a).KEGG pathway enrich-
ment analysis to identify the abnormally activated sign-
aling pathways of m7G-related lncRNAs showed that 
the risk model was significantly enriched in 47 pathways 
(FDR < 0.05, NES > 2, p < 0.05). The results showed that 
the high expression of m7G-related lncRNAs was related 
to the toll-like receptor signaling pathway, cell adhesion 
molecules pathway, chemokine signaling pathway, JAK-
STAT signaling pathway, and natural killer cell-mediated 
cytotoxicity pathway (Fig. 6b).

Tumor mutational burden
TMB represents the gene mutation frequency in the 
coding region and is associated with tumor progres-
sion. Both the high-risk group (96.96%) and the low-
risk group (98.34%) had high gene mutation frequencies 
(Fig. 7a). Particularly, the TP53 gene mutation frequency 
was the highest (high-risk group: 73%; low-risk group: 
77%). However, the TMB was not significantly differ-
ent between the high- and low-risk groups (Fig. 7b). The 
samples were divided into the high- and low-mutation 
groups according to the TMB score, and the high- and 
low-risk groups were combined for survival analysis. The 
high tumor burden group (H-TMB) had better prognosis 
than did the low tumor burden group (L-TMB) (p < 0.05) 
(Fig.  7c). In addition, in L-TMB group, the high-risk 
group had the worst prognosis than the low-risk group 
(Fig. 7d).

Correlation between the risk model and tumor immune 
microenvironment of LUSC
Interestingly, GSEA enriched pathways were found to be 
associated with immune pathways in risk models con-
structed based on m7G-related lncRNAs. Therefore, we 
investigated the correlation between the risk model and 
immune cell function. CIBERSORT was used to screen 
for p values < 0.05. CD4 naive T cells were not expressed 
in the high- and low-risk groups (Fig.  8a). The expres-
sion of resting CD4 memory T cells and neutrophils was 
higher in the high-risk group than in the low-risk group 
(p < 0.05). In contrast, the levels of naive B cells and fol-
licular helper T cells were lower in the high-risk group 
than in the low-risk group (p < 0.05) (Fig.  8b). Analy-
sis of the correlation among 22 subtypes of immune 
cells showed that the strongest correlation was between 

CD4 memory T cells and CD8 T cells (r = 0.59), fol-
lowed by that between CD8 T cells and M0 macrophages 
(r = -0.54) (Supplementary Fig.  3a). The TIMER data-
base was used to analyze the risk scores and six types of 
immune-infiltrating cells. The results showed that risk 
score was moderately correlated with dendritic cells, 
macrophages, and neutrophils (p < 0.05), but weakly cor-
related with B cells, CD4 + T cells, CD8 + T cells (Fig. 8c 
and Supplementary Fig. 3b). In addition, we explored the 
relationship between several immune-related molecules 
and risk score, and the expression levels of immuno-
suppressive cytokines in the high-risk group were sig-
nificantly higher compared with levels in the low-risk 
group (Fig. 8d). In Fig. 8e, the TIDE scores of patients in 
the low-risk group was lower than that in the high-risk 
group, suggesting that patients in the low-risk group was 
more sensitive to immune checkpoint blockade (ICB) 
therapy. These findings indicate that the risk model con-
structed based on m7G-related lncRNAs can differenti-
ate the characteristics of tumor immune cells in LUSC.

Overall survival analysis of six m7G‑related lncRNAs 
and biological function of SRP14‑AS1 in vitro
Then, we analyzed the survival of six m7G-related lncR-
NAs respectively. Among them, CYP4F26P and SRP14-
AS1 expression group had prognostic value in overall 
survival. Moreover, the prognosis of the high SRP14-AS1 
expression group was better than that of the low expres-
sion group, which was consistent with the results of 
Fig. 4a that SRP14-AS1 was low expressed in cancer tis-
sues (Supplementary Fig. 4). These results suggested that 
SRP14-AS1 may function as a tumor suppressor gene. 
Then, we transfected SK-MES-1 cells with siRNAs, and 
RT-qPCR showed that siRNA-2, siRNA-3 knockdown 
efficiency was higher, which was used for subsequent 
studies (Fig.  9a). A wound-healing assay and transwell 
migration and invasion assays, indicated that knockdown 
of SRP14-AS1 accelerated SK-MES-1 cell migration and 
invasion (Fig. 9b, c). Taken together, the above-presented 
results suggested that SRP14-AS1 may play a role as a 
cancer suppressor gene in LUSC.

Discussion
LUSC is a subtype of NSCLC that accounts for approxi-
mately 40% of all lung cancers. Although LUSC is asso-
ciated with poorer clinical outcomes, it lacks targeted 
drug agents [25, 26]. Further, basic biomarkers and pre-
cise targets for LUSC development and progression 
remain unknown. Numerous lncRNAs have regulatory 
functions in the occurrence and development of LUSC 
[18, 27]. M6A, m5C, m1A, and m7G are common post-
transcriptional modifications that play important roles 
in disease progression [28]. Current studies on the 
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Fig. 6  Principal component analysis (PCA) and gene set enrichment analysis (GSEA). a All genes, m7G-related lncRNAs and risk genes. b Gene set 
enrichment analysis of m7G-related lncRNAs
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Fig. 7  Somatic mutation analysis and tumor mutational burden. a Waterfall plot showing the top 15 most frequently mutated genes in the 
high- and low-risk groups. b Differences in TME between the high- and low-risk groups. c Kaplan–Meier overall survival (OS) curves in the high-TMB 
and low-TMB groups. d Kaplan–Meier OS curves by TMB groups and risk score groups
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Fig. 8  Immune signatures of different risk groups. a, b Heatmap showing the infiltration levels of 22 immune cells in the high- and low-risk 
groups. c The TIMER database is used to analyze the correlation between the risk score and 6 immune cell subtypes. d Expression levels of 
immunosuppressive cytokines between high and low risk groups. e TIDE (Tumor Immune Dysfunction and Exclusion) score between high—and 
low-risk groups. **p < 0.01, and ***p < 0.001. ns, no sense
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post-transcriptional modification of lncRNAs are mainly 
focused on m6A and m5C. Meanwhile, m7G-related 
studies are rare, and its mechanism has not been com-
pletely determined. In the current study, m7G-related 
lncRNAs were divided into subgroups according to their 
gene expression, and prognostic markers were con-
structed in combination with survival data. The rela-
tionship of the prognostic model based on m7G-related 
lncRNAs with immune cell infiltration and TMB was 
then explored. The results showed that the prognostic 
model based on six m7G-related lncRNAs showed good 
prognostic value and it has important significance in the 
evaluation of TMB and tumor immune infiltration. These 
findings can be used to guide the future clinical diagnosis 
and treatment of LUSC.

lncRNAs have attracted considerable research atten-
tion owing to their key roles in various biological 
events, such as genome expression and cell differen-
tiation [29, 30]. Abnormal lncRNA expression is also 
associated with tumorigenesis and tumor progression 
[31, 32]. Xue et  al. found that the m6A methyltrans-
ferase METTL3 enhances the stability of the lncRNA 
ABHD11-AS1 transcript to increase its expression, 

thereby promoting the Warburg effect in NSCLC, and 
is closely related to the poor prognosis of patients with 
NSCLC [33]. In cholangiocarcinoma, the m5C methyl-
transferase NSUN2 interacts with the lncRNA NKILA 
to increase its m5C level and promote its interaction 
with YBX1. In contrast, NKILA interacts with mir-
582-3p regulated by m6A methyltransferase METTL3 
and inhibits its expression, thereby accelerating chol-
angiocarcinoma progression through YAP1 [34]. There-
fore, RNA methylation is closely related to lncRNA 
expression, and m7G may affect tumorigenesis by 
modifying lncRNAs and affecting their stability. How-
ever, there are few reports on the modification of the 
m7G gene in lncRNAs, which may be partly due to the 
immature detection technology.

The current study analyzed the correlation between 
293 m7G-related lncRNAs expression and LUSC prog-
nosis. Six m7G-related lncRNAs were identified to 
have prognostic value. A prognostic model based on 
the identified m7G-related lncRNAs was then estab-
lished. The patients were divided into the high- and 
low-risk groups based on the median risk score, and 
the low-risk group was found to have better prognosis 

Fig. 9  Knockdown of SRP14-AS1 promoted the viability of LUSC cells. a SRP14-AS1 knockdown efficiency verification. b Representative 
micrographs of wound-healing experiments. For transfected SK-MES-1 cells, the cell monolayer was scratched with a 10ul sterile pipette tip. Photos 
were taken at 0 h and 48 h after scratching. c Transwell or matrigel-coated transwell was used for cell migration and invasion assays. Scale bars, 100 
um. **p < 0.01, and ***p < 0.001
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than the high-risk group. Further, the risk score could 
be used as an independent prognostic factor. The AUC 
value, PCA, and C-index values verified the reliability 
of the model. Previous studies on the potential of lncR-
NAs as novel tumor biomarkers have focused on single 
molecules. However, lncRNAs are not sufficient bio-
markers in cancers. To our best knowledge, this is the 
first study to report an LUSC risk score model based 
on six m7G-related lncRNAs with prognostic value. 
Among the six lncRNAs, CYP4F26P has been previ-
ously reported to be involved in LUSC. Meanwhile, 
PTCSC2 [35, 36], LINC02178 [37, 38], SRP14-AS1 [39], 
and MIR22HG [40, 41] have been mainly reported in 
other cancer types, such as head and neck squamous 
cell carcinoma, oral and oropharyngeal squamous cell 
carcinoma, and thyroid cancer.TMEM99 has not been 
reported previously.

TMB indicates the total number of somatic mutations 
that occur in a specific region of the tumor genome. A 
higher TMB can indirectly reflect the ability of tumors to 
form more neoantigens, and thus, it may be used as a bio-
marker for the efficacy of immune checkpoint blockade 
(ICB) treatment [42, 43]. Previous studies have shown a 
high TMB in NSCLC [44] and that the TMB level varies 
greatly according to the smoking status [45]. TMB was 
higher in LUSC than in other solid tumors [46]. In the 
current study, both high- and low-risk groups had high 
somatic mutation frequencies, consistent with previous 
finding [44].

The H-TMB group had better prognosis than did the 
L-TMB group, which may be related to the treatment 
response to ICB drugs in H-TMB patients. GSEA showed 
that risk profiles are enriched in several immune-related 
pathways and immune-related diseases, such as the 
toll-like receptor signaling pathway, natural killer cell-
mediated cytotoxicity pathway, and intestinal immune 
network for IgA production. The current study further 
analyzed the correlation between the risk model and dis-
tribution of tumor-infiltrating immune cells. The results 
showed that the risk score was positively correlated with 
dendritic cells, macrophages, and neutrophils (p < 0.05), 
and the risk model could distinguish different character-
istics of tumor-infiltrating immune cells in LUSC. To our 
best knowledge, this study is the first to investigate the 
relationship between m7G-related lncRNAs and immune 
cells in LUSC.

However, this study also had some limitations. 
Although we verified the stability of the risk model using 
various methods, the model was not externally validated 
because lncRNA information is lacking in other data-
bases. Further large-scale studies are needed to draw 
definitive conclusions. Future studies should further 
explore the functions of these six lncRNAs in LUSC.

In conclusion, we constructed a novel prognostic risk 
profile consisting of six m7G-related lncRNAs. The risk 
profile reflected the immune characteristics of patients-
with LUSC and showed a high reliability for prognostic 
prediction. The current study findings provide evidence 
for further studies on post-transcriptional modifica-
tions of lncRNAs and for the development of clinically 
individualized therapy.
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