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Currently, treating coronavirus disease 2019 (COVID-19) patients, particularly those afflicted with severe
pneumonia, is challenging, as no effective pharmacotherapy for severe acute respiratory syndrome coronavi-
rus 2 (SARS-CoV-2) exists. Severe pneumonia is recognized as a clinical syndrome characterized by hyper-
induction of pro-inflammatory cytokine production, which can induce organ damage, followed by edema,
dysfunction of air exchange, acute respiratory distress syndrome, acute cardiac injury, secondary infection
and increased mortality. Owing to the immunoregulatory and differentiation potential of mesenchymal stem
cells (MSCs), we aimed to outline current insights into the clinical application of MSCs in COVID-19 patients.
Based on results from preliminary clinical investigations, it can be predicted that MSC therapy for patients
infected with SARS-CoV-2 is safe and effective, although multiple clinical trials with a protracted follow-up
will be necessary to determine the long-term effects of the treatment on COVID-19 patients.

© 2020 International Society for Cell & Gene Therapy. Published by Elsevier Inc. All rights reserved.
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Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
has garnered global attention as the causative agent for the coronavi-
rus disease 2019 (COVID-19) pandemic and its associated morbidity
and mortality worldwide. As of today, approximately 6.9 million con-
firmed cases of COVID-19 have been reported in more than 213 coun-
tries and territories, with an estimated 53,000 critically ill and
402,000 dead https://www.worldometers.info/coronavirus/ [1]. First
detected in a cluster of patients with pneumonia of unknown cause
in the city of Wuhan, China, in December 2019, within 2 months the
outbreak was declared a public health emergency of international
concern by the World Health Organization. Clinical data suggest that
the elderly and people with chronic underlying health issues are
more prone to SARS-CoV-2-associated illness and death than young
individuals. Currently, there is no specific antiviral treatment or effec-
tive vaccines available for COVID-19. The available therapies include
non-specific antivirals, antibiotics to treat bacterial infections and
sepsis and corticosteroids to lower inflammation. However, these
measures fail in patients with severe disease, which is characterized
by a cytokine storm.

The clinical manifestations of viral infections, especially SARS,
include mild prodrome of fever and myalgias lasting 3-7 days, during
which viral replication occurs. Cough, respiratory symptoms, dyspnea
and hypoxemia are common during the second week of the illness.
Finally, dyspnea may progress to respiratory failure, progressive
pneumonia and acute respiratory distress syndrome (ARDS). Interest-
ingly, clinical worsening occurs during the time of decreasing viral
load [2], and in several cases the cause seems to be immunopatho-
logic injury rather than direct injury from the virus [3]. Identifying
the SARS-CoV-2 virus receptor recognition mechanism, which regu-
lates its virulence and pathogenesis, holds the key to tackling the
COVID-19 pandemic [4]. The pathogenesis of SARS-CoV-2 depends
on the recognition and engagement of the SARS-CoV receptor angio-
tensin-converting enzyme 2 (ACE2) as an entry receptor and trans-
membrane protease serine 2 for S protein priming [5]. The efficiency
of ACE2 usage has been found to be a vital factor for SARS-CoV-2
transmissibility [6]. The ACE2 receptor is extensively distributed on
the human cell surface, especially alveolar type II cells of the lungs
and capillary endothelial cells [7]. It has been reported that the over-
activated immune system of infected patients usually kills the virus,
thereby releasing inflammatory mediators, resulting in a cytokine
storm, with elevated levels of multiple pro-inflammatory cytokines
that cause edema, persistent pain and pressure in the chest, shortness
of breath, acute respiratory distress, secondary bacterial infection and
increased mortality [8]. Interestingly, the consistent absence of ACE2
in immune cells, such as T and B lymphocytes, and macrophages in
bone marrow, lymph nodes, thymus and spleen [9] suggests that
immunological therapy could be a potential therapeutic option for
infected patients.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcyt.2020.07.002&domain=pdf
https://www.worldometers.info/coronavirus/
mailto:drshadab@erauniversity.in
https://doi.org/10.1016/j.jcyt.2020.07.002
https://doi.org/10.1016/j.jcyt.2020.07.002
https://doi.org/10.1016/j.jcyt.2020.07.002
http://www.ScienceDirect.com
http://www.isct-cytotherapy.org
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Considering the seriousness of this deadly pandemic and its impact
on the global economy, there is an urgent need to develop effective
therapies against COVID-19. Here we propose mesenchymal stem cells
(MSCs) as a possible therapeutic candidate for SARS-CoV-2 infection.
MSCs are an attractive approach for treating both acute and chronic
lung pathological conditions like COVID-19, mainly because these cells
offer multiple protective mechanisms to defend against and repair pul-
monary damage. Moreover, MSCs exhibit broad immune regulatory
function, which makes them suitable for antiviral therapy, as the safety
and effectiveness of these cells have been documented in clinical trials
of severe lung infections [10�12]. Results of preliminary investigations
on SARS-CoV-2-infected patients treated with MSCs have revealed a
noteworthy reversal of pathological symptoms, further indicating the
potential of MSCs in lung infections [8,13].

Methods and Results

MSCs and COVID-19 patients

To date, one clinical case study and a single-center open-label
pilot investigation have been published on COVID-19 patients
employing MSCs as a therapy [8,13]. Apart from these preliminary
studies, 41 clinical trials that employ MSC-based therapies have been
approved (including seven that were withdrawn) and are summa-
rized in Table 1. Results from these trials are expected to shed light
on the pathophysiology of the disease and the interventions offered
by MSCs post-treatment. Here, briefly, we summarize the outcomes
of the two published studies from China.

The first study is a case report [13] in which a critically ill 65-year-
old female with severe pneumonia, respiratory failure, moderate ane-
mia, hypertension and multiple organ failure received 3 infusions of
umbilical cord MSCs (UCMSCs), 5 £ 107 cells per infusion, 3 days
apart. Before receiving UCMSCs, the clinical laboratory examination
showed an abnormal percentage of white blood cells, neutrophils
and lymphocytes in the peripheral blood, and the patient received
antiviral therapy. During cell therapy, antibiotics were given to man-
age the bacterial infection, and to modulate the immune system, thy-
mosin a1 was injected. Twenty-four hours after the second UCMSC
administration, serum bilirubin, C-reactive protein (CRP), aspartate
aminotransferase, alanine transaminase and vital signs began to sta-
bilize, and the patient no longer required mechanical ventilation.
After receiving the second cell infusion, white blood cell, neutrophil
and lymphocyte counts, together with T subsets, returned to normal
levels. Two days after the third injection, the patient tested negative
for SARS-CoV-2. Consecutive computed tomography scanning pre-
and post-cell administration revealed that pneumonia had resolved.
Moreover, no side effects were observed from the first day of UCMSC
infusion to the third day, signifying the cells were well tolerated.

Another study by Leng et al. [8] reported that the intravenous
administration of clinical-grade human MSCs in patients infected
with SARS-CoV-2 resulted in improved clinical outcomes. In this
study, 7 patients (one critically ill, four severely ill and two with com-
mon symptoms of pneumonia) were enrolled in the treatment group,
and 3 patients served as placebo controls (all displaying severe symp-
toms). All treated patients received a single dose of 1 £ 106 MSCs/kg,
and all seven remarkably showed improvement over a period of 2
weeks, with no noticeable adverse effects. However, within the con-
trol group, only one showed improvement, while one exhibited
ARDS symptoms and the other died. The overall improvement in the
MSC-infused group was striking, as pulmonary function and symp-
toms in all 7 patients significantly improved within 2 days after treat-
ment, and most tested negative on the SARS-CoV-2 nucleic acid test
over 2 weeks after MSC infusion. After 6 days of treatment, cellular
immune response showed an elevated peripheral lymphocyte count,
decline in CRP and the disappearance of activated CXCR3+CD4+ T
cells, CXCR3+CD8+ T cells and CXCR3+ natural killer cells. As expected,
the number of CD14+CD11c+CD11bmid regulatory dendritic cells
(DCs) also returned to normal, levels of the pro-inflammatory cyto-
kine tumor necrosis factor alpha (TNF-a) were decreased and the
ratio of chemokine IL-10 increased significantly in the MSC treatment
group compared with the placebo control group. Furthermore, the
gene expression profile showed that MSCs did not express ACE2 or
transmembrane protease serine 2, indicating they were free from
COVID-19 infection. Finally, the RNA sequencing and gene expression
analysis showed that MSCs were closely involved in antiviral path-
ways and had anti-inflammatory trophic activities.

Although both of these studies provided new insights into the
protective mechanism of MSCs during viral infection, a few short-
comings in these treatments can be noticed. For example, severity
and mortality largely correspond to age, and it therefore seems curi-
ous to have older patients in the placebo group in the study by Leng
et al. [8]. Moreover, there is a lack of information on the MSC process-
ing and screening before infusion, and long-term follow-up of
patients is missing in both of these studies. For a protocol to be impli-
cated in a larger cohort, optimal information regarding MSCs as well
as patients needs to be investigated in a rationally designed con-
trolled setting.

SARS-CoV-2 infection and immune response

To understand lung pathophysiology associated with SARS-CoV-2
infection, it is important to recognize the behavior of the virus within
the host (humans). Clinically, the immune reaction induced by SARS-
CoV-2 infection has 2 stages: (i) the immune protective phase (incu-
bation phase) and (ii) the inflammation-driven damage phase (severe
phase) [14]. During non-severe stages, a particular adaptive immune
response is required to remove the virus and to prevent progression
of the disease to severe stages. However, when the protective
immune response is impaired, the virus spreads; thus, enormous
destruction of not only lung but also all ACE2-expressing tissue is
imminent. The damaged cells induce innate inflammation that is
largely mediated by pro-inflammatory macrophages and granulo-
cytes [14]. As MSCs can immunomodulate cells from the innate and
adaptive immune system [15�18], they could offer a new therapeutic
approach to COVID-19 patients. However, a major concern is when to
initiate MSC treatment. An argument can be made for stratifying
patients based on disease severity and focusing specifically on those
who present with a cytokine storm and require ventilation [19].
Interestingly, in a recent study displaying results from responders
versus non-responders to MSC treatment in graft-versus-host disease
(GVHD), the authors argued, based on the results, that the severity of
the disease could help stratify patients for MSC treatment [20]. In any
event, existing pre-clinical data [21] as well as data from clinical tri-
als in non-viral ARDS patients support the use of MSCs in moderate
or mild disease, although this remains disputable . However, because
of limited understanding of the pathogenesis of COVID-19, an optimal
approach for administration of MSC-based therapies has yet to be
established.

Cytokine storm

The cytokine storm is a systematic inflammatory response associ-
ated with a variety of infectious and non-infectious diseases. This
exuberant immune response is clinically related to excessive inflam-
matory parameters and widespread lung damage, resulting in acute
respiratory distress and multi-organ failure [22�27]. Reports from
SARS-CoV-2-infected individuals with critical illness have depicted a
complex picture of cytokine networks and their contributions to
pathological outcomes (Figure 1). Thus, preventing and reversing the
cytokine storm may be a primary factor in determining the outcome
of patients with severe COVID-19 pneumonia. However, very limited
information regarding cytokine storm is available in coronavirus



Table 1
Summary of MSC-based clinical trials recorded up to April 21, 2020.

Clinical trial
number

Study title Phase Status Sample
size, n

Cellular intervention Primary outcome measure Location References

NCT04315987 NestCell mesenchymal stem cell to treat
patients with severe COVID-19
pneumonia

I Not recruiting 66 NestCell Change in clinical condition Sao Paulo, Brazil https://clinicaltrials.gov/ct2/show/NCT04315987?
term=mesenchymal

NCT04313322 Treatment of COVID-19 patients using
Wharton’s jelly- mesenchymal stem
cells

I Recruiting 5 Wharton’s
jelly mesenchymal stem

cells

Clinical outcome
CT scan
RT-PCR

Saudi Arabia,
Amman,
Jordan

https://clinicaltrials.gov/ct2/show/NCT04313322?
term=mesenchymal

NCT04288102 Treatment with mesenchymal stem cells
for severe corona virus diseases 2019
(COVID-19)

II Recruiting 90 Mesenchymal stem cells Size of lesion area and sever-
ity of pulmonary fibrosis

Maternal and Child Hospital
of Hubei Province,

Wuhan, Hubei, China; and
Wuhan Huoshenshan
Hospital, Wuhan, Hubei,
China

https://clinicaltrials.gov/ct2/show/NCT04288102?
term=mesenchymal

NCT04302519 Novel coronavirus-induced severe pneu-
monia treated by dental pulp mesenchy-
mal stem cells

Early phase Not recruiting 24 Dental pulp mesenchymal
stem cells

Time to disappearance of
ground-glass shadow in
the lungs

� https://clinicaltrials.gov/ct2/show/NCT04302519?
term=mesenchymal

NCT04252118 Mesenchymal stem cell treatment for
pneumonia patients infected with 2019
novel coronavirus

I Recruiting 20 Mesenchymal stem cells Size of lesion area
Side effects in MSC treat-

ment group

Beijing 302 Military Hospital
of China,

Beijing, China

https://clinicaltrials.gov/ct2/show/NCT04252118?
term=mesenchymal

NCT04273646 Study of human umbilical cord mesenchy-
mal stem cells in the treatment of novel
coronavirus severe pneumonia

� Not recruiting 48 Umbilical cord mesenchy-
mal stem cells

Pneumonia severity index
Oxygenation index (PAO2/

FIO2)

Union Hospital, Tongji Medi-
cal College, Huazhong
University of Science and
Technology,

Wuhan, Hubei, China

https://clinicaltrials.gov/ct2/show/NCT04273646?
term=mesenchymal

NCT04269525 Umbilical cord (UC)-derived mesenchymal
stem cells (MSCs) treatment for the
2019-novel coronavirus (nCOV)
pneumonia

II Recruiting 10 Umbilical cord mesenchy-
mal stem cells

Oxygenation index Zhongnan Hospital of
Wuhan University,

Wuhan, Hubei, China

https://clinicaltrials.gov/ct2/show/NCT04269525?
term=mesenchymal

NCT04333368 Cell therapy using umbilical cord-derived
mesenchymal stromal cells in SARS-cov-
2-related ARDS

I and II Not recruiting 60 Umbilical cord Wharton’s
jelly-derived human mes-
enchymal stromal cells

Respiratory efficacy Hopital Pitie-Salpetriere,
APHP, Paris, France; and
Hopital European Georges
Pompidou, APHP, Paris,
France

https://clinicaltrials.gov/ct2/show/NCT04333368?
term=mesenchymal

NCT04276987 A pilot clinical study on inhalation of mes-
enchymal stem cells exosomes creating
severe novel coronavirus pneumonia

I Not recruiting 30 Mesenchymal stem cell-
derived exosomes

Adverse reaction and severe
adverse reaction

Time to clinical
improvement

� https://clinicaltrials.gov/ct2/show/NCT04276987?
term=mesenchymal

NCT04299152 Stem Cell Educator therapy treat the viral
inflammation caused by severe acute
respiratory syndrome coronavirus 2

II Not recruiting 20 Stem Cell Educator-treated
mononuclear cell
apheresis

Determination of number of
COVID-19 patients who
were unable to complete
SCE therapy.

� https://clinicaltrials.gov/ct2/show/NCT04299152?
term=mesenchymal

(continued on next page)
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Table 1 (Continued)

Clinical trial
number

Study title Phase Status Sample
size, n

Cellular intervention Primary outcome measure Location References

ChiCTR2000031139 Safety and effectiveness of human embry-
onic stem cell-derived M cells (CAStem)
for pulmonary fibrosis correlated with
novel coronavirus pneumonia (COVID-
19)

0 Recruiting 20 The cell dose was 3*10^6
cells/kg, intravenously
infused twice in a row,
and the interval between
each infusion was 1 week
(§ 2 days). If the investi-
gator considered it neces-
sary, an additional
infusion could be per-
formed. Infusion interval
was 1 week (§ 2 days)
from the last infusion.

Pulmonary function evalua-
tion

Changes in blood gas analy-
sis

Evaluation of activity
Evaluation of dyspnea

Dongxihu District, Wuhan,
Hubei, China

http://www.chictr.org.cn/showprojen.aspx?proj=51404

ChiCTR2000030944 Clinical study of human NK cells and MSCs
transplantation for severe novel corona-
virus pneumonia (COVID-19)

I Not recruiting 20 On the basis of the current
clinical treatment of
SNCP, NK cells and MSCs
were increased

Changes in serum inflamma-
tory factors

Patient death risk
Drug-related adverse reac-

tions and events

Jiangxi,
China

http://www.chictr.org.cn/showprojen.aspx?proj=50199

ChiCTR2000030866 Open-label, observational study of human
umbilical cord-derived mesenchymal
stem cells in the treatment of severe and
critical patients with novel coronavirus
pneumonia (COVID-19)

0 Recruiting 30 Mesenchymal stem cells Oxygenation index
Patient conversion rate from

serious to critical
Patient conversion rate and

conversion time from crit-
ical to serious

Mortality in serious and crit-
ically ill patients

Hunan, China http://www.chictr.org.cn/showprojen.aspx?proj=50299

ChiCTR2000030835 Clinical study for the efficacy of mesenchy-
mal stem cells (MSC) in the treatment of
severe novel coronavirus pneumonia
(COVID-19)

� Recruiting 20 Routine treatment plus
MSCs (2 £ 10^6/kg each
time)

� Henan, China http://www.chictr.org.cn/showprojen.aspx?proj=51050

BM-MSC, bone marrow-derived MSC; CT, computed tomography; NK, natural killer; PCT, procalcitonin; RT-PCR, real-time polymerase chain reaction; SAA, severe aplastic anemia; SCE, Stem Cell Educator; SNCP, severe novel corona-
virus pneumonia.
The studies withdrawn, post-registration are as:
1- NCT04293692 (https://clinicaltrials.gov/ct2/show/NCT04293692?term=stem§cell&cond=COVID19&draw=2&rank=11)
2- ChiCTR2000029816 (http://www.chictr.org.cn/showprojen.aspx?proj=49389)
3- ChiCTR2000029817 (http://www.chictr.org.cn/showprojen.aspx?proj=49384)
4- ChiCTR2000030224 (http://www.chictr.org.cn/showprojen.aspx?proj=49968)
5- ChiCTR2000030509 (http://www.chictr.org.cn/showprojen.aspx?proj=49956)
6- ChiCTR2000030329 (http://www.chictr.org.cn/showprojen.aspx?proj=49779)
7- ChiCTR2000029812 (http://www.chictr.org.cn/showprojen.aspx?proj=49374)
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studies, and existing knowledge of the mechanism underlying the
cytokine storm is predicated on pre-clinical data in influenza infec-
tion models [,]. It has been suggested that when a virus infects the
epithelial, endothelial and alveolar macrophage, the immune system
initiates a rapid antiviral response for virus clearance and tissue
homeostasis. In the process of virus clearance, the immune system
activates the signaling cascade, resulting in production of several
cytokines. The number of cytokines produced by direct contact with
the virus and immune effector cells is estimated to be greater than
15, excluding chemokines [28]. The activated cytokines can stimulate
the expression of a secondary wave of cytokines. For instance, influ-
enza infection in epithelial cells activates type I interferons that upre-
gulate the expression of a variety of interferon-stimulated genes [29].
In turn, the high expression of interferon-stimulated genes activates
downstream antiviral responses and subsequent inflammatory cyto-
kine production by innate immune cells like DCs, macrophages, neu-
trophils and monocytes. In the adaptive phase, diverse subsets of
T cells and group 2 innate lymphoid cells regulate the discharge of
secondary cytokines [29].

Several anti-cytokine approaches have proven effective in revers-
ing cytokine storm syndromes, including those triggered by viruses
[30]. These approaches include drugs targeting interleukins, such as
IL-1, IL-6 and IL-18, and interferon gamma (IFN-g). With respect to
MSCs, Leng et al. [8] suggested using the cells specifically to combat
the cytokine storm in COVID-19 patients. This approach is supported
by data from non-viral acute lung injury animal studies. However,
since existing animal models cannot replicate the natural course of
acute lung injury [31], the aforementioned approach awaits further
validation, especially in ARDS patients. A recent study by Park et al.
[32] demonstrated that nanovesicles derived fromMSCs had the abil-
ity to ameliorate the signs of cytokine storm, including weight and
temperature changes, as well as excessive inflammatory response in
a mouse model of sepsis provoked by bacterial outer membrane
vesicles. Similarly, Khatri et al. [33] demonstrated that MSC-derived
extracellular vesicles had the ability to attenuate inflammation in an
influenza virus-induced swine lung injury model. Likewise, MSCs iso-
lated from human orbital fat tissues have been found to be effective
in modulating lipopolysaccharide (LPS)-induced acute lung inflam-
mation through paracrine regulation of macrophage-mediated cyto-
kine storm [34,35].

Improving MSC therapy for COVID-19 patients

There is mounting interest in the development of protocols for the
generation of optimized immunomodulatory MSCs, which could be
customized to target specific viral diseases. Since most intravenously
infused MSCs get trapped in the lungs, cells can exert anti-inflamma-
tory, anti-microbial and tissue repair functions while residing within
damaged lungs via cell-to-cell contact without engrafting into the tis-
sue [36]. However, the retention time of MSCs within the lungs is
extremely short [36] and may or may not be increased during injury
or infection. Galleu et al. [20] demonstrated that MSCs, when given as
treatment for GVHD, show therapeutic efficacy without engrafting
into the tissue. The mechanism underpinning recovery was found to
be immunosuppression exerted by apoptotic MSCs. The study showed
that in vivoMSCs undergo extensive apoptosis in response to paracrine
secretion by cytotoxic cells. It is worth mentioning that, aside from
MSC holding time in the tissue, identification of the most clinically
effective MSC subpopulation is of great importance for ensuring homo-
geneous clinical outcomes. In this context, as suggested elsewhere in
this article, the present findings could be used as a biomarker to pre-
dict clinical responses to MSCs. Nevertheless, stem cells transplanted
in the infected or diseased lung usually encounter massive cell death
within a few days of therapy. To enhance engraftment, precondition-
ing of MSCs could be beneficial [37]. For example, exposure to hypoxia
prolongs survival of engrafted MSCs and increases their effectiveness
in treating bleomycin-induced lung injury in rodents [38]. Moreover,
hypoxic preconditioning induces the expression of pro-survival and
pro-angiogenic markers in MSCs [39].

A similar study reported that hypoxia preconditioning of MSCs
efficiently enhances cell survival, engraftment and engrafted cell sur-
vival, improves pulmonary respiratory function and downregulates
inflammatory and fibrotic factor expression in a bleomycin-induced
pulmonary fibrosis mouse model [38]. Another important strategy is
genetic modification of MSCs to enhance their intrinsic ability to
migrate and survive. For example, overexpression of CXCR4 facilitates
MSC homing and colonization within injured pulmonary tissues in
acute lung injury [40], and MSCs engineered to overexpress HO-1
[41] orMnSOD [42] show an improved survival rate in models of lung
injury. Keratinocyte growth factor gene transfected to MSCs has been
shown to improve lung infection and promote type II lung epithelial
cell proliferation, thus facilitating survival after LPS-induced acute
lung injury in a mouse model [43].

Other possible approaches to enhance the therapeutic effect of
MSCs include overexpression of pro-reparative molecules, including
platelet-derived growth factor [44] and angiopoietin 1 [45], or cyto-
kines, such as IFN-g [46] and IL-10 [47], to increase their immuno-
suppressive activity. Additionally, MSCs protect lung tissue from
bleomycin-induced injury [48] via expression of interleukin 1 recep-
tor antagonist (IL1RN), as IL1RN can block the production or activity
of TNF-a and IL-1 [49]. Thus, identification of IL1RN-expressing
human MSC subpopulations may provide a novel cellular vector for
treating pulmonary infections in humans. Stimulation of MSCs via
pre-treatment with pro-inflammatory signaling molecules (such as
IL-1b) might also enhance the immunomodulatory properties of
MSC-secreted exosomes [50]. The latter represent a viable cell-free
approach that can be used to treat infected individuals. MSCs also
express high levels of toll-like receptor (TLR) 3 and 4 [51]. The activa-
tion of TLR proteins represents an efficient mechanism for reinstating
immune responses in the event of infection by enhancing the immu-
nosuppressive effect of MSCs [51]. Similarly, the activation of toll-like
receptor on MSCs by pathogen-associated molecules like LPS is also
effective [52]. Selections of MSCs based on expressed levels of immu-
nomodulatory proteins may enhance efficacy. As an example, a sub-
set of Stro-1+ MSCs show enhanced support for human
hematopoietic stem cell engraftment and greater immunosuppres-
sive capacity, while Stro-1�MSCs manifest a broad distribution after
infusion into tissues [53,54]. ACE2 has broader allocations in humans
, which may possibly explain why some COVID-19 patients present
with multiple complications. In these cases, MSCs with the potential
for broad in vivo distribution may be applied. Additionally, combina-
tion therapies may be explored to enhance the effect of MSCs in vivo.
For example, the combination of the sphingosine 1 phosphate analog
FTY720 and UCMSCs attenuates acute lung injury and affords better
survival in mice than either monotherapy [55]. Similarly, combining
adipose-derived MSCs with pre-activated and disaggregated shape-
changed platelets provides more protection to the rat lung from
ARDS complicated by sepsis [56]. Nebulized heparin along with MSCs
inhibits coagulation and inflammatory pathways and modulates alve-
olar macrophages [57]. All the aforementioned approaches seem
advantageous, but whether they apply to COVID-19 has yet to be
determined.

Discussion

The COVID-19 pandemic is rapidly spreading all over the world,
posing great health and economic challenges. Thus far, available data
suggest that the most vulnerable to infection are people aged 65 or
older and those with existing serious health issues [58]. In severely
affected patients, lung inflammation is characterized by invasion of
neutrophils and macrophages into the alveolar space, which, together
with overactivated pro-inflammatory cytokines, results in



Figure 1. Representation of cytokine storm in the lungs following severe SARS-CoV-2 infection. (A) SARS-CoV-2 lands in the nose and mouth and reaches the lungs. (B) Schematic of
SARS-CoV-2 infecting lung epithelial cells. (C) Enlarged picture of the events involved in the production of a cytokine storm. Viruses infect lung epithelial cells and alveolar macro-
phages, produce viral progeny and release cytokines and chemokines. Cytokine- and/or chemokine-activated macrophages and virally infected dendritic cells lead to a more intense
immune response and thus initiate a cytokine storm. Discharged chemokines draw additional inflammatory cells from blood vessels into the site of inflammation. These cells dis-
charge additional chemokines or cytokines to amplify the cytokine storm. (Color version of figure is available online).
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impairment of lung endothelial and epithelial cells . Currently, in the
absence of any specific therapies, the best way to manage COVID-19
is to reduce infection and mortality rates. Thus, there’s a pressing
need to find treatments that are effective in addressing infection-
induced cytokine storm, which is associated with increased mortality,
and also to prevent damage that may cause long-lasting impairment
of lung function. Studies have shown that MSC-based therapies are
effective in preventing steroid-resistant acute GVHD and viral dis-
eases [59]. The antiviral [60] and antibacterial [61] action of MSCs,
combined with their hypoimmunogenic nature due to low major his-
tocompatibility complex class I expression and lack of major histo-
compatibility complex class II expression, is well documented. As
shown in previous studies [59,60], ARDS develops most commonly in
the setting of pneumonia (bacterial and viral; rarely fungal) [62].

In brief, respiratory pathogens, such as respiratory viruses and
bacteria, induce inflammation in pathologic lesions and spread to
lower respiratory cells along the respiratory tract [63]. Interestingly,
intact pathogens (e.g., influenza virus) have not been detected in
patients with fatal outcomes or experimental animals with extensive
pathologic lesions of ARDS [64,65], indicating that pathogens, rather
than acting directly, secrete toxins into the host cells. Nearly all infec-
tious diseases, including pneumonia, have a primary infection site
where pathogens replicate and where toxic substances are produced
and released into nearby local lesions or the systemic circulation.
MSCs have shown the ability to control virus replication and the
inflammatory response of the host in a relevant pre-clinical large ani-
mal model of influenza virus [33]. Similarly, in bacterial infections,
the focus of a replication site may produce many substances, includ-
ing bacteria and fragments of bacterial components, such as polysac-
charide capsules and bacterial exotoxins like pneumolysin and
bacteriocin, which can be detected by blood cultures and microscopic
examinations. In this context, MSC therapy has been found in a sepsis
murine model to modulate transcription of up to 13% of the genome,
with immune response-related effects, including a decrease in genes
involved in antigen presentation and cell-to-cell interactions that
regulate endothelial integrity and increase phagocytosis and bacterial
killing [66], suggesting the antibacterial potential of MSCs. MSCs can
also transfer mitochondria and microvesicles that modulate
immunity and epithelial response to injury [67]. These data, coupled
with the fact that MSCs can be readily procured in large numbers
from various tissues, including adipose, liver and placental tissue as
well as cord blood and dental pulp [68], make them an excellent can-
didate for cell therapy.

Accumulating evidence suggests that a subgroup of patients with
severe COVID-19 show signs of cytokine storm syndrome . The virally
induced cytokine storm has been linked to uncontrolled pro-inflam-
matory responses that encourage significant pulmonary immunopa-
thology. Thus, understanding the relationships between events that
occur from incubation to the onset of severe phases of disease progres-
sion holds the key for therapeutic interventions. The plasma of COVID-
19 patients shows a higher level of IL-2, IL-6, IL-7, IL-10, TNF-a, granu-
locyte colony-stimulating factor, monocyte chemoattractant protein 1
and macrophage inflammatory protein 1a [], an indication of uncon-
trolled systemic cytokine storm, which may be attenuated using treat-
ment with MSCs [8], although the mechanism remains unclear. As in
hyper-inflammation, immunosuppressive measures are likely to be
beneficial; thus, MSCs may exert an effect through inhibiting pro-
inflammatory cytokines via their immunosuppressive potential [8].
Moreover, by making direct cell-to-cell contact with immune cells or
secreting a range of anti-inflammatory factors, MSCs can target
immune cells and affect their function. In addition, MSCs express sev-
eral cell adhesion molecules, including intercellular adhesion molecule
1 and vascular cell adhesion molecule 1, that attract activated immune
cells [69], thereby increasing their exposure to anti-inflammatory sig-
nals fromMSCs.

IL-6 is also a vital initiator of an uncontrolled cytokine storm [70]
and is significantly correlated with severe cases of COVID-19 [71].
Previous studies have indicated that MSCs significantly inhibit cyto-
kine storm by impeding the overproduction of IL-6 [72]. Thus, it is
reasonable to assume that MSCs may, to some extent, suppress acti-
vated cytokines by suppressing the activation of IL-6 production. In
any case, blocking IL-6 could be an effective strategy. The licensing
approach is another robust technique to enhance the effectiveness of
MSCs. Patients infected with SARS-CoV-2 have increased concentra-
tions of IFN-g , and the activation of IFN-g prompts MSCs to exert
their anti-inflammatory effect, which may be absent in severely
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affected COVID-19 patients, as T cells are not activated well by SARS-
CoV-2 infection [14]. In a recent clinical trial, the Abu Dhabi Stem Cell
Center employed “activated” MSCs in 73 COVID-19 patients and
claimed that inhaling MSCs nebulized into a fine mist helped patients
overcome the symptoms caused by the virus, though it did not kill
the virus (https://www.khaleejtimes.com/coronavirus-pandemic/
coronavirus-uaes-stem-cell-treatment-fights-symptoms-of-covid-
19-not-cure-it�) [73]. Based on the results, the authors of the study
suggested that licensing/priming/activating MSCs could be a poten-
tial therapeutic strategy against COVID-19.

MSCs have been shown to improve lung function and endurance
in chronic inflammatory lung diseases, including pulmonary hyper-
tension, asthma, chronic obstructive pulmonary disease (COPD), idio-
pathic pulmonary fibrosis and silicosis [74]. For instance, COPD
patients receiving bone marrow-derived MSCs have shown improved
forced expiratory volume (NCT01306513) [75], lung mechanics and
survival indicators (e.g., low CRP and body mass, airflow obstruction,
dyspnea and exercise capacity index) (NCT01872624) [76]. Likewise,
Figure 2. Hypothetical sketch of the immune response of MSCs in the SARS-CoV-2-infected
factors. Depending on the cytokine signals, MSCs initiate the immunoregulatory response an
ing the cytokine storm (2); the supplementation of exogenous MSCs in the alveolus though
tion, cytokine storm modulation (2), tissue protection, tissue repair (8) and, possibly, viral r
number 4,5,6 shows the transmigration and adhesive abilities of the MSCs. Abbreviation: D
Mesenchymal Stem Cell; NK-cells: Natural Killer cells. (Color version of figure is available onl
patients suffering from silicosis have shown increased lung perfusion,
suggesting that the cells were well tolerated (NCT01239862) [77].
These data support the effectiveness and safety of MSCs in chronic
lung diseases. Nevertheless, several studies have documented a lack
of benefit or even potential negative impact of MSC transplantation
in chronic pulmonary disease patients. For example, the multi-center,
double-blind, placebo-controlled phase 2 clinical study byWeiss et al.
[78], employing non-human leukocyte antigen-matched allogeneic
bone marrow-derived MSCs, showed no significant differences in the
overall number or frequency of COPD exacerbations or disease sever-
ity (NCT00683722). However, no adverse reactions or deaths were
noticed in patients undergoing treatment.

MSCs have also been shown to improve acute pulmonary anoma-
lies [79], and several positive outcomes of MSC transplantation in
acute lung diseases are well documented [80�82]. For instance, the
randomized phase 2 START trial showed that allogeneic MSC treat-
ment for moderate to severe ARDS resulted in no toxic side effects, as
the study noted only 1 death out of the 60 patients who received
lung. SARS-CoV-2 infection in the alveolus leads to uncontrolled production of growth
d repair the pulmonary tissue. In brief, the virus enters the alveolus (1), thereby activat-
its anti-inflammatory potential (3), immunomodulatory reponses (7), paracrine secre-
esistance reverses the detrimental outcome of the pulmonary microenvironment. The
C: Dendritic Cells, SARS-CoV2: Severe acute respiratory syndrome coronavirus 2; MSC:
ine).

https://www.khaleejtimes.com/coronavirus-pandemic/coronavirus-uaes-stem-cell-treatment-fights-symptoms-of-covid-19-not-cure-it-
https://www.khaleejtimes.com/coronavirus-pandemic/coronavirus-uaes-stem-cell-treatment-fights-symptoms-of-covid-19-not-cure-it-
https://www.khaleejtimes.com/coronavirus-pandemic/coronavirus-uaes-stem-cell-treatment-fights-symptoms-of-covid-19-not-cure-it-
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MSC treatment, and the death was judged to be unrelated [83]. How-
ever, the multi-center, open-label, dose-escalation phase 1 START
trial showed adverse events in 3 of the 9 patients who received
MSCs. Two patients developed worsening multi-organ failure and
shock on study day 6 and expired on study day 9, after the MSC infu-
sion, and one showed multiple embolic infarcts of the spleen, kidneys
and brain. Nevertheless, based on the MRI results, the observed
embolic infarcts were believed to have occurred prior to the MSC
infusion [84]. Although the safety of MSCs is well documented in
lung pathologies, larger trials are needed to prove their effectiveness
and to investigate any associated adverse events before MSCs can be
employed in acute or chronic inflammatory lung diseases.

In addition, MSCs have been shown to inhibit the differentiation
of monocytes into DCs and alter the cytokine profiles of DCs by upre-
gulating regulatory cytokines and downregulating pro-inflammatory
cytokines as well as induce tolerant phenotypes of naive and effector
T cells and suppress T and natural killer cell differentiation and prolif-
eration [16�19] (Figure 2). Interestingly, MSCs may also promote
regulatory T-cell expansion and suppress proliferation of effector T
cells [85]. Moreover, the immunomodulatory properties of MSCs are
linked to the expression of TLR receptors in MSCs, which is stimu-
lated by pathogen-associated molecules like LPS or double-stranded
RNA from viruses [86] such as SARS-CoV-2. Therefore, the role of TLR
signaling in the abrogation of the disease by MSC treatment cannot
be ruled out. Altogether, these findings are consistent with evidence
indicating that MSCs enhance COVID-19 resolution by inhibiting
inflammatory responses.

One of the important factors in COVID-19 treatment is the time
window with regard to anti-inflammatory treatment, as patients with
severe cases of the disease usually experience abrupt deterioration
within 1�2 weeks of onset. Thus, prompt initiation of anti-inflamma-
tory measures is likely to be of significant benefit. Identifying the cor-
rect timing and dose of MSCs—in addition to MSC passage number—as
well as route of delivery is therefore important for achieving favorable
outcomes. Equally important may be determining the optimal MSC tis-
sue source [87]. It is also important to take into account the fitness of
the MSCs, as freshly harvested cells may tend to showmore robustness
post-transplantation. It is worth mentioning that freshly harvested
cells are the prime choice for infusion in clinics, although cryopre-
served cells are certainly becoming the norm nowadays. Since clinical
experience with regard to MSCs and SARS-CoV-2 viral infection in the
lungs is incredibly limited, further studies addressing the efficacy of
MSCs in pulmonary damage are needed to reveal the true potential of
MSC-based therapies for this viral infection.

Conclusions

MSC therapy can overcome the present clinical challenges in
COVID-19 patients, especially those who are critically ill and not
responsive to conventional therapies. Preliminary clinical data sug-
gest that MSCs possess the capacity to lessen systemic inflammatory
responses and protect against SARS-CoV-2 virus-induced injury.
Though preliminary results from clinical investigations are encourag-
ing, it is too early to predict the therapeutic potential of MSCs in
COVID-19. Additional studies in a larger cohort of patients are needed
to validate their potential efficacy.
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