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Neck cooling induces blood pressure increase and peripheral
vasoconstriction in healthy persons
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Abstract
Introduction Noninvasive temperature modulation by localized neck cooling might be desirable in the prehospital phase of acute
hypoxic brain injuries. While combined head and neck cooling induces significant discomfort, peripheral vasoconstriction, and
blood pressure increase, localized neck cooling more selectively targets blood vessels that supply the brain, spares thermal
receptors of the face and skull, and might therefore cause less discomfort cardiovascular side effects compared to head- and
neck cooling. The purpose of this study is to assess the effects of noninvasive selective neck cooling on cardiovascular parameters
and cerebral blood flow velocity (CBFV).
Methods Eleven healthy persons (6 women, mean age 42 ± 11 years) underwent 90 min of localized dorsal and frontal neck
cooling (EMCOOLS Brain.Pad™) without sedation. Before and after cooling onset, and after every 10 min of cooling, we
determined rectal, tympanic, and neck skin temperatures. Before and after cooling onset, after 60- and 90-min cooling, we
monitored RR intervals (RRI), systolic, diastolic blood pressures (BPsys, BPdia), laser Doppler skin blood flow (SBF) at the
index finger pulp, and CBFV at the proximal middle cerebral artery (MCA). We compared values before and during cooling by
analysis of variance for repeated measurements with post hoc analysis (significance: p < 0.05).
Results Neck skin temperature dropped significantly by 9.2 ± 4.5 °C (minimum after 40 min), while tympanic temperature
decreased by only 0.8 ± 0.4 °C (minimum after 50 min), and rectal temperature by only 0.2 ± 0.3 °C (minimum after 60 min
of cooling). Index finger SBF decreased (by 83.4 ± 126.0 PU), BPsys and BPdia increased (by 11.2 ± 13.1 mmHg and 8.0 ±
10.1 mmHg), and heart rate slowed significantly while MCA-CBFV remained unchanged during cooling.
Conclusions While localized neck cooling prominently lowered neck skin temperature, it had little effect on tympanic temper-
ature but significantly increased BP which may have detrimental effects in patients with acute brain injuries.
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Introduction

Therapeutic hypothermia may have neuroprotective effects in
patients with ischemic tissue injury, such as stroke and cardiac
arrest [1]. Suggested beneficial effects of brain hypothermia
are reduced oxygen demand and mitigated inflammatory
mechanisms which may result in a decrease of cerebral edema
and intracranial pressure [1].

In recent years, multiple different methods have been intro-
duced to achieve brain hypothermia [2–4]. Endovascular temper-
ature management has been demonstrated to induce brain
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hypothermia with the advantage of maintaining consistent target
temperatures and the ability to control rewarming rates [2–4].
Yet, the method is invasive and associated with general, i.e.,
whole-body hypothermia and thus might cause systemic compli-
cations, e.g., coagulopathy, impaired immune function, pneumo-
nia, or electrolyte disturbances [2–4]. Surface cooling has been
demonstrated to be effective but less invasive [2–4]. Yet, surface
coolingmethods imply the disadvantage of temperature gradients
between cortical and deeper brain areas due to heat exchange
through the different layers of the cranium [2–4]. While neuro-
protective effects seem to vary with different depths of hypother-
mia [5], even mild hypothermia induced by noninvasive surface
cooling might be neuroprotective and therefore useful in the
prehospital treatment of non-sedated stroke patients [1]. In
healthy persons, Kallmünzer et al. showed that combined exter-
nal head and neck cooling slightly reduces body core tempera-
ture, and suggested that the method might be useful for noninva-
sive, prehospital hypothermia induction [6]. Using the same
method, we also observed a significant drop in skin temperature
[7]. However, combined head and neck cooling also caused pe-
ripheral vasoconstriction and a prominent blood pressure (BP)
increase by 15.3 ± 20.8 mmHg in healthy participants, while
heart rates (HR) slowed by 6.5 bpm [7]. These responses are
similar to those of the so-called cold face test [8, 9] where cold
stimulation of the face induces peripheral sympathetic activation
with vasoconstriction and BP increase and simultaneous
cardiovagal activationwith subsequent HR slowing [8]. The cold
face test also alters cerebral blood flow (CBF) [9].

While head cooling requires cold conduction from the
scalp to the brain [1] which may be rather limited due to the
thermal barrier of the scalp and skull [1], isolated neck cooling
might have the advantage of more directly cooling the carotid
and vertebral arteries and thus intracranial blood which should
yield the above hypothermia benefits [1].

Moreover, isolated neck cooling may be less uncomfortable
than combined neck and head cooling since head cooling affects
the skull and causes prominent deep pain [10]. In contrast, neck
cooling may have more effect on blood vessels and soft tissue
and less effect on boney structures and might therefore induce
less deep pain than head cooling [10]. Effects of isolated neck
cooling on cerebral blood flow velocities (CBFV) are unknown.

In order to evaluate the above effects, we assessed changes
in HR, BP, and middle cerebral artery (MCA) CBFV and
rated subjective discomfort and frostiness in response to iso-
lated neck cooling in young healthy persons.

Materials and methods

Eleven healthy volunteers (6 women, 5 men, mean age 42 ±
11 years) participated in the study. None of the participants had
any known disease or was taking medication known to affect the
cardiovascular or autonomic system. Before testing, all

participants refrained from nicotine, caffeine, or alcohol for at
least 18 h. The Institutional Ethics Committee of the University
of Erlangen-Nuremberg had approved the study, and written
informed consent had been obtained from all study participants
according to the Declaration of Helsinki.

Baseline recordings at supine rest and recordings
during neck cooling

Participants were tested between 9 A.M. and 2 P.M. They were
lying on a comfortable stretcher in a quiet room with an ambient
temperature of 24 °C and stable humidity. All participants initial-
ly rested for 40 min to ensure a stable cardiovascular situation
while we attached the monitoring devices.

Cold stimulation was accomplished with a neck cooling de-
vice (EMCOOLSBrain.Pad™) containing HypoCarbon cooling
gel® and consisting of two cooling elements for the neck and
two cooling elements for the shoulders. The cooling device is
layered with a skin-friendly and dermatologically tested medical
adhesive film and sticks onto the participant’s skin until re-
moved. Before use, the cooling device was kept at 4 °C [11].

Temperature was measured with one skin probe attached to
the neck (Bio Thermostat BTH-5, s.i.r., Germany), another probe
inserted into the rectum (Temprecise, Arizant Healthcare, Inc.,
USA) and a third probe inserted into the outer ear canal for
tympanic temperature recording (ELan Med GmbH, Germany).
Temperature measurements at other sites such as the esophagus
or bladder, i.e., more invasive methods were avoided in our
group of healthy volunteers.

Neck skin, tympanic, and rectal temperatures were measured
at baseline, immediately after cooling onset, and after every
10 min of cooling. Simultaneously, participants had to rate the
perception of frostiness and overall discomfort on a visual analog
scale ranging from 0 (no frostiness/discomfort) to 10 (maximum
conceivable frostiness/discomfort).

After 90 min, the cooling device was removed while mea-
surements continued for another 10 min for safety reasons and to
assure return of parameters to baseline values.

Criteria to abort coolingwere a decrease in systolic (BPsys) or
diastolic blood pressure (BPdia) by more than 20 mmHg, brady-
cardia above 1200 ms (i.e., 50 bpm), tachycardia below 500 ms
(i.e., 120 bpm), arrhythmias, and complaints about significant
discomfort or pain indicating the participant’s desire to end the
test.

Measurement of RR intervals, blood pressure,
respiration, skin blood flow, cerebral blood flow
velocity, and temperatures

We continuously recorded electrocardiographic RR intervals
(RRI) using a standard 3-lead electrocardiogram, and noninva-
sively monitored beat-to-beat BPsys and BPdia by means of
radial artery applanation-tonometry at the wrist (Colin Pilot,
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Colin Medical) with oscillometric BP calibration at the brachial
artery [12].

We recorded respiratory frequency using calibrated 2-belt
chest-abdomen inductance plethysmography (Respitrace
Calibrator, Ambulatory Monitoring, Inc., Ardsley, NY,
USA) with 1 belt at the level of maximal thoracic and the
other at maximal abdominal respiratory excursions [9].

Skin blood flow (SBF) was monitored at the right index
finger pulp using laser Doppler flowmetry (Perimed,
Stockholm, Sweden). The laser probe emits a divergent nar-
row band light at a wavelength of approximately 780 nm with
an intensity of 0.8 mW [12]. The volume measured in the skin
is a hemisphere with an approximate radius of 1 mm [12].
However, the instrument does not measure perfusion in abso-
lute values (ml × min−1 × g−1), given that the measured vol-
ume is tissue-dependent and not exactly known [9, 12, 13].
Therefore, after calibration of the instrument with a motility
standard according to the manufacturer, flow was measured in
arbitrary perfusion units (PU) [9, 12, 13].

Mean CBFV at the right proximal MCA was recorded
using transcranial Doppler ultrasonography (Multidop,
DWL, Sipplingen, Germany). The MCA was insonated
through the temporal window approximately 1 cm above the
zygomatic arch at a depth of 35–65mm using a pulsed 2-MHz
probe. For each participant, the insonation depth was selected
as that which gave the most stable and optimal signal. The
probe was attached to the skull at a fixed angle using an ad-
justable positioning system. The CBFV of the MCA (MCA-
CBFV) is proportional to CBF provided that both the angle of
insonation and the diameter of the artery remain constant [9].

Data storage and off-line analysis

RRI, BPsys, BPdia, SBF, MCA-CBFV, and respiratory
frequency were sampled on a custom-designed data ac-
quisition and analysis system (SUEmpathy™, SUESS
Medizin-Technik GmbH, Aue, Germany) and stored
for off-line analysis.

From 5-min recordings taken at baseline, immediately after
the onset of neck cooling, after 60 min and after 90 min of
neck cooling, we selected 60-s epochs without artifacts to
calculate mean values and standard deviations (SD) of the
above bio-signals.

Statistical analysis

We tested data for normal distribution using the Kolmogorov-
Smirnov test. Differences in RRIs, BPsys, BPdia, CBFV,
SBF, and respiratory frequency values at baseline, upon
cooling onset, and after 60 and 90 min of neck cooling were
assessed by analysis of variance (ANOVA) for repeated mea-
surements (general linear model). Differences in skin, rectal,
and tympanic temperature values, in subjective values of

frostiness and overall discomfort at baseline, upon cooling
onset, and after every 10 min of cooling were also assessed
by ANOVA. The suitability of the ANOVAmodel was deter-
mined byMauchly’s sphericity test. In case of violation of the
sphericity assumption, the Greenhouse Geisser correction was
employed. In case of significant ANOVA results, we per-
formed post hoc single comparisons. For comparison of
values at baseline, prior to cooling, and during neck cooling,
we used t tests for paired samples in case of normal distribu-
tion, and the Wilcoxon test in case of non-normal distribution
of data. A commercially available statistical program
(SPSS™, IBM SPSS Statistics 20, USA) was used for data
analysis. Significance was set at p < 0.05.

Results

Perception of frostiness and discomfort

Data are presented as mean ± SD. Visual analog scale scores
reflecting the perception of frostiness (Fig. 1) remained stable
from baseline to cooling onset (0.2 ± 0.6), but had already
significantly increased after 10 min of cooling (3.9 ± 1.4;
p < 0.001), and reached highest scores after 40 min of cooling
(4.0 ± 1.7; p < 0.001). Then, frostiness scores steadily de-
creased until the end of cooling (3.9 ± 2.2 after 60 min; 2.9
± 2.2 after 90min of cooling). However, frostiness scores after
90 min of cooling were still significantly higher than scores at
baseline (p = 0.003).

Scores of discomfort perception (Fig. 1) showed changes
upon cooling that were similar to those of frostiness scores:
discomfort scores also remained stable during baseline until
cooling onset (0.4 ± 0.8) but significantly increased to discom-
fort scores of 3.0 ± 1.4 (p < 0.001), assessed already 10 min
after cooling onset. Discomfort scores were highest after
60 min of cooling (3.1 ± 2.4; p = 0.002). Then, discomfort
scores decreased until the end of cooling (2.9 ± 2.3 after
90 min cooling) but were still higher than scores at baseline
(p = 0.002). The participants’ main discomfort complaint was
the requirement to maintain a lying position without moving
for 90 min. Despite the perception of frostiness and discom-
fort, all participants completed the entire study protocol with
90 min of cooling.

During neck cooling, none of our participants showed or
reported shivering.

Skin, tympanic, and rectal temperatures

Neck cooling significantly decreased skin temperature at the
neck but only very slightly, albeit still significantly lowered
tympanic and rectal temperatures (Fig. 1; Table 1).

Neck skin temperature was stable during baseline (34.4 ±
0.9 °C) until cooling onset, but significantly decreased to 26.7
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± 4.8 °C already after 10 min of neck cooling and was lowest
after 40-min cooling (25.2 ± 5.0 °C; p < 0.001). Then, neck
skin temperature slowly re-increased until the end of cooling
(27.5 ± 3.7 °C after 60 min, 30.0 ± 2.8 °C after 90 min
cooling; Fig. 1; Table 1).

Tympanic temperature was also stable during baseline
(35.6 ± 0.2 °C) until cooling onset. Within the first 10 min
of cooling, tympanic temperature showed a very slight de-
crease to 35.0 ± 0.8 °C, which however, was still significant
(p = 0.026). Tympanic temperature continued to slightly de-
crease and reached its nadir (34.7 ± 0.4 °C) after 50-min

cooling; again, the rather small difference to baseline values
was significant (p < 0.001). Tympanic temperature remained
at similar levels after 60 min (34.8 ± 0.4 °C) and 90 min (34.9
± 0.3 °C) of cooling (Fig. 1; Table 1).

Rectal temperature also showed only small changes during
cooling. It decreased very little from baseline values of 36.9 ±
0.4 °C to 36.7 ± 0.3 °C after 60 min of cooling; still, data
differed statistically (p = 0.043). After 60 min cooling, rectal
temperature slightly re-increased and no longer differed sig-
nificantly after 90 min of cooling from rectal temperature at
baseline (p > 0.05; Fig. 1; Table 1).

Table 1 Rectal, tympanic, and skin temperature at baseline and lowest values during neck cooling in 11 healthy participants

Rectal temperature
at baseline (°C)

Rectal temperature
lowest values
(60 min cooling) (°C)

Tympanic temperature
at baseline (°C)

Tympanic temperature
lowest values
(50 min cooling) (°C)

Skin temperature
at baseline (°C)

Skin temperature
lowest values
(40 min cooling) (°C)

Participant #1 37.2 37.1 35.5 34.4 33.6 27.3

Participant #2 37.1 36.7 35.7 34.5 34.4 16.2

Participant #3 36.0 36.3 35.6 35.0 36.6 36.2

Participant #4 36.9 36.3 35.5 35.0 34.3 27.9

Participant #5 36.7 36.6 35.7 34.9 34.7 24.7

Participant #6 37.5 37.2 35.6 35.3 33.2 21.2

Participant #7 37.0 36.6 35.3 34.5 34.8 27.7

Participant #8 36.6 36.6 35.3 33.7 33.9 25.7

Participant #9 36.4 36.6 35.7 34.9 34.4 24.2

Participant #10 37.2 36.9 35.8 35.1 34.3 23.0

Participant #11 36.8 36.3 35.9 35.0 34.4 23.1

Mean ± SD 36.9 ± 0.4 36.7 ± 0.3* 35.6 ± 0.2 34.7 ± 0.4* 34.4 ± 0.9 25.2 ± 5.0*

*Indicates significant differences between baseline values and lowest values during neck cooling

min minutes, SD standard deviation

Fig. 1 Skin, tympanic, and rectal temperature (left graph) and perception of frostiness and discomfort (right graph) before and during 90 min of neck
cooling in 11 healthy participants, (presented as mean ± standard deviation)
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Heart rate, blood pressure, skin blood flow,
respiration, and cerebral blood flow velocities

During neck cooling, HR slowed significantly: after 60-min
cooling RRIs had increased from 921.0 ± 114.4 ms at baseline
to 1089.1 ± 141.7 ms (p < 0.001). After 90 min of cooling,
RRIs had slightly decreased to 1060.4 ± 130.0 ms, i.e., HR
had slightly re-accelerated. However, RRIs were still higher,
i.e., HR was slower at the end of cooling than at baseline
(p < 0.001; Fig. 2; Table 2).

After the onset of neck cooling, BPsys significantly in-
creased within the first 5-min of cooling from 119.9 ±
13.8 mmHg at baseline to 130.1 ± 14.2 mmHg, and to 131.0
± 13.3 mmHg after 60-min cooling. Then, BPsys slightly de-
creased to 127.1 ± 12.4 mmHg and no longer differed from
baseline values after 90-min cooling (p > 0.05; Fig. 2;
Table 2).

Similarly, BPdia increased steadily and significantly from
68.8 ± 10.0 mmHg at baseline to 74.9 ± 10.2 mmHg within
the first 5 min upon cooling onset, and to 76.9 ± 14.8 mmHg
after 60 min of cooling. After 90-min cooling, BPdia was at
74.6 ± 13.0 mmHg, i.e., BPdia values were still higher than at
baseline (p = 0.043; Fig. 2; Table 2).

Index finger SBFwas stable during baseline (213.2 ± 177.0
PU) until cooling onset (200.5 ± 151.3 PU) but decreased sig-
nificantly during cooling to values of 130.7 ± 128.7 PU after
60-min cooling and 129.9 ± 124.8 PU after 90 min of cooling
(Fig. 2; Table 2).

Respiratory frequency and MCA-CBFV remained un-
changed during neck cooling (p > 0.05; Table 2).

Discussion/conclusion

In our non-sedated healthy participants, isolated neck cooling
significantly lowered skin temperature at the neck and mini-
mally although still significantly lowered rectal, and tympanic
temperatures. At the time when the average decreases were
most prominent for all participants, the individual changes
ranged between + 0.3 °C and − 0.6 °C for rectal temperature
and between − 0.1 °C and − 1.6 °C for tympanic temperature
(Table 1).

In contrast, the prominent decrease in skin temperature
from 34.4 ± 0.9 °C to 25.2 ± 5.0 °C was perceived as quite
uncomfortable and was associated with significant cardiovas-
cular effects. Immediately upon cooling onset, the participants

Fig. 2 RR intervals (RRI; upper left graph), skin blood flow at the right
index finger pulp (SBF; upper right graph), systolic blood pressure
(BPsys; lower left graph) and diastolic blood pressure (BPdia; lower

right graph) during baseline, after cooling onset, after 60 and 90 min of
neck cooling in 11 healthy participants, (presented as mean ± standard
deviation)
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scored discomfort around 3/10 throughout the 90-min cooling
period (Fig. 1). Their perception of frostiness was even higher
and reached 4/10 at the first evaluation, after 10 min of
cooling. Perception of frostiness only decreased after 60 min
of cooling but did not attenuate below 3/10 by the end of
cooling (Fig. 1).

Cardiovascular responses to neck cooling were similar to
those seen during cold face stimulation [14, 15] although the
facial area was spared from cooling during this study.

In our non-sedated participants, the unpleasant cold-
stimulus immediately induced a significant increase in
BPsys from 119.9 ± 13.8 mmHg to 130.1 ± 14.2 and in
BPdia from 68.8 ± 10.0 mmHg to 74.9 ± 10.2 mmHg upon
cooling onset, and continued cold perception kept BPsys
and BPdia at similar levels throughout the entire cooling pe-
riod. The BP increase was due to sympathetically mediated
peripheral vasoconstriction as shown by the decrease in su-
perficial skin perfusion at the index finger pulp, an area ex-
clusively innervated by sympathetic vasomotor fibers [8, 16].
Index finger SBF dropped from 213.2 ± 177.0 PU prior to
cooling to only 130.7 ± 128.7 PU after 60 min and remained
at this level until the end of cooling. Peripheral vasoconstric-
tion is one of the primary autonomic defenses against cold and
buffers core-to-periphery heat transfer and heat loss [17].
Furthermore, shivering can transiently increase metabolic
rates which might increase local temperature and thus limit
therapeutic hypothermia in non-sedated persons [18].
However, in our study, none of the participants showed or
reported shivering during neck cooling.

While the continuous peripheral vasoconstriction explains
the rise in BPsys by approximately 10 mmHg and in BPdia by
approximately 6–7 mmHg throughout the cooling period, it
was somewhat unexpected that HR slowed significantly as
evidenced by the increase in RRIs during the 90-min neck
cooling (Fig. 2 Table 2). Usually, cold stimulation of the skin
that spares the facial area induces sympathetically mediated
BP increase and HR acceleration [8, 19, 20]. In contrast to this
“cold pressor response,” our participants’ HR slowing in the
presence of BP increase was similar to the responses seen with

cold face stimulation [8, 15] although we performed isolated
neck cooling specifically to avoid cooling of the skin inner-
vated by the trigeminal nerve.

There might be three potential explanations for the slowing
of HR. Either, there are nervous anastomoses from sensory
fibers of the cervical plexus, particularly the occipitalis minor,
t ransversus col l i , aur icular is magnus, and even
supraclavicular nerves to the trigeminal facial fibers [21] that
still activated trigeminal impulses which are considered to
account for the HR slowing during a cold face test [8, 15],
or neck cooling was so intense that thermal convection still
cooled facial skin areas and thus triggered HR slowing.
However, it seems more likely that the HR slowing in our
participants was due to continuous baroreflex activation by
the enduring, cold-induced BP increase that resulted in
baroreflex-mediated cardiovagal activation with subsequent
HR slowing. We assume that the cardiovagal baroreflex re-
sponse overrode any cold-induced, baroreflex-independent
sympathetic activation and HR acceleration as it occurs during
short-lasting cold pressor stimulation [20].

Despite the significant BP increase, MCA-CBFV did not
change during the 90-min cooling period. This result is to be
expected in young healthy persons who have normal cerebral
autoregulation that adequately buffers any change in BP with-
in the limits of healthy cerebral autoregulation, i.e., within a
mean BP range from 50 to 170 mmHg [8, 22]. In one of our
previous studies, Brown et al. found an increase in cerebro-
vascular resistance during 1-min cold stimulation and con-
cluded that there is constriction of cerebral resistance vessels
upon sympathetic activation [9]. Thus, the sympathetically
mediated increase in cerebrovascular resistance would buffer
the effects of the sympathetically mediated BP increase, and
consequently assures stable CBFV in conjunction with hor-
monal and metabolic factors of cerebral autoregulation [9].

However, cerebral autoregulation may be compromised in
patients who suffered an acute brain injury, particularly a
stroke or subarachnoid hemorrhage [23, 24]. Therefore, it is
unclear how CBFV would change in patients in response to a
10 mmHg BP increase. Cerebral autoregulation might fail to

Table 2 RR intervals, systolic and diastolic blood pressure, skin blood flow at the right index finger pulp, and cerebral blood flow velocity at the middle
cerebral artery during baseline, after cooling onset, after 60 and 90 min of neck cooling in 11 healthy participants. Data are presented as mean ± SD

Baseline Cooling onset 60 min 90 min Baseline vs.
cooling onset

Baseline vs.
60 min

Baseline vs.
90 min

RRI (ms) 921.0 ± 114.4 949.9 ± 98.8 1089.1 ± 141.7* 1060.4 ± 130.0* p = 0.053 p < 0.001 p < 0.001

BPsys (mmHg) 119.9 ± 13.8 130.1 ± 14.2* 131.0 ± 13.3* 127.1 ± 12.4 p < 0.001 p = 0.018 p = 0.111

BPdia (mmHg) 68.8 ± 10.0 74.9 ± 10.2* 76.9 ± 14.7* 74.6 ± 13.0* p = 0.008 p = 0.024 p = 0.043

SBF right index finger (PU) 213.2 ± 177.0 200.5 ± 151.3 130.7 ± 128.7* 129.9 ± 124.8* p = 0.594 p = 0.003 p = 0.006

CBFV (cm s−1) 77.3 ± 27.4 78.7 ± 25.8 78.9 ± 28.1 78.5 ± 27.8 p = 0.610 p = 0.481 p = 0.565

*Indicates significant differences between baseline values and values after cooling onset and after 60 and 90 min of neck cooling

RRI RR intervals, BPsys systolic blood pressure, BPdia diastolic blood pressure, SBF skin blood flow, CBFV cerebral blood flow velocity,minminutes
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buffer increased BP levels which could further damage injured
brain tissue, e.g., by hemorrhagic transformation [25], or
could destroy penumbra tissue at risk [25]. Moreover, acute
stroke is associated with an increase in sympathetic activity
[26] which could further augment the BP increase induced by
neck cooling. According to clinical trials, even variations in
peak BPsys are associated with an increased hazard ratio of
parenchymal hemorrhages after ischemic stroke [27].
Furthermore, intravenous thrombolysis is only recommended
for BP levels below 180/105 mmHg [28]. Therefore, any in-
tervention triggering sympathetic activation with vasocon-
striction and arterial hypertension, such as neck cooling,
may be harmful and may therefore limit the applicability of
revascularization treatment.

This study was limited by a lack of comparisons with a
target population such as patients with ischemic stroke. Yet,
we first needed to evaluate whether the procedure might have
negative effects before applying neck cooling in clinical sce-
narios. In contrast to our healthy study participants, sympa-
thetic responses to neck cooling might be even more promi-
nent in older stroke patients. With increasing age, there is a
shift towards augmented sympathetic and reduced parasym-
pathetic cardiovascular modulation [26, 29–31]. After acute
stroke, patients have an even more prominent increase in sym-
pathetic cardiovascular modulation while cardiovagal modu-
lation is significantly reduced [26, 29–31]. Given the findings
in our healthy volunteers, we are concerned that further stud-
ies evaluating physiological regulatory mechanisms of neck
cooling in stroke patients may be harmful and might expose
patients to unpredictable risk.

Probably, the significant BP increase induced by neck
cooling might be attenuated by sedating and pain-relieving
medication [1]. In patients undergoing invasive cooling, seda-
tion or general anesthesia may prevent harmful BP increases
[1]. General anesthesia inhibits the cooling induced peripheral
vasoconstriction that normally serves as thermoregulatory de-
fense against the loss in core temperature [18]. However, se-
dating medication compromises the correct assessment of the
patient’s status and level of consciousness, i.e., of parameters
that are essential for further therapeutic decisions in acute
stroke patients or patients with other acute brain injuries
[32]. Therefore, sedation of these patients should be consid-
ered with care, particularly during the prehospital phase.

Most importantly, isolated neck cooling not only increased
BP significantly and lowered HR but also had very limited if
not negligible effects on core and tympanic temperatures and
therefore quite likely on intracranial temperature. Since we
studied neck cooling effects in healthy individuals, we were
not able to invasively monitor actual brain temperature but
had to rely on tympanic temperature which might to some
extent reflect intracranial temperature [1]. After 50-min
cooling, tympanic temperature decreased by 0.8 ± 0.4 °C
which might suggest that there could have been some effect

on the cerebral temperature (Fig. 1) [1]. Yet, we cannot rule
out that cold conduction from the skin to the outer ear region
contributed to the decrease in tympanic temperature.

Finally, recent studies suggest that hypothermia does not
have major beneficial effects in the clinical setting [33, 34].
Although several studies suggested that hypothermia might
have neuroprotective benefits in patients with ischemic tissue
injury [1], recent trials—e.g., the POLAR-RCT—showed that
prophylactic hypothermia has only limited effects and is asso-
ciated with increased rates of adverse events [33]. Furthermore,
Neugebauer et al. recently showed in patients with malignant
MCA stroke that moderate hypothermia early after
hemicraniectomy did not improve mortality rates or functional
outcome compared to hemicraniectomy treatment only [34].

In conclusion, we found a prominent decrease in skin tem-
perature and a statistically significant though minor and there-
fore clinically questionable decrease in tympanic temperature.
Our current results cannot provide a final answer to the ques-
tion whether neck cooling lowers cerebral temperature. To
determine whether noninvasive neck cooling might be suit-
able to induce efficient brain cooling, more direct measure-
ments of intracerebral temperature would be required. Yet,
such measurements require an invasive approach which must
not be applied in healthy volunteers, and might at best be
considered under most stringent monitoring of potentially
harmful cardiovascular changes in a well-selected group of
patients, e.g., patients who have low–normal BP. Instead,
our current results indicate that any assumed neuroprotective
effect of potentially lowered cerebral temperature may be
outweighed by the neck cooling induced BP increase seen in
non-sedated persons. In summary, isolated neck cooling does
not seem to be suited for hypothermia induction in non-
sedated patients since its intracranial cooling effects seem to
be small if not absent and are therefore inferior to those of
systemic, invasive cooling.
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