
RESEARCH Open Access

Modelling the influence of climate on
malaria occurrence in Chimoio Municipality,
Mozambique
João Luís Ferrão1*, Jorge M. Mendes2 and Marco Painho2

Abstract

Background: Mozambique was recently ranked fifth in the African continent for the number of cases of malaria. In
Chimoio municipality cases of malaria are increasing annually, contrary to the decreasing trend in Africa. As malaria
transmission is influenced to a large extent by climatic conditions, modelling this relationship can provide useful
insights for designing precision health measures for malaria control. There is a scarcity of information on the
association between climatic variability and malaria transmission risk in Mozambique in general, and in Chimoio in
particular. Therefore, the aim of this study is to model the association between climatic variables and malaria cases
on a weekly basis, to help policy makers find adequate measures for malaria control and eradication.

Methods: Time series analysis was conducted using data on weekly climatic variables and weekly malaria cases
(counts) in Chimoio municipality, from 2006 to 2014. All data were analysed using SPSS-20, R 3.3.2 and BioEstat 5.0.
Cross-correlation analysis, linear processes, namely ARIMA models and regression modelling, were used to develop
the final model.

Results: Between 2006 and 2014, 490,561 cases of malaria were recorded in Chimoio. Both malaria and climatic
data exhibit weekly and yearly systematic fluctuations. Cross-correlation analysis showed that mean temperature
and precipitation present significantly lagged correlations with malaria cases. An ARIMA model (2,1,0) (2,1,1)52, and a
regression model for a Box-Cox transformed number of malaria cases with lags 1, 2 and 3 of weekly malaria cases
and lags 6 and 7 of weekly mean temperature and lags 12 of precipitation were fitted. Although, both produced
similar widths for prediction intervals, the last was able to anticipate malaria outbreak more accurately.

Conclusion: The Chimoio climate seems ideal for malaria occurrence. Malaria occurrence peaks during January
to March in Chimoio. As the lag effect between climatic events and malaria occurrence is important for the
prediction of malaria cases, this can be used for designing public precision health measures. The model can
be used for planning specific measures for Chimoio municipality. Prospective and multidisciplinary research
involving researchers from different fields is welcomed to improve the effect of climatic factors and other
factors in malaria cases.

Keywords: Modelling, Malaria, Chimoio, Precision public health

* Correspondence: jferrao@ucm.ac.mz
1Faculdade de Engenharia, Universidade Católica de Moçambique, Chimoio,
Mozambique
Full list of author information is available at the end of the article

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Ferrão et al. Parasites & Vectors  (2017) 10:260 
DOI 10.1186/s13071-017-2205-6

http://crossmark.crossref.org/dialog/?doi=10.1186/s13071-017-2205-6&domain=pdf
mailto:jferrao@ucm.ac.mz
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Background
Mozambique was recently ranked fifth in Africa for the
number of malaria cases [1] and reported over six mil-
lion cases of malaria in 2015 [2]. Chimoio is the capital
of Manica Province in the Centre of Mozambique. It is
the fifth-largest city in Mozambique, with an estimated
population of 324,816 [3], all of whom are at risk of
contracting malaria. Malaria is broadly recognised as
endemic in Mozambique, with seasonal peaks during the
wet season, between November and March, but predom-
inantly in February. In Chimoio municipality cases of
malaria are increasing annually, contrary to the decreas-
ing trend in Africa. A recent study on spatial and
temporal malaria prevalence in Chimoio municipality
indicated that malaria prevalence in Chimoio is 20.1%
between 2006 and 2014, with differences in weekly and
yearly malaria occurrence [4].
Several institutions operate in Mozambique to control

and prevent malaria such as The Lubombo Spatial
Development Initiative (LSDI), The President’s Malaria
Initiative (PMI), Programa Nacional de Combate a
Malaria (CNPM), Unicef, Centre for Disease Control
and Prevention (CDC), Centro de Pesquisa de Malaria,
and others. Despite these Mozambican Government
initiatives, the number of cases continues to increase
annually. Most research projects focus on the clinical
aspects of the disease such as chemoprophylaxis, and
vaccine development. However, disease eradication
should not only involve the medical disciplines, but also
health economics, geography and ecology, and the social
sciences to design and implement control strategies in
real life settings [5].
Many time-series studies and studies of epidemics

have been carried out to determine explanatory variables
for changes in malaria transmission, but most fail to take
climatic factors into account [6]. It is well known that
the practice of precision health was enabled by the ad-
vent of Global Positioning Systems (GPS) and Global
Navigation Satellite Systems (GNSS). The Geographical
Information System (GIS) is a powerful tool for the
health practitioner and researcher’s due to its ability to
incorporate data from different sources to produce new
information that permits the creation of maps of spatial
variability [7].
Public precision health strategies can support deci-

sions to reduce malaria by optimising resource use [8].
For example, decisions can focus spraying efforts to
reduce vector numbers, where to build a water body,
and when to drain it.
Malaria transmission is highly influenced by environ-

mental and climatic conditions, but the effects are often
not linear. The climate-malaria relation is unlikely to be
the same over areas covered by different agro-ecological
zones [9], thus resources for control have to be spread

in time and space. As mentioned by The Global Fund,
90% of malaria cases are related to environmental fac-
tors. The level of prevalence can be predicted based on
the established relationships between malaria prevalence
and environmental data.
Malaria can be cured in cases where the Plasmodium

parasite is susceptible to the anti-malaria drug, and it
can be prevented using indoor and outdoor spraying,
mosquito repellents, and bed nets. For significant reduc-
tion and elimination, strong and long-term actions are
needed. Daily or weekly variations in the values of
weather elements and disease data are often of greater
importance in determining the efficiency of a climate-
disease model. However, most studies only use monthly
data [10, 11].
Mathematical models can describe, explain, or predict

disease trends/occurrence, they can test multiple scenar-
ios, combine strategies for intervention, and provide a
verifiable prediction on what can be expected from im-
plemented schemes [12]. Models using climate variables
can predict malaria risk and transmission, and following
up such models with research on climate change may
help lay the groundwork for malaria prevention and con-
trol in Chimoio municipality. Therefore, the objective of
this study was to model the effects of several climatic vari-
ables (i.e. maximum, minimum, and mean temperature,
relative humidity, precipitation, wind speed, visibility and
precipitation) on malaria occurrence in Chimoio munici-
pality, using weekly data to define the role of each variable
in malaria occurrence.

Methods
Study area and population
Chimoio is a municipality in the central region of
Mozambique (-19°6′59″S, 33°28′59″E). The population
of Chimoio is currently estimated to be 324,816 [3]
within an area of 174 km2 at a mean altitude of 750 m.
The climate is warm and temperate with dry winters
from April to July, hot, dry summers from August to
October and hot, humid summers from November to
March. The average mean temperature is 18 °C, the
minimum average temperature is 13.9 °C, and the max-
imum average temperature is 24 °C. The annual precipi-
tation average is 1143 mm and the wet period is from
November to March. The average annual relative
humidity (RH) is 67.4% [13].

Study subjects
Weekly malaria data from the nine-year period (2006 to
2014) were collected from the district Weekly Epidemio-
logical Bulletin (BES) as described elsewhere [5]. Daily
climate variables such as daily mean temperature (T),
minimum temperature (Tm), and maximum temperature
(TM) (°C), relative humidity (RH) (%), wind speed (W)
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(km/h), visibility (V) (km) and precipitation (P) (mm)
were collected from Chimoio Weather Station and,
Tutitiempo weather records from the years 2006 to
2014 [14]. The malaria and climate data are included
in Additional file 1.

Data analysis
Weekly cases of malaria and weekly average values for
TM, Tm, T, RH, W, V, and P (week 1 to week 52) were
calculated and used to estimate the effect of climatic
factors on malaria occurrence. All data from climate and
clinical records were checked for missing values. Missing
values were replaced by the average of nearest values.
ANOVA to test differences between years was per-
formed. The model used was:

Y ij ¼ μþ τi þ εij ð1Þ

where: μ is the grand mean, τi are deviations from the
grand mean due to the treatment levels and, and ε ij are
the error terms [15].
The modelling strategy followed included: (i) exploring

malaria cases and climatic variables data through descrip-
tive statistics; (ii) using a Box-Jenkins approach to time
series analysis (including transformation and differentiation

for stationarity); (iii) using cross-correlation analysis be-
tween climatic variables and malaria cases for identification
of climatic variables predictor lags; (iv) regression analysis
of malaria cases on a malaria moving average forecast
(simple exponential smoothing) and on its lags 1, 2 and 3
and lags 6 and 7 of mean temperature and lag 12 of
precipitation; and (v) forecasting at regular intervals of
4 weeks for last 52 weeks (2014) left out of model estima-
tion processes.
All statistical analyses were performed with SPSS-

20, R 3.3.2 and BioEstat 5. The R script is included
in Additional file 2.

Results
Figures 1 and 2 present box plots of malaria and climate
variables for Chimoio by malaria season (October to
September 2006 to 2014) along with values for maximum,
minimum and the median. Between 2006 and 2014,
490,561 cases of malaria were recorded in Chimoio. The
weekly average number of malaria cases was 1048
(SD = 642.12). There were differences in the mean number
of cases between malaria season years (F(8,51) = 22.1,
P = 0.0001). Week 40 (in 2006/2007) presented the
lowest number of cases, 222, and, week 21 (in 2013/2014)
presented the highest number of cases, 4438. The

a b

c d

Fig. 1 Boxplots of malaria cases (counts) (a) and maximum (b), minimum (c) and mean (d) temperature by malaria season (October-September),
2006/2007–2013/2014. Values represent, from top to bottom, maximum, median and minimum
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Fig. 2 Boxplots of relative humidity (a), wind speed (b), visibility (c) and precipitation (d) by malaria season (October-September), 2006/2007–
2013/2014. Values represent, from top to bottom, maximum, median and minimum

a b

c d

Fig. 3 Time series of maximum (a), minimum (b) and mean temperatures (c) and relative humidity (d) (right Y-axis). Time series of malaria counts
are superimposed in red (left Y-axis)
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Fig. 4 Time series of wind speed (a), visibility (b) and precipitation (c) (right Y-axis). Time series of malaria counts is superimposed in red (left Y-axis)

a b

Fig. 5 Malaria cases between 2006 and 2014, before (a) and after (b) Box-Cox transformation (λ = -0.5)
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maximum temperature weekly average was 26.9 °C (SD =
3.28), and there were no differences in TM between mal-
aria season years (F(8,51) = 2.46, P = 0.0132). The minimum
temperature weekly average was 16.2 °C (SD = 3.49), and
there were significant differences between malaria season
years (F(8,51) = 20.8, P = 0.0001). Mean temperature weekly
average was 21.9 °C (SD = 2.92), and there were significant
differences between malaria season years (F(8,51) = 39.9,
P = 0.0001). Relative humidity weekly average was 71.7%
(SD = 9.86), and there were significant differences be-
tween malaria season years in RH (F(8,51) = 2.65,
P = 0.0079). The wind speed weekly average was
7.9 km/h (SD = 3.21), and there were significant dif-
ferences between malaria season years (F(8, 51) = 4.88,
P = 0.0001). Visibility weekly average was 20.7 km
(SD = 43.75), and there were significant differences be-
tween malaria season years (F(8,51) = 4.88, P = 0.0001).
Precipitation weekly average was 17.5 mm (SD = 31.95),
and there were no differences between malaria season
years (F(8,51) = 1.5, P = 0.144). Annual average precipitation
was 913.4 mm (SD = 166.20). Figures 3 and 4 present time
series plots of malaria cases (solid black line) and climatic
variables (dashed red lines). Both malaria cases series and
climatic time series from 2006 to 2014 exhibited seasonal
patterns.
All series presented several peaks and fluctuations. The

weekly peaks in the series seem to be separated by more
than few weeks indicating a cyclical pattern. Figure 5 pre-
sents the time series of malaria cases before and after
Box-Cox transformation (λ = -0.5). Figure 5a suggests
increasing variability in the malaria cases series along with
a slightly increasing trend suggesting both first non-
seasonal and seasonal differences might be necessary to
turn the series weakly stationary. After applying a Box-
Cox transformation (Fig. 5b), the variance was clearly
stabilised, and no trend can be overtly observed. Figure 6
presents the time series of malaria cases, between 2006
and 2014, after Box-Cox transformation (λ = -0.5) and
non-seasonal first (lag 1) and seasonal differences (lag 52).
Figure 7 presents the autocorrelation (ACF) partial

autocorrelation (PACF) functions of the transformed
and differenced malaria cases time series in Chimoio.
Autocorrelation is plotted up to lag 150. For modelling
purposes, the last 52 weeks, starting at week 1, 2014
(January 2014 through December 2014), were left out
for forecasting assessment.
Both the ACF and PACF suggest ARMA(2,0) and

ARMA(2,1) patterns for non-seasonal and seasonal
components leading to a Seasonal ARIMA(2,1,0)
(2,1,1)52. Indeed, among the all experimented models
(up to the second order in autoregressive and moving
average components) ARIMA (2,1,0) (2,1,1)52 was the
one leading to the smallest AIC to the Box-Cox trans-
formed series:

1−ϕ1B−ϕ2B
2

� �
1−Φ1B

52−Φ2B
104

� �
1−B52
� �

1−Bð Þ yt
¼ 1þ Θ1B

52
� �

et

ð2Þ

where y”t is the Box-Cox transformed malaria cases
series, et is considered white noise and Φ1 = -0.3395
(standard error, SE = 0.0518), Φ2 = -0.2323 (SE = 0.0511),
Φ1 = -0.4299 (SE = 0.0551), Φ2 = -0.2672 (SE = 0.0426),
and θ1 = -0.3267 (SE = 0.0843). All the coefficients were
statistically significant at 0.05. Diagnostic checks for
residuals of the estimated model are presented in Fig. 8.
Residual autocorrelation was still significant for some
lags. Prediction for the last 52 observations (the entire

Fig. 6 Malaria cases between 2006 and 2014, after Box-Cox transformation
(λ= -0.5) and first (lag 1) and seasonal differences (lag 52)
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year of 2014, which contains the last malaria outbreak
peak) that were left out of the modelling procedure is
presented in Fig. 9a. Forecasting was done on a 4-week
long period basis (t + 1, t + 2, t + 3, t + 4), based on an
estimated seasonal ARIMA model for data up to t. On
the one hand, a 4-week long forecasting period is not
large enough to produce inaccurate forecasts by a sea-
sonal ARIMA model. On the other hand, it is sufficiently
large to anticipate perfectly manageable Precision Public
Health malaria outbreak evolution. Figure 9b, besides
the data, mean forecasts and respective 80% confidence
prediction limits, also contains the historical means of
weeks 1 to 52 (dashed yellow vertical lines), which given
the raising pattern of malaria cases in the last years
tends to underestimate the outbreak peak. Although the
last weeks’ forecasts followed the actual values, it seems
to be underestimating the outbreak peak.
Although the purpose of this first modelling step was

to approximate a possible model for malaria cases time
series, the goal of this study was to find a prediction
model for malaria cases that can take advantage of the
relationship between malaria and climatic variables.
A cross-correlation analysis was performed to find the

best predictor lags of the climatic variables. To keep in-
terpretability, first and seasonal differences (lag 52) were

applied to climatic variables prior to cross-correlation
calculation. No stabilising variance transformation was
applied as the predictors will be used in a regression set-
ting where the predictors are assumed non-stochastic
variables. Several climatic variables exhibited significant
cross-correlations with malaria past (negative) lag 52.
Therefore, attention was drawn to (negative) lags that
are known to be closely related to parasite life cycle,
namely lags -1, -2, …, 12 weeks. Only minimum
temperature (lags -6 and -7) and precipitation (lag -12)
exhibited significant cross-correlation. Figure 10 pre-
sents the cross-correlation functions between minimum
temperature and precipitation (after first and seasonal
differences) and Box-Cox transformed and differenced
malaria cases. Lags -1, -2, and -3 of the Box-Cox trans-
formed malaria cases series and lags -6, and -7 of mini-
mum temperature and lag -12 of precipitation were used
in the regression model. Historical means of malaria
cases (already discussed) could provide insightful
information for the regression model. To introduce in
the regression model the memory of the time series
process, it was decided to include in the regression
model, as an independent variable, one-step-ahead fore-
casts of a simple exponential smoothing model (α = 0.6).
The estimated model is:

a b

Fig. 7 Autocorrelation (a) and partial autocorrelation (b) functions of the transformed and differenced malaria cases time series in Chimoio, 2006
to 2014. Last 52 weeks, starting at week 1, 2014 (January 2014 through December 2014) were left out for model forecasting assessment.
Autocorrelation is plotted up to lag 150
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where y*t denotes for Box-Cox transformed malaria cases
series (with no differences), yses is the simple exponential
smoothing forecast at t, using data up to t-1 (α = 0.6)
and Tm and P correspond to minimum temperature and
precipitation time series. The regression coefficients
β0 = 0.0701 (SE = 0.0152), β2 = 0.0370 (SE = 0.0065), β3
= 0.0194 (SE = 0.0056) and β6 = 0.0008 (SE = 0.0003)
were marginally statistically significant at P = 0.05 and
R2 = 0.726. Residual analysis shows the model can
capture almost all temporal dependence, as despite
some autocorrelations being statistically significant,
they are smaller than 0.2 (Fig. 11).
To compare with previous ARIMA model, in the esti-

mation process, the last 52 observations were left out for
forecast assessment purposes. Figure 9b presents last 52
point forecasts of the regression model (3) along with
the 95% confidence limits in the original scale, i.e. after
applying inverse Box-Cox transformation (λ = −0.5).
Forecasts were done on 4-week forecast bases as before.
Point’s forecasts seem to follow closely malaria series
values, though the outbreak peak is being overestimated.
The width of prediction intervals was like the ones pro-
duced by seasonal ARIMA model (close to 600 cases, an

accuracy perfectly manageable by Public Precision
health), though anticipation of outbreak’s peak seems to
be more accurate (last observations of 2014).

Discussion
Although malaria shows seasonality according to the
climate, very few studies have been conducted on the as-
sociation between the malaria occurrences with climate
variables using weekly resolution and with high malaria
occurrence volume in the Southern region of Africa,
giving more accurate results.
In this study, malaria cases are increasing, contrary to

the decreasing tendency reported in neighbouring
Malawi [16], and, South Africa [17]. This could be prob-
ably due to improved accessibility to health centres and
decreased vector control due to the scarcity of resources
for malaria control.
On average, week 6 presented the peak of malaria cases

and week 33 the lowest number of cases of malaria; these
results are consistent with previously published studies in
Mozambique, Maputo [18], and Chimoio [4]. The ARIMA
model developed in this study, ARIMA (2,1,0) (2,1,1)52,
attempted to provide an easy technique to predict the
expected number of malaria cases per week based on
past observed cases, although it does not account for
climate factors.

a

b c

Fig. 8 Diagnostic checks of ARIMA (2,1,0) (2,1,1)52 residuals. a Time series of residuals. b Autocorrelation function of residuals. c Partial
autocorrelation function of residuals
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Cross-correlation analysis showed that mean temperature,
and precipitation presented significantly lagged correlations
with malaria cases. A regression model of a differenced
(lag1 and lag 12) Box-Cox transformation (λ = -0.5) of
malaria cases on lag 1, 2 and 3 of weekly malaria cases and
lag 6 and 7 of weekly mean temperature and lag 12 of
precipitation was found as the best prediction model for
weekly malaria cases.
As shown in Fig. 9, historical means failed completely,

especially at the peak of the malaria occurrence.
Although the two models developed in this study
produced prediction intervals having widths of some
hundred cases, the regression model was the one able to
anticipate accurately the peak of the occurrence. ARIMA
model was also used for malaria forecasting in South
Africa [17], Zambia [19], Burundi [20] and India [21]
with comparable results.
Malaria transmission occurs throughout the year with

peaks between weeks 1 to 12. The onset of rain occurs in
mid-November. This indicates that malaria occurrence
has a strong association with rainfall six to eight weeks be-
fore, coinciding, with the malaria cycle three components:
(i) the growth of the Anopheles female mosquito from egg
to adult to parasite transmission; (ii) the development of
the Plasmodium parasites (gametocyte to sporozoites) that

are able to infect humans; and (iii) the incubation
period in the human host from infection to malaria
symptoms [22, 23]. Thus malaria occurrence peak can
be expected 45 to 60 days after the onset of rain. Simi-
lar results were also found in Mozambique [4] and
South Africa [17]. Increased precipitation can provide
more breeding sites for mosquitoes, but excess rain can
also destroy breeding sites [24].
Temperature affects the development of malaria; the

parasite does not develop below 18 °C and over 40 °C
[25, 26]. A rise in temperature can reduce the time for
production of new generations and also shortens the
incubation period of the parasite in mosquitoes. Sporo-
gonic cycles take about 9 to 10 days at temperatures of
28 °C, but temperatures above 30 °C and below 16 °C
have a negative impact on parasite development [27]. The
highest proportion of vectors surviving the incubation
period is observed at temperatures between 28 and 32 °C
[28]. In this study, the average maximum temperature
recorded was 26.8 °C ranging between 22.3 and 31 °C
suggesting that Chimoio is the ideal location for malaria
breeding. Minimum temperature in the present study was
below 18 °C from week 10 to 40, coinciding with an ac-
centuated reduction in malaria occurrence. In this study,
the mean temperature was found to be a significant

a b

Fig. 9 ARIMA (2,1,0) (2,1,1)52 (a) and regression (b) forecasts of the last 52 observations that were left out of the modelling procedure. Black, red
dashed blue and green lines represent, malaria cases (counts) and their forecasts, 80% confidence limits and 52-week historic means, respectively.
Dashed yellow vertical lines denote the thirteen 4-week long prediction periods
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a

b c

Fig. 11 Diagnostic checks of regression model (3) residuals (coefficient of determination R2 = 72.5. a Time series of residuals. b Autocorrelation
function of residuals. c Partial autocorrelation function of residuals

a b

Fig. 10 Cross-correlation functions of Box-Cox-transformed and differenced (first and seasonal differences) of minimum temperature (a) and
precipitation (b)
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predictor for malaria occurrence, similar to studies carried
out in South Africa [17] and Burundi [20].
Relative humidity (RH) also plays a role in malaria

episodes, and mosquitoes become more active when
humidity rises. If the average monthly relative humidity
is below 60%, it is believed that the life of the mosquito
is so short that very little or no malaria transmission is
possible [29, 30]. Relative humidity in this study was
72.1% and only four weeks of the year presented RH less
than 60% implying that humidity does not restrict
malaria occurrence in Chimoio. Similar results were also
reported in a study in Ghana [23].
Wind speed was found to be a significant influence in

malaria occurrence in Nigeria [11, 26]. In this study, the
wind speed was not found to be a significant predictor for
malaria occurrence in Chimoio. Visibility was not found
to be a significant predictor for malaria occurrence con-
sistent in studies in Nigeria [11] and South Africa [17].
Most Anopheles mosquitoes are crepuscular (active at
dusk or dawn) or nocturnal (active at night) [31].
It was found that fog day frequency had a positive

effect on malaria incidence in the following year [32].
The R-square in this study was 0.725 implying that

72.5% of the variance in malaria occurrence can be
explained by variance in the predictive variables. In
Burundi, 82% was reported [20]. The results are higher
than a study in Nigeria that found 66% [15] and lower
than the Global Fund Report [1] that indicated that 90%
of malaria cases are related to environmental factors.
Other factors such as poor prevention strategies, lack of
funds, poor sanitation, inadequate drainage systems, and
planning problems, amongst others, also contribute to
the occurrence of malaria. Geographical and environ-
mental factors such as altitude and land cover are also
variables that influence malaria occurrence [33]
The assumption the factors other than climate remained

constant over the period, is a limitation of the present
model that makes it difficult to generalize the results to
other regions. From the results of the present study, it can
be stated that malaria occurrence in Chimoio depends on
to a large extent on precipitation, and mean temperature.
The results also indicate that if strong actions are not
taken at the right time and place, malaria cases will
continue to occur in the municipality.
This model is robust and, can predict the expected

number of malaria cases 3.5 months in advance and,
timely prevention and control measures can be effectively
planned in Chimoio, such as the elimination of vector
breeding places, correct time and place to spray insecti-
cides, and awareness campaigns weeks before the malaria
peak season. This can lead to a reduction in malaria cases,
by knowing the best moment for spraying, saving time
and cost of insecticide application and, preventive pro-
grammes, and guiding smart environmental care.

Conclusion
The Chimoio climate seems ideal for malaria occurrence. A
seasonal pattern was observed in malaria occurrence in
Chimoio with peaks during weeks 1 to 12 (January to
March). Since the lag effect between climatic events and
malaria occurrence is important for malaria cases predic-
tion this can be used for designing Precision Public Health
measures. The model can be used for planning specific
measures for Chimoio municipality. The results from this
study cannot confirm or rule out a prediction for areas with
similar altitude and precipitation as Chimoio. Prospective
and multidisciplinary research involving researchers from
different fields is welcomed to improve the effect of climatic
factors and other factors in malaria cases. The model can
also be applied to analyse the spread of other infectious
diseases and in optimising management efforts.
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