## **BIOINFORMATION** Discovery at the interface of physical and biological sciences

open access

www.bioinformation.net Volume 11(3)

**Hypothesis** 

# Molecular characterization of full-length Tat in HIV-1 subtypes B and C

#### Chandra Nath Roy\*, Irona Khandaker, Yuki Furuse & Hitoshi Oshitani\*

Department of Virology, Tohoku University Graduate School of Medicine, 2-1 Seiryomachi, Aoba-ku, Sendai city, Miyagi, Japan-9808575; Hitoshi Oshitani – Email: oshitanih@med.tohoku.ac.jp; Chandra Nath Roy - chandranath@med.tohoku.ac.jp; Phone: 81-22-717-8211; Fax: 81-22-717-8212; \*Corresponding authors

Received January 19, 2015; Accepted March 02, 2015; Published March 31, 2015

#### Abstract:

HIV-1Tat (trans-acting activator of transcription) plays essential roles in the replication through viral mRNA and genome transcription from the HIV-1 LTR promoter. However, Tat undergoes continuous amino acid substitutions. As a consequence, the virus escapes from host immunity indicating that genetic diversity of Tat protein in major HIV-1 subtypes is required to be continuously monitored. We analyzed available full-length HIV-1 sequences of subtypes B (n=493) and C (n=280) strains circulating worldwide. We observed 81% and 84% nucleotide sequence identities of HIV-1 Tat for subtypes B and C, respectively. Based on phylogenetic and mutation analyses, global diversity of subtype B was apparently higher compared to that of subtype C. Positively selected sites, such as positions Ser68 and Ser70 in both subtypes, were located in the Tat-transactivation responsive RNA (TAR) interaction domain. We also found positively selected sites in exon 2, such as positions Ser75, Pro77, Asp80, Pro81 and Ser87 for both subtypes. Our study provides useful information on the full-length HIV-1 Tat sequences in globally circulating strains.

Key words: full-length HIV-1 Tat, Tat, molecular evolution, Tat genetic diversity, Tat genetics

#### **Background:**

The human immune deficiency virus type 1(HIV-1) Tat (*trans*acting activator of transcription), is one of the essential proteins, which directly enhances HIV-1 replication through interaction with HIV-1 long terminal repeat (LTR) promoter [1]. Tat is therefore a promising target for developing HIV-1 vaccines and anti-HIV-1 drugs [2-3]. Unlike viral essential enzymes, such as protease and reverse transcriptase, Tat undergoes continuous substitutions due to host selection pressure [4], leading to viral escape from Tat-specific CD8positive T-lymphocyte responses [5-6]. The sequence variation of target epitopes in Tat reduces antibody recognition and neutralization [1, 7]. Molecular characterization of full-length Tat in globally circulating strains is therefore imperative.

Tat is a 101-amino acid protein encoded by two exons (exon 1: 1 to 72 residues, and the exon 2: 73 to 101 residues) in most of

the clinical isolates [8]. As shown in Figure 1a, Tat has been categorized into six different functional domains [1, 8]. The first domain (residues 1 to 21) is the N-terminal acidic domain consisting of a Pro-rich tract and a conserved Trp residue at the position 20 (Trp20) [1]. The second domain (residues 22 to 37) contains a highly conserved seven Cys tract at positions 22, 25, 27, 30, 31, 34, and 37 [1, 8]. The third domain (residues 38 to 48) contains a hydrophobic core sequence: 43LeuGlyIleSerTry Gly48 [4]. The fourth domain (residues 49 to 57) is a positively charged region composed of a well-conserved arginine-rich motif, 49-ArgLysLysArgArgGlnArgArgArg-57, and acts as a transactivation response element (TAR) binding domain [9]. This domain has an extra ordinary property for nuclear localization [10, 11] and protein transduction, thus it has also been used to deliver various molecules inside the cells in vitro [12-15]. The fifth domain (residues 58 to 72) is a Gln rich region [4, 8], and the fourth and fifth domains (residues 49 to 72) are

ISSN 0973-2063 (online) 0973-8894 (print) Bioinformation 11(3): 151-160 (2015)

known as basic domains for transactivation [1, 4, 8]. The sixth domain (residues 73 to 101) encoded by the exon 2 is known as RDG domain; this domain contains the highly conserved Glu Ser Lys Lys Val Glu motif, which is related to optimal HIV-1 replication in vivo [16], thereby, the region may contribute to viral infectivity and binding to cell-surface integrins [17, 18]. It is therefore worthwhile to investigate the genetic diversity of HIV-1 full-length Tat in commonly circulating subtypes, which has an impact on clinical outcome of HIV disease as well as success of Tat-based vaccination and Tat-targeted antagonists. However, updated information regarding the evolution of HIV-1 focusing Tat protein at the global level is still unavailable. We therefore performed phylogenetic, selection pressure, and mutation analyses to understand diversity of Tat and its phylogenetic relationships between the subtypes using global data sets of sequences in subtypes B and C, the two major subtypes of HIV-1 circulating worldwide [19].



**Figure 1:** Functional domains of Tat and its genetic diversity. Schematic presentation of the domains of tat exon 1 and 2 were highlighted **(1a):** domain I (residues 1 to 21), an acidic/Pro-rich region; domain II (residues 22 to 37), a Cys-rich/Zn2 Finger domain; domain III (residues 38 to 48), containing conserved Phe (F); domain IV (residues 49–57, the basic domain); domain V (residues 58–72, a Glu rich domain); and domain VI (residues 3–101, encoded by the second exon). Sequence logo showing the Tat amino acid diversity observed at positions 1 to 100 in both subtype **B (1b)** and subtype **C (1c)** 

#### Methodology:

#### Sequence data

Full-length HIV-1 Tat sequences were collected from the 'Web alignment' in the Los Alamos National Laboratory (LANL) HIV sequence database **[20].** The sequences were downloaded on February 2, 2014. Notably, the sequences 'up to 2012' were available on the accessed date. A total of 2156 sequences were initially downloaded. Sequence data of the other subtypes than subtype B or C, and of circulating recombinant forms (CRFs) were then excluded. Consequently, totals of 713 and 353 sequences for subtype B and subtype C, respectively, were obtained. The sequence data for full-length coding regions were only used after eliminating the problematic sequences.

The reference strains for subtype B and C sequences were also obtained from the Los Alamos HIV-1 sequence data base. The reference sequences were also downloaded on February 2, 2014. As the reference sequences, accession numbers AY423387 (Europe), AY173951 (Asia), and AY331295 (North America) for subtype B and AF067155 (India), U52953 (South America), and AY772699 (Africa) for subtype C were used for alignment. Finally, we prepared a data set of totals of 493 and 280 sequences for subtype B and subtype C, respectively, which contained 100 amino acids encoded by 300 nucleotides (nt) from the positions 5831 to 6045 nt in exon 1 and 8379 to 8463 nt in exon 2, respectively of HXB2 genome (GenBank accession No. K03455), the details information of the sequences (the isolation year, isolated country etc), were mentioned in Table 1 (Available with authors). A multiple-sequence alignment of the nucleotide sequences (without any gap) was made using the ClustalW [21]. The divergence of sequences was schematically visualized using Weblogo [22].

#### Estimating Phylogenetic tree

Maximum likelihood method was employed to built the phylogenetic trees. Notably, the method was selected as the best model by model test performed in MEGA 6 **[23].** A discrete gamma distribution was used to measure the evolutionary rate differences among sites (5 categories) and the analyses were done using 1,000 bootstrap replicates. The tree was rooted by using following reference strain: simian immune deficiency virus (SIV) sequence, CPZ.US.85.US\_Marilyn.AF103.

#### Selection pressure analysis

Global ( $\omega$ ) value of relative rates of non-synonymous (dN) and synonymous (dS) substitutions were calculated to measure the positive selection strength [24]. All analyses were carried out using the online Datamonkey facility [24-26] after identifying the best fit model from every possible time-reversible model. Positive selection pressure analysis was performed at whole gene and site-by-site codon level using three likelihood methods: single-likelihood ancestor counting (SLAC), fixed effects likelihood (FEL), and interior branches Fixed Likelihood (iFEL). Briefly, in the SLAC method, the mean ratio of nonsynonymous changes per non-synonymous site (dN) and the synonymous changes per synonymous site (dS) were measured using SLAC which considered inferred ancestral sequences for each internal node in a phylogeny using a codon model and then, calculated the synonymous and nonsynonymous mutations by comparing each codon to its immediate ancestor. The FEL method is based on maximumlikelihood estimates. This method estimates the ratio of nonsynonymous to synonymous substitutions on a site-by-site basis for the entire tree. iFEL is principally the same as FEL, except that selection is only tested along the internal branches of the phylogeny. To detect co-evolving sites from multiple alignments of amino acid sequence data and to identify significant associations among sites, we applied the Bayesian graphical models (BGM) method implemented in Spidermonkey through the Datamonkey web-based interface [27].

#### open access



**Figure 2:** Phylogenetic trees of HIV-1 subtypes B and C. Maximum likelihood (ML) phylogenetic tree of HIV-1 subtypes B (**a**) and C (**b**) sequences based on 300 nucleotide sites of Tat gene sequence generated through the Los Alamos database. GTR+I+T5nucleotide substitution model was employed with 1000 bootstrapped data by MEGA 6. The reference Tat sequences were downloaded from the Los Alamos database showed in round bullet. SIV sequence (Ref.CPZ.US.85.US\_Marilyn.AF103) was used to root the tree showed in red square bullet

#### **Results:**

#### Sequence homology and Mutation analysis

Nucleotide sequence identities of HIV-1 Tat subtypes B and C were 81% and 84%, respectively. In comparison to subtype C, amino acid substitutions were more frequently observed in subtype B, as shown in **Table 2 (see supplementary material)**. Amino acid sequences diversity in both subtypes B and C were illustrated by sequence logo **(Figure 1b & c)**. The detailed substitution positions in each domain were described below following HXB2 numbering in both subtypes (the position of amino acid, aa, which had major changes).

In domain I, we found that positions 1, 11, 14, 15, and 16were completely conserved in both subtypes; in addition, Asp5 in subtype C was also completely conserved. Notably, Lys12Asn (90%) and Ala21Pro (53%) were frequently observed only in subtype C.

In domain II, among the conserved Cys positions, Cys27 in subtype B and Cys22 and Cys34 in subtype C were completely conserved.Lys28 in subtype B and His33 in subtype C were also found as completely conserved in our analysis. Cys31Ser was observed in subtype C (83%), and all sequences of subtype C in our data sets were substituted as Phe32Tyr.

In domain III, we found mutations in all positions in this domain except Lys41 in subtype C and Gly48 in subtype B. In subtype C, 80% sequences were substituted as Ile39Gln. In

both subtypes, most of the sequences contained Ala42Gly (99%).

In domain IV, the consensus Arg-rich motif provided two of the key functions of Tat, nuclear localization and membrane transduction **[10-15]**, a total of 6 Arg at the positions 49, 52, 53, 55, 56, and 57. We did not find any conserved Arg position in subtype B. Only positions 49 and 55 were found conserved in subtype C accompanied with Arg57Ser substitution predominantly (88%). In domain V, only Gln66 was conserved in both subtypes; besides, Gln72 was almost completely conserved in subtype Band subtype C. For other sites, His59Pro substitution was apparent in both subtypes (81% and 95% in subtype B and C, respectively). In addition, Asn61Asp (64%) and Asn67Val (44%) in subtype B, and also Gln60Pro (89%), Asn61Ser (92%), Gln63Glu (75%), Thr64Asp (87%), Ala67Asn (73%), and Lys69Ile (61%) substitutions were frequently found in subtype C.

The domain VI also known as the RGD (Arg-Gly-Asp) domain, and RGD is a ligand for several integrins, which play important roles in HIV replication and cell surface binding **[17, 28, 29].** Even though representative conserved domain in Tat was well maintained in both subtypes, we observed genetic variation in the sixth domain of our data set. In subtype B, 87Ser (77%) was most frequently found with many different substitutions in small percentages atother positions of exon 2. In subtype C, high frequencies of substitutions were observed, includingThr74Leu (92%), Pro77Thr (79%), Pro84Ser (80%),

Lys85Glu (89%) and 87Ser (95%) indicating that this domain is also variable. In subtype C Tat exon 2, we mostly observed substitutions, 93Ser (98%) and 94Lys (97%).Overall, we found genetic variation in domains IV, V, and VI, which may have an impact on the functional properties of Tat, such as Tat-TAR interactions, protein transductions as well as cell surface binding and replication. The summary of substitutions was shown in **Table 2 (see supplementary material)**.

#### Phylogenetic inference

Analysis of the phylogenetic relationship was performed using the maximum likelihood (ML) tree based on the nucleotide sequences of subtypes B and C (Figure 2a & b). The phylogeny of Tat in subtype B featured with well intermixing of sequences among the different continents. The wide genetic diversity and several poorly defined clusters were observed in the sequences particularly in the strains from USA, South America and Europe. However, Asian strains, especially Thai and Korean strains clustered together distinctly, may result from different single introduction. In subtype C, it was hard to define clear clustering (Figure 2b). In the tree, the majority of subtype C strains were found in Africa and those African stains did not show any monophyletic distribution, and there was a interspersing of Asian, South American and European strains with African stains. Overall, we observed a slow and continuous introduction of new HIV-1 strains in different parts of the world with repeated cross-border transmission as reflected by diffuse distributions and intermixing of the different HIV-1 variants in both subtypes B and C.

#### Analysis for selection pressure

Global  $\omega$  values for the nucleotide sequences of Tat in subtypes B and C were 0.883 and 0.760, respectively (less than 1), indicating that there is no detectable positive selection on the entire Tat genes. We found that a total of 23 and 18 amino acid positions in subtypes B and C, respectively, were under significant positive selection based on the FEL, iFEL and SLAC methods. The detailed positively selected codons with statistical significance were calculated with SLAC, FEL, and iFEL methods as shown in Table 3, 4, 5, & 6 (see supplementary material). Position Thr40 in the third domain was positively selected in both subtypes by all three methods. We found several positively selected sites in the basic region of Tat, such as Ser68 and Ser70 in both subtypes; His59, Asn61, Ser62, and Thr64, His65 in subtype B; and Ala58, Ala67, and Leu69 in subtype C. Remarkably, in both subtypes of exon 2, Ser75, Pro77, Asp80, Pro81, and Ser87 were positively selected by all 3 methods.

#### Discussion:

We observed high genetic diversity in HIV-1 full length Tat in both subtypes B and C irrespective of their region of origin as revealed by the phylogenetic tree and mutation analysis. Genetic diversity reflected by relative branch lengths in the phylogenetic tree, particularly in subtype B suggests that the clustering occurs due to the transmission network at individual or at local level. Previous study also showed high genetic divergence of HIV-1 Tat exon-1 in both subtypes **[30]**. Furthermore, we found several positively selected sites located in the sixth domain of Tat encoded in exon 2. We found substitutions even in highly conserved Cys-rich and49Arg Lys Lys Arg Arg Gln Arg Arg Arg 57 domains. In addition, we

found a Ser31Cys substitution (both belong to nucleophilic amino acid group) in HIV-1 subtype C as described previously [31]. Absence of a critical Cys31 in the Cys-rich domain has been reported only in subtype C [31]; this position may play a role in evolution of subtype C. In fact, we observed substitutions such asArg57Gly or Thr in subtype B, Arg57Ser in subtype C, and Gln63Asn in both subtypes B and C, which are within and close to the basic domains, respectively. Interestingly, we found position 63 was under significant diversifying selection for subtype B. However, position 57 was not positively selected in either subtype. Rather, it showed purifying selection in subtype B (data not shown). Previous study showed that mutated Tat in HIV-1 subtype C in those sites exhibited greater transcriptional activity in Jurk at cells compared with subtypes B and E, without LTR sequence dependency [32, 33]. Overall, the amino acid diversity that we found in well conserved positions is likely to have an impact on Tat mediated viral transcription as described previously [31, 33, 34].

We have found that Ser68 and Ser70 positions in the basic domains were positively selected in both subtypes which were previously reported as genetically variable region [4], and we also observed similar results. This result implies that changes in amino acids in basic region may have a functional impact, and those changes may fix in the virus population. However, further in vitro experiment is needed to validate this hypothesis. We found that positions encoded in exon 2 such as Ser75, Pro77, Asp80, Pro81, and Ser87 were positively selected. As reported previously, exon 2 plays a role in the kappa-lightchain enhancer of activated B cell-(NF- $\kappa$ B) dependent control of HIV-1 transcription in T cells [8, 35]. It has been previously reported that unlike laboratory-passaged strains, such as HIV-1<sub>HXB2</sub> with premature stop codon at position 87, majority of HIV-1 strains encode 101 amino acids without any truncation beyond the position 86 [1]. We found Ser87 in subtypes B and C which was positively selected. As previously noted, the existence of two exons is essential to maintain stability of Tat in vivo [36]; therefore, this position may be crucial to maintain the functional stability of Tat. Again, mutations of the exon 2 were found particularly at intimately networked coevolving sites with exon1 in the fourth, fifth, and sixth domains (data not shown). This may also have some impact on HIV mRNA transcription through Tat-TAR interaction and initiation of reverse transcription, which were previously reported as influenced by genetic variation of Tat [8, 37].

Developing antivirals targeting the interaction site between HIV-1 Tat and TAR has been under process **[38]**. In addition, Tat based vaccine development is also underway **[39]**. Examining the molecular diversity of full-length Tat gene in globally circulating strains is therefore imperative. Thus, our study findings accomplish to understand the genetic diversity of full-length Tat in common HIV-1 subtypes like B and C.

#### Acknowledgement:

We would like to thank Ms. Karen Lewis for her careful reading the manuscript. We also thank Drs. Yasuhiro Suzuki Junji Imamura and Eiichi N. Kodama for their guidance, inspiration and critical comments regarding writing the manuscript.

#### **References:**

- [1] Jeang KT et al. J Biol Chem 1999 274: 28837 [PMID: 10506122]
- [2] Ensoli B et al. AIDS 2006 20: 2245 [PMID: 17117011]
- [3] Hamy F et al. Chem Biol 2000 7: 669 [PMID: 10980447]
- [4] Allen TM et al. Nature 2000 407: 386 [PMID: 11014195]
- [5] Mason RD et al. Virology 2009 388: 315 [PMID: 19394064]
- [6] Goldstein G et al. Vaccine 2001 19: 1738 [PMID: 11166899]
- [7] Ruckwardt TJ *et al. J Virol.* 2004 **78**: 13190 [PMID: 15542671]
- [8] Li L *et al. Adv Virol* 2012 **2012:** 123605 [PMID: 22899925]
- [9] Rana TM & Jeang KT, Arch Biochem Biophys. 1999 365: 175 [PMID: 10328810]
- [10] Truant R & Cullen BR, Mol Cell Biol. 1999 19: 1210 [PMID: 9891055]
- [11] de la Fuente JM & Berry CC, Bioconjug Chem 2005 16: 1176 [PMID: 16173795]
- [12] Ziegler A & Seelig J, *Biophys* J. 2004 86: 254 [PMID: 14695267]
- [13] Roy S et al. Genes Dev. 1990 4: 1365 [PMID: 2227414]
- [14] Fawell S et al. Proc Natl Acad Sci U S A 1994 91: 664 [PMID: 8290579]
- [15] Hidema S et al. J Biosci Bioeng 2012 113: 5 [PMID: 22019405]
- [16] Smith SM et al. J Biol Chem 2003 278: 44816 [PMID: 12947089]
- [17] Brake DA et al. J Cell Biol 1990 111: 1275 [PMID: 2202737]
- [18] Orsini MJ et al. J Neurosci 1996 16: 2546 [PMID: 8786430]
- [19] Buonaguro L et al. J Virol 2007 81: 10209 [PMID: 17634242]
- [20] Los alamos National Laboratory (LANL) HIV sequence database http://www.Hiv.Lanl.Gov/content/sequence /newalign/align.Html.2014 Accessed 2 February, 2014
- [21] http://www.genome.jp/tools/clustalw/ Acccessed February 8, 2014

- [22] http://weblogo.berkeley.edu/logo.cgi;2008 Accessed on February 15, 2014
- [23] Tamura K et al. Mol Biol Evol 2013 30: 2725 [PMID: 24132122]
- [24] Pond SL & Frost SD, Bioinformatics 2005 21: 2531 [PMID: 15713735]
- [25] Kosakovsky Pond SL & Frost SD, Mol Biol Evol 2005 22: 1208 [PMID: 15703242]
- [26] Delport W et al. Bioinformatics 2010 26: 2455 [PMID: 20671151]
- [27] Poon AF et al. Bioinformatics 2008 24: 1949 [PMID: 18562270]
- [28] El-Sayed A & Futaki S et al. AAPS J, 2009 11:13 [PMID: 19125334]
- [29] Sood V & Ranjan R *et al* .AIDS 2008 22: 1683 [PMID: 18670233]
- [30] Kandathil AJ et al. Bioinformation 2009 4: 237 [PMID: 20975916]
- [31] Kurosu T et al. Microbiol Immunol 2002; 46: 787 [PMID: 12516777]
- [32] Rossenkhan R et al. J Virol 2013 87: 5732 PMID: 23487450]
- [33] Desfosses Y et al. J Virol 2005 79: 9180 [PMID: 15994812]
- [34] Opi S et al. J Biol Chem. 2002 277: 35915 [PMID: 12080071]
- [35] Mahlknecht U et al. J Leukoc Biol. 2008 83: 718 [PMID: 18070983]
- [36] Campbell GR & Loret EP, *Retrovirology* 2009 6: 50 [PMID: 19467159]
- [37] Harrich D et al. EMBO J, 1997 16: 1224 [PMID: 9135139]
- [38] Hamasaki T et al. Antimicrob Agents Chemother 2013 57: 1323 [PMID: 23274668]
- [39] Goldstein G & Chicca JJ, Hum Vaccin Immunother. 2012 8: 479 [PMID: 22336878]

#### Edited by P Kangueane

Citation: Roy et al. Bioinformation 11(3): 151-160 (2015)

License statement: This is an open-access article, which permits unrestricted use, distribution, and reproduction in any medium, for non-commercial purposes, provided the original author and source are credited

### Supplementary material:

Table 1: Lists of sequences (accession numbers) used in this study (Available with authors)

| Table 2: | Comparison | of the num | bers of amin | o acid r | esidue ( | hanges   |
|----------|------------|------------|--------------|----------|----------|----------|
| rubic 4. | Companison | or the mun | loci of unun | o acia i | coluce   | indiges. |

| Sub true $\mathbf{P}$ ( $n=402$ )                                                      |     | $F_{\mu\nu}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------------------------------------------------------------------------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sub type B (II-475)                                                                    |     | Subtype C (II-200)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| M(493)                                                                                 |     | M(280)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| D(63)                                                                                  |     | D(22)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| S(1)                                                                                   |     | L(10)Q(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| I(13)A(1)                                                                              |     | 1(74)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $\mathbf{E}(1)\mathbf{N}(2)$                                                           |     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\frac{E(1)}{\sqrt{1}}$                                                                |     | U<br>H(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1(1)1(4)O(1)<br>V(2)V(2)V(2)                                                           |     | 11(4)<br>D(1)V(46)C(20)N(100)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| N(21)O(07)IN(24)                                                                       |     | L(1)N(40)O(20)IN(109)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| I(3)                                                                                   |     | 1(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| D(3)K(1)A(6)Q(1)                                                                       |     | D(4)A(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| A(1)                                                                                   |     | S(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| N(16)E(10)Q(27)R(5)                                                                    |     | N(253)E(3)S(1)H(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Q(2)                                                                                   |     | R(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0                                                                                      |     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Р                                                                                      |     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Q                                                                                      |     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| R(22)K(5)                                                                              |     | R(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| H(1)                                                                                   |     | H(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| R(122)Q(13)A(2)S(7)E(7)N(1)V(1)T(2)G(1)L(1)                                            |     | R(14)Q(15)A(3)S(8)E(13)N(10)D(1)T(13)G(1)L(1)I(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| A(1)                                                                                   |     | A(1)I(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| P(95)D(6)E(3)S(2)R(1)T(2)                                                              |     | P(150)V(1)S(2)T(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| S(1)                                                                                   |     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| N(119)P(1)S(6)                                                                         |     | N(129)P(1)S(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| A(8)D(1)G(2)K(88)P(50)Q(4)R(2)S(43)T(57)                                               |     | A(4)G(6)H(1)K(136)P(7)Q(12)R(7)S(16)T(26)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| R(1)                                                                                   |     | R(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| F(25)H(2)                                                                              |     | C(1)F(44)H(2)M(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0                                                                                      |     | S(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0                                                                                      |     | Q(1)R(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| A(10)E(3)H(1)I(3)M(1)N(2)O(28)R(60)S(6)                                                |     | A(7)C(7)F(3)G(4)H(80)I(1)L(3)N(1)O(6)R(55)S(13)V(2)Y(49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| \ / \-/ \ / \ / \ / \ / \ / \ / \ / \ /                                                |     | $\left( \begin{array}{c} \cdot \cdot$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| G(1)R(1)                                                                               |     | R(3)Y(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| S(17)                                                                                  |     | S(232)T(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| L(95)M(4)W(13)Y(67)                                                                    |     | Y(280)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| P(1)                                                                                   |     | 0``´                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| G(1)                                                                                   |     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| A(1)I(2)L(3)M(2)P(17)V(1)Y(1)                                                          |     | A(1)I(5)O(223)P(20)R(1)T(2)V(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A(22)C(2)D(1)F(1)H(2)I(2)K(18)L(13)M(2)S(1)R(3)T(3)W(1)Y(1)                            |     | A(21)D(1)K(1)F(1)R(2)L(1)S(6)T(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0                                                                                      |     | $0 = \frac{1}{2} - $ |
| L(1)S(1)                                                                               |     | L(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| A(1)L(62)M(76)S(1)T(140)V(6)                                                           |     | H(3)L(51)R(1)O(225)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| A(1)E(2)H(1)K(180)N(4)O(20)R(42)S(15)                                                  |     | A(4)K(57)N(4)R(8)S(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| O(1)                                                                                   |     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| T(1)G(492)                                                                             |     | D(1)G(279)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| O(1)                                                                                   |     | S(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| S(2)                                                                                   |     | A(1)S(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| L(2)V(2)                                                                               |     | T(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| F(19)I(1)V(1)V(10)                                                                     |     | H(1)P(1)Y(17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| F(1)H(14)N(5)                                                                          |     | H(3)N(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $(-)^{+}(+)^{+}(0)$                                                                    |     | D(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| G(1)K(1)S(1)                                                                           |     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\mathbf{R}(1)$                                                                        |     | R(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| N(1)                                                                                   |     | F(1)R(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $C_{1}(1)W(10)$                                                                        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| C(8)K(7)N(1)S(8)                                                                       |     | 147/8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| G(0)N(1)J(1)O(0)<br>V(1)D(2)D(7)                                                       |     | V(0)<br>V(4)P(2)P(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $\frac{\Gamma(1)}{C(1)}$                                                               |     | $\sum_{i=1}^{N} \frac{1}{i} \left( \frac{1}{i} \right) = \frac{1}{i} \left( \frac{1}{i} \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $     G(1) \\     H(1)P(1)O(2) $                                                       |     | U<br>H(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $\Pi(1)\Gamma(1)Q(2)$ $\Lambda(2)C(1)V(4)C(2)T(2)$                                     |     | $\Pi(\mathbf{I})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| A(3)G(12)K(4)S(2)I(0)<br>D(1)H(3)I(1)N(3)P(10)S(42)T(03)                               |     | $G(2)\Pi(1)K(1)N(9)S(240)I(2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $D(1)\Pi(2)L(1)N(2)\Gamma(100)S(46) I(92)$ $A(1)D(5)N(2)\Gamma(400)C(44)P(4)V(41)$     |     | G(1)F(1)S(2)I(104)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| A(1)D(5)N(3)P(400)S(24)K(1)I(4)Y(1) D(4)P(07)C(14)H(1)V(1)H(1)V(1)P(1)P(0)C(0)T(1)V(2) |     | S(b)I(2)I'(2b7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| D(1)E(27)G(11)H(11)K(14)L(5)N(5)P(47)K(9)S(2)T(1)Y(2)                                  |     | A(5)H(1)L(1)K(1)S(19)I(1)P(250)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A(2)D(316)E(3)G(90)H(13)S(31)Y(2)                                                      |     | D(2)G(5)K(8)S(257)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ISSN 0973-2063 (online) 0973-8894 (print)                                              |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Bioinformation 11(3):151-160 (2015)                                                    | 156 | © 2015 Biomedical Informatics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

#### open access

### **BIOINFORMATION**

| C(10)D(4)G(20)H(6)N(42)R(15)T(1)                                                 | C(1)G(8)N(16)                       |
|----------------------------------------------------------------------------------|-------------------------------------|
| A(2)E(71)K(62)p(27)S(7)W(1)                                                      | A(5)G(1)K(63)T(2)E(209)             |
| A(29)D(21)G(1)H(1)I(22)N(53)P(9)S(15)V(2)                                        | A(6)D(245)E(2)G(12)N(6)S(8)         |
| D(32)N(43)P(1)R(6)Y(5)                                                           | N(4)R(3)S(1)Y(1)                    |
| 0                                                                                | 0                                   |
| D(47)E(13)G(25)I(12)K(1)L(1)N(3)S(8)T(10)V(219)                                  | D(62)H(2)I(1)N(206)S(4)T(5)         |
| A(14)D(9)F(1)H(9)N(4)P(97)T(4)Y(8)                                               | F(5)H(8)I(4)L(124)N(1)P(127)        |
| A(1)I(8)P(7)V(7)                                                                 | I(171)T(1)V(80)                     |
| P(142)Q(3)                                                                       | P(34)L(1)                           |
| D(1)E(33)N(6)Q(2)R(1)T(1)                                                        | E(11)N(2)                           |
| 0                                                                                | R(1)                                |
| S(20)                                                                            | L(1)S(3)                            |
| A(106)D(3)G(1)I(2)P(6)N(1)S(52)V(3)                                              | F(5)I(1)S(13)L(259)                 |
| A(8)P(30)T(31)                                                                   | P(176)T(5)                          |
| K(1)L(1)P(2)R(7)W(2)                                                             | H(4)K(1)P(3)R(47)                   |
| R(3)S(25)T(18)V(1)Y(1)                                                           | A(35)H(1)I(1)S(1)T(223)V(1)         |
| A(1)G(23)H(2)P(3)Q(12)R(2)                                                       | P(5)O(50)                           |
| E(1)K(1)R(3)                                                                     | $E(1)\tilde{R}(4)$                  |
| E(3)N(25)V(1)                                                                    | E(1)I(2)N(83)V(3)                   |
| Q(38)S(9)T(8)                                                                    | Q(41)S(72)W(1)                      |
| A(26)D(1)E(7)K(6)                                                                | A(4)K(3)P(1)                        |
| D(1)S(2)                                                                         | S(2)                                |
| Q(48)S(3)T(4)                                                                    | A(1)E(1)L(4)Q(2)S(226)T(3)          |
| E(87)N(1)Q(3)T(10)                                                               | E(250)I(1)Q(1)                      |
| K(23)V(1)                                                                        | K(7)Q(1)                            |
| K(1)P(48)Q(60)R(1)S381)W(2)                                                      | P(9)Q(4)S(266)T(1)                  |
| E(35)Q(4)R(1)T(6)                                                                | E(1)Q(2)R(1)T(1)                    |
| E(52)S(1)T(1)                                                                    | T(1)E(1)                            |
| A(1)E(29)T(10)                                                                   | T(1)E(18)                           |
| M(3)                                                                             | A(2)M(2)A(1)G(2)                    |
| A(4)K(1)                                                                         | A(1)G(2)                            |
| A(1)E(1)I(1)G(15)K(31)N(6)S84)T(46)                                              | G(2)N(3)S(273)                      |
| A(6)K(67)Q(6)T(5)                                                                | T(1)Q(3)R(3)K(271)                  |
| A(25)E(1)R(2)                                                                    | A(21)K(76)                          |
| A(11)D84)G(5)K(7)Q(5)T(13)V(1)                                                   | A(4)D(2)K(76)R(1)S(1)T(5)           |
| A(63)D(1)E(1)G(1)K(8)I(1)L(1)M(10)N(5)P(6)R(2)S(3)V(12)                          | A(35)E(1)K(1)P(5)R(8)S(4)           |
| A(6)G(5)H(72)N(8)P(1)R(1)S(1)V(1)Y(2)                                            | A(2)G(1)H(1)N(12)T(1)Y()1)          |
| H(2)L(1)Q(68)R86)S(3)T(2)                                                        | L(2)Q(49)R(10)                      |
| A(12)C(8)D(66)E(21)G(47)H(12)I(18)K(8)L(29)N(11)P(1)Q(7)R(41)S(18)T(5)V(142)Y(12 | C(34)G(1)H(1)L(7)S(13)R(3)V(1)Y(14) |

#### Table 3: Positively selected codon positions HIV-1 Tat

)

| Subtype | Codon <sup>a</sup> | Domain                 | p-value           |                  |         |
|---------|--------------------|------------------------|-------------------|------------------|---------|
| В       |                    |                        | SLAC <sup>b</sup> | FEL <sup>c</sup> | iFELd   |
|         | 7                  | First (Acidic)         | < 0.05            | < 0.05           | < 0.05  |
|         | 24                 | Second (Cysteine-rich) | < 0.001           | < 0.001          | < 0.001 |
|         | 32                 | Second (Cysteine-rich) | < 0.001           | < 0.001          | < 0.001 |
|         | 40                 | Third                  | < 0.05            | < 0.001          | < 0.05  |
|         | 59                 | Fifth (Basic)          | < 0.001           | < 0.001          | < 0.001 |
|         | 61                 | Fifth (Basic)          | < 0.05            | < 0.001          | < 0.001 |
|         | 62                 | Fifth (Basic)          | < 0.05            | < 0.05           | < 0.05  |
|         | 63                 | Fifth (Basic)          | < 0.001           | < 0.05           | < 0.05  |
|         | 64                 | Fifth (Basic)          | < 0.001           | < 0.001          | < 0.001 |
|         | 65                 | Fifth (Basic)          | < 0.001           | < 0.001          | < 0.001 |
|         | 68                 | Fifth (Basic)          | < 0.001           | 0                | < 0.001 |
|         | 70                 | Fifth (Basic)          | < 0.001           | < 0.001          | < 0.001 |
|         | 75                 | Sixth (Exon 2)         | < 0.001           | < 0.001          | < 0.001 |
|         | 77                 | Sixth (Exon 2)         | < 0.001           | < 0.001          | < 0.05  |
|         | 80                 | Sixth (Exon 2)         | < 0.05            | < 0.001          | < 0.05  |
|         | 81                 | Sixth (Exon 2)         | < 0.001           | < 0.001          | < 0.001 |
|         | 84                 | Sixth (Exon 2)         | < 0.001           | < 0.001          | < 0.05  |
|         | 85                 | Sixth (Exon 2)         | < 0.001           | < 0.001          | < 0.001 |
|         | 87                 | Sixth (Exon 2)         | < 0.001           | 0                | < 0.001 |
|         | 88                 | Sixth (Exon 2)         | < 0.001           | < 0.001          | < 0.05  |
|         | 90                 | Sixth (Exon 2)         | < 0.05            | < 0.05           | < 0.05  |
|         | 93                 | Sixth (Exon 2)         | < 0.001           | < 0.001          | < 0.001 |
|         | 98                 | Sixth (Exon 2)         | < 0.001           | < 0.001          | < 0.001 |
| С       | 4                  | First (Acidic)         | < 0.001           | < 0.001          | < 0.001 |
|         | 21                 | First (Acidic)         | < 0.05            | < 0.05           | < 0.05  |

| 29  | Second (Cysteine-rich) | < 0.05  | < 0.001 | < 0.001  |
|-----|------------------------|---------|---------|----------|
| 39  | Third                  | < 0.05  | < 0.05  | < 0.001  |
| 40  | Third                  | < 0.05  | < 0.001 | < 0.05   |
| 58  | Fifth (Basic)          | < 0.001 | < 0.001 | < 0.001  |
| 67  | Fifth (Basic)          | < 0.001 | < 0.001 | < 0.001  |
| 68  | Fifth (Basic)          | < 0.001 | < 0.001 | < 0.001  |
| 69  | Fifth (Basic)          | < 0.001 | < 0.001 | < 0.001  |
| 70  | Fifth (Basic)          | < 0.001 | < 0.001 | < 0.05   |
| 75  | Second Exon            | < 0.001 | < 0.001 | < 0.001  |
| 77  | Second Exon            | < 0.05  | < 0.001 | < 0.05   |
| 80  | Second Exon            | < 0.001 | < 0.001 | < 0.001  |
| 81  | Second Exon            | < 0.001 | < 0.001 | < 0.001  |
| 87  | Second Exon            | < 0.05  | < 0.05  | Not      |
|     |                        |         |         | selected |
| 95  | Second Exon            | < 0.001 | < 0.001 | < 0.05   |
| 97  | Second Exon            | < 0.001 | < 0.001 | < 0.05   |
| 100 | Second Exon            | < 0.05  | < 0.001 | < 0.001  |

Foot note: <sup>a</sup> according to HIV-1HXB2 numbering <sup>b</sup>single-likelihood ancestor counting (SLAC)

cfixed effects likelihood (FEL), and

dinterior branches likelihood (iFEL) approach

Grey colored rows indicate commonly selected sites in both subtypes. p-values were shown as <0.05 and <0.001.

| Table 4: Site under | ositive selection by SLAC method in subtype B (4a) and C (4b) |
|---------------------|---------------------------------------------------------------|
|                     |                                                               |

| Codon | dN-dS   | Normalized dN-dS | p-value    |
|-------|---------|------------------|------------|
| 4     | 8.75216 | 0.366369         | 0.00365278 |
| 7     | 20.6135 | 0.862891         | 0.0341446  |
| 24    | 72.0506 | 3.01607          | 1.57E-07   |
| 32    | 66.9937 | 2.80438          | 2.78E-09   |
| 39    | 42.1178 | 1.76307          | 0.00184905 |
| 40    | 34.158  | 1.42987          | 0.00256497 |
| 47    | 11.2377 | 0.470414         | 0.0100499  |
| 58    | 111.025 | 4.64755          | 8.44E-32   |
| 59    | 50.5059 | 2.1142           | 1.82E-14   |
| 61    | 36.6593 | 1.53457          | 0.00477469 |
| 62    | 25.929  | 1.0854           | 0.00262506 |
| 63    | 44.9872 | 1.88319          | 0.00029172 |
| 64    | 69.8476 | 2.92385          | 1.21E-13   |
| 65    | 35.9778 | 1.50605          | 2.77E-07   |
| 68    | 74.1966 | 3.1059           | 3.33E-21   |
| 70    | 66.7315 | 2.79341          | 1.69E-13   |
| 73    | 11.3045 | 0.473213         | 0.00067664 |
| 75    | 36.4257 | 1.5248           | 6.12E-11   |
| 77    | 62.2126 | 2.60425          | 1.71E-06   |
| 80    | 11.7369 | 0.491312         | 0.0241565  |
| 81    | 25.9187 | 1.08497          | 4.94E-06   |
| 84    | 24.0092 | 1.00504          | 2.31E-07   |
| 85    | 38.1916 | 1.59872          | 4.46E-07   |
| 86    | 11.6579 | 0.488005         | 0.0135706  |
| 87    | 77.9872 | 3.26458          | 4.40E-19   |
| 88    | 24.0204 | 1.0055           | 5.34E-06   |
| 89    | 14.837  | 0.621085         | 0.0150515  |
| 90    | 15.3424 | 0.64224          | 0.00333789 |
| 93    | 55.4161 | 2.31974          | 1.28E-08   |
| 95    | 13.1843 | 0.551899         | 0.00331566 |
| 97    | 31.1695 | 1.30477          | 0.00060578 |
| 98    | 37.06   | 1.55135          | 1.01E-06   |
| 100   | 96.7752 | 4.05105          | 3.76E-09   |
| Codon | dN-dS   | Normalized dN-dS | p-value    |
| 4     | 13.0933 | 1.11386          | 2.77E-06   |
| 19    | 12.0428 | 1.02449          | 0.0194111  |
| 21    | 8.76653 | 0.745778         | 0.00640897 |
| 29    | 20.5078 | 1.74462          | 0.00422291 |
| 36    | 6.03257 | 0.513197         | 0.0434762  |
| 39    | 8.55281 | 0.727596         | 0.00391241 |
| 40    | 12.3986 | 1.05476          | 0.00113586 |
| 58    | 14.1613 | 1.20472          | 2.80E-07   |
| 59    | 3.70586 | 0.315261         | 0.0116663  |
| 67    | 13.915  | 1.18376          | 0.00020476 |

ISSN 0973-2063 (online) 0973-8894 (print) Bioinformation 11(3):151-160 (2015)

| 68  | 28.5869 | 2.43192  | 1.34E-15   |
|-----|---------|----------|------------|
| 69  | 19.095  | 1.62443  | 1.71E-06   |
| 70  | 10.8347 | 0.921717 | 2.06E-05   |
| 71  | 3.54406 | 0.301497 | 0.048156   |
| 75  | 19.2189 | 1.63497  | 9.18E-11   |
| 77  | 9.09342 | 0.773587 | 0.00779295 |
| 80  | 15.6258 | 1.3293   | 4.49E-05   |
| 81  | 22.5102 | 1.91496  | 2.93E-12   |
| 87  | 6.36906 | 0.541822 | 0.00217784 |
| 90  | 4.54426 | 0.386585 | 0.0194814  |
| 95  | 6.06914 | 0.516308 | 0.00067664 |
| 97  | 15.1829 | 1.29163  | 3.69E-07   |
| 98  | 5.60021 | 0.476415 | 0.00582018 |
| 100 | 11.747  | 0.999329 | 0.00784085 |

| Table 5: Site under | positive selection | by FEL method | l in Subtype B(5a) | and C (5b) 4a)Subtype B |
|---------------------|--------------------|---------------|--------------------|-------------------------|
|                     |                    |               |                    |                         |

| Codon | dS       | dN      | dN/dS    | Normalized dN-dS | p-value  |
|-------|----------|---------|----------|------------------|----------|
| 4     | 0        | 0.26109 | Infinite | 0.01093          | 0.00072  |
| 6     | 0        | 0.11999 | Infinite | 0.00502          | 0.02921  |
| 7     | 1.08199  | 2.13551 | 1.974    | 0.0441           | 0.00259  |
| 24    | 1.3935   | 4.13474 | 2.967    | 0.11474          | 9.02E-07 |
| 32    | 0.37976  | 2.50879 | 6.606    | 0.08912          | 2.92E-08 |
| 39    | 1.86091  | 3.12232 | 1.678    | 0.0528           | 0.01533  |
| 40    | 1.19826  | 2.64097 | 2.204    | 0.06039          | 0.00025  |
| 42    | 0.44096  | 0.93895 | 2.129    | 0.02084          | 0.00821  |
| 47    | 0        | 0.32407 | Infinite | 0.01356          | 0.00391  |
| 58    | 3.19E-15 | 3.95358 | 1.2E+15  | 0.16549          | 0        |
| 59    | 0        | 1.4852  | Infinite | 0.06217          | 6.76E-14 |
| 61    | 0.79398  | 2.63138 | 3.314    | 0.07691          | 4.85E-07 |
| 62    | 0.46742  | 1.32344 | 2.831    | 0.03583          | 0.00294  |
| 63    | 1.77934  | 3.00339 | 1.688    | 0.05124          | 0.01364  |
| 64    | 0.34998  | 2.71356 | 7.753    | 0.09893          | 1.61E-13 |
| 65    | 0        | 1.13187 | Infinite | 0.04738          | 6.63E-08 |
| 68    | 0        | 2.28148 | Infinite | 0.0955           | 0        |
| 70    | 0.25966  | 2.49759 | 9.619    | 0.09367          | 5.55E-15 |
| 73    | 0        | 0.31138 | Infinite | 0.01303          | 4.05E-05 |
| 74    | 2.24711  | 3.31207 | 1.474    | 0.04458          | 0.00872  |
| 75    | 0        | 1.06386 | Infinite | 0.04453          | 5.40E-14 |
| 77    | 1.28366  | 3.88778 | 3.029    | 0.109            | 4.08E-11 |
| 80    | 0        | 0.36209 | Infinite | 0.01516          | 0.00073  |
| 81    | 0.13846  | 0.84292 | 6.088    | 0.02949          | 7.70E-05 |
| 84    | 0        | 0.67209 | Infinite | 0.02813          | 6.82E-07 |
| 85    | 0.19831  | 1.38755 | 6.997    | 0.04978          | 1.00E-05 |
| 86    | 0        | 0.37184 | Infinite | 0.01556          | 0.00157  |
| 87    | 0.09124  | 2.55542 | 28.008   | 0.10314          | 0        |
| 88    | 0        | 0.73766 | Infinite | 0.03088          | 1.07E-05 |
| 90    | 0.13217  | 0.57497 | 4.35     | 0.01853          | 0.01284  |
| 93    | 0.34624  | 2.46781 | 7.127    | 0.0888           | 3.46E-12 |
| 95    | 0.11018  | 0.49713 | 4.512    | 0.0162           | 0.00278  |
| 97    | 0.72291  | 1.91335 | 2.647    | 0.04983          | 0.0001   |
| 98    | 0.06485  | 1.34701 | 20.772   | 0.05367          | 1.97E-07 |
| 100   | 1.56697  | 7.53994 | 4.812    | 0.25001          | 0        |
|       |          |         |          |                  |          |

| Table 6: Site under positive selection by iFEL method in subtype B (6a) and | C (6b) |
|-----------------------------------------------------------------------------|--------|
|-----------------------------------------------------------------------------|--------|

| Codon | dS      | dN      | dN Leaves | dN/dS    | Normalized dN-dS | p-value  |
|-------|---------|---------|-----------|----------|------------------|----------|
| 7     | 1.08201 | 2.12779 | 2.13764   | 1.967    | 0.04377          | 0.04202  |
| 24    | 1.42378 | 5.66242 | 3.65908   | 3.977    | 0.17742          | 1.30E-07 |
| 32    | 0.38051 | 2.98721 | 2.36496   | 7.851    | 0.10911          | 2.11E-07 |
| 39    | 1.87096 | 3.47108 | 3.01451   | 1.855    | 0.06698          | 0.01897  |
| 40    | 1.19903 | 2.76516 | 2.60479   | 2.306    | 0.06555          | 0.00577  |
| 42    | 0.44079 | 1.14548 | 0.88401   | 2.599    | 0.0295           | 0.02491  |
| 58    | 0       | 5.38848 | 3.53435   | Infinite | 0.22555          | 0        |
| 59    | 0       | 0.94903 | 1.63235   | Infinite | 0.03972          | 2.77E-06 |
| 61    | 0.79523 | 2.98052 | 2.52858   | 3.748    | 0.09147          | 3.44E-05 |
| 62    | 0.46735 | 1.29419 | 1.33154   | 2.769    | 0.03461          | 0.02804  |
| 63    | 1.7805  | 3.45885 | 2.8745    | 1.943    | 0.07025          | 0.02071  |
| 64    | 0.34908 | 2.28587 | 2.8417    | 6.548    | 0.08107          | 8.04E-06 |
| 65    | 0       | 1.26826 | 1.0944    | Infinite | 0.05309          | 1.16E-06 |
| 68    | 0       | 2.57985 | 2.19288   | Infinite | 0.10799          | 6.85E-14 |

ISSN 0973-2063 (online) 0973-8894 (print) Bioinformation 11(3):151-160 (2015)

| 70                                                                                                      | 0.2597                                                                                                                                                     | 3.03509                                                                                                                                                                                       | 2.33262                                                                                                                                                                     | 11.687                                                                                                                                                      | 0.11617                                                                                                                                                                    | 2.85E-08                                                                                                                                                                            |
|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 73                                                                                                      | 0                                                                                                                                                          | 0.16321                                                                                                                                                                                       | 0.35041                                                                                                                                                                     | Infinite                                                                                                                                                    | 0.00683                                                                                                                                                                    | 0.0249                                                                                                                                                                              |
| 74                                                                                                      | 2.247                                                                                                                                                      | 4.87607                                                                                                                                                                                       | 2.87592                                                                                                                                                                     | 2.17                                                                                                                                                        | 0.11005                                                                                                                                                                    | 0.00026                                                                                                                                                                             |
| 75                                                                                                      | 4.10E-17                                                                                                                                                   | 1.06864                                                                                                                                                                                       | 1.06249                                                                                                                                                                     | 2.6E+16                                                                                                                                                     | 0.04473                                                                                                                                                                    | 4.11E-08                                                                                                                                                                            |
| 77                                                                                                      | 1.28296                                                                                                                                                    | 2.9234                                                                                                                                                                                        | 4.16761                                                                                                                                                                     | 2.279                                                                                                                                                       | 0.06866                                                                                                                                                                    | 0.00513                                                                                                                                                                             |
| 80                                                                                                      | 0                                                                                                                                                          | 0.31367                                                                                                                                                                                       | 0.3748                                                                                                                                                                      | Infinite                                                                                                                                                    | 0.01313                                                                                                                                                                    | 0.00856                                                                                                                                                                             |
| 81                                                                                                      | 0.13841                                                                                                                                                    | 0.54947                                                                                                                                                                                       | 0.92368                                                                                                                                                                     | 3.97                                                                                                                                                        | 0.01721                                                                                                                                                                    | 0.04938                                                                                                                                                                             |
| 84                                                                                                      | 0                                                                                                                                                          | 0.35146                                                                                                                                                                                       | 0.75671                                                                                                                                                                     | Infinite                                                                                                                                                    | 0.01471                                                                                                                                                                    | 0.00379                                                                                                                                                                             |
| 85                                                                                                      | 0.19829                                                                                                                                                    | 1.34688                                                                                                                                                                                       | 1.39876                                                                                                                                                                     | 6.792                                                                                                                                                       | 0.04808                                                                                                                                                                    | 0.00068                                                                                                                                                                             |
| 87                                                                                                      | 0.09095                                                                                                                                                    | 2.24841                                                                                                                                                                                       | 2.64267                                                                                                                                                                     | 24.721                                                                                                                                                      | 0.09031                                                                                                                                                                    | 1.65E-08                                                                                                                                                                            |
| 88                                                                                                      | 2.90E-16                                                                                                                                                   | 0.23197                                                                                                                                                                                       | 0.87465                                                                                                                                                                     | 8E+14                                                                                                                                                       | 0.00971                                                                                                                                                                    | 0.04359                                                                                                                                                                             |
| 90                                                                                                      | 0.13241                                                                                                                                                    | 0.79305                                                                                                                                                                                       | 0.51645                                                                                                                                                                     | 5.989                                                                                                                                                       | 0.02765                                                                                                                                                                    | 0.00903                                                                                                                                                                             |
| 93                                                                                                      | 0.33512                                                                                                                                                    | 3.28117                                                                                                                                                                                       | 2.24416                                                                                                                                                                     | 9.791                                                                                                                                                       | 0.12331                                                                                                                                                                    | 2.19E-09                                                                                                                                                                            |
| 98                                                                                                      | 0.06443                                                                                                                                                    | 1.12169                                                                                                                                                                                       | 1.40951                                                                                                                                                                     | 17.411                                                                                                                                                      | 0.04425                                                                                                                                                                    | 0.00012                                                                                                                                                                             |
| 100                                                                                                     | 1.58732                                                                                                                                                    | 10.6766                                                                                                                                                                                       | 6.541                                                                                                                                                                       | 6.726                                                                                                                                                       | 0.38046                                                                                                                                                                    | 0                                                                                                                                                                                   |
| 5b)Subtype B                                                                                            |                                                                                                                                                            |                                                                                                                                                                                               |                                                                                                                                                                             |                                                                                                                                                             |                                                                                                                                                                            |                                                                                                                                                                                     |
| Codon                                                                                                   | dS                                                                                                                                                         | dN                                                                                                                                                                                            | dN Leaves                                                                                                                                                                   | dN/dS                                                                                                                                                       | Normalized dN-dS                                                                                                                                                           | n-value                                                                                                                                                                             |
| couon                                                                                                   |                                                                                                                                                            |                                                                                                                                                                                               | art Deares                                                                                                                                                                  | uryuo                                                                                                                                                       | i toimanizea ait ao                                                                                                                                                        | p varae                                                                                                                                                                             |
| 4                                                                                                       | 0.07826                                                                                                                                                    | 2.34093                                                                                                                                                                                       | 1.27402                                                                                                                                                                     | 29.912                                                                                                                                                      | 0.1925                                                                                                                                                                     | 1.67E-06                                                                                                                                                                            |
| 4<br>21                                                                                                 | 0.07826<br>0.69618                                                                                                                                         | 2.34093<br>2.64321                                                                                                                                                                            | 1.27402<br>1.51427                                                                                                                                                          | 29.912<br>3.797                                                                                                                                             | 0.1925<br>0.16565                                                                                                                                                          | 1.67E-06<br>0.00292                                                                                                                                                                 |
| 4<br>21<br>29                                                                                           | 0.07826<br>0.69618<br>2.25573                                                                                                                              | 2.34093<br>2.64321<br>10.6737                                                                                                                                                                 | 1.27402<br>1.51427<br>6.69246                                                                                                                                               | 29.912<br>3.797<br>4.732                                                                                                                                    | 0.1925<br>0.16565<br>0.71617                                                                                                                                               | 1.67E-06<br>0.00292<br>2.26E-07                                                                                                                                                     |
| 4<br>21<br>29<br>39                                                                                     | 0.07826<br>0.69618<br>2.25573<br>0.44023                                                                                                                   | 2.34093<br>2.64321<br>10.6737<br>2.77875                                                                                                                                                      | 1.27402<br>1.51427<br>6.69246<br>0.93268                                                                                                                                    | 29.912<br>3.797<br>4.732<br>6.312                                                                                                                           | 0.1925<br>0.16565<br>0.71617<br>0.19895                                                                                                                                    | 1.67E-06<br>0.00292<br>2.26E-07<br>0.00037                                                                                                                                          |
| 4<br>21<br>29<br>39<br>40                                                                               | 0.07826<br>0.69618<br>2.25573<br>0.44023<br>0.73899                                                                                                        | 2.34093<br>2.64321<br>10.6737<br>2.77875<br>2.59738                                                                                                                                           | 1.27402<br>1.51427<br>6.69246<br>0.93268<br>2.35517                                                                                                                         | 29.912<br>3.797<br>4.732<br>6.312<br>3.515                                                                                                                  | 0.1925<br>0.16565<br>0.71617<br>0.19895<br>0.1581                                                                                                                          | 1.67E-06<br>0.00292<br>2.26E-07<br>0.00037<br>0.00696                                                                                                                               |
| 4<br>21<br>29<br>39<br>40<br>58                                                                         | 0.07826<br>0.69618<br>2.25573<br>0.44023<br>0.73899<br>0.07549                                                                                             | 2.34093<br>2.64321<br>10.6737<br>2.77875<br>2.59738<br>2.29101                                                                                                                                | 1.27402<br>1.51427<br>6.69246<br>0.93268<br>2.35517<br>1.52913                                                                                                              | 29.912<br>3.797<br>4.732<br>6.312<br>3.515<br>30.348                                                                                                        | 0.1925<br>0.16565<br>0.71617<br>0.19895<br>0.1581<br>0.18849                                                                                                               | 1.67E-06<br>0.00292<br>2.26E-07<br>0.00037<br>0.00696<br>4.70E-06                                                                                                                   |
| 4<br>21<br>29<br>39<br>40<br>58<br>67                                                                   | 0.07826<br>0.69618<br>2.25573<br>0.44023<br>0.73899<br>0.07549<br>0.31341                                                                                  | 2.34093<br>2.64321<br>10.6737<br>2.77875<br>2.59738<br>2.29101<br>2.01221                                                                                                                     | 1.27402<br>1.51427<br>6.69246<br>0.93268<br>2.35517<br>1.52913<br>2.02799                                                                                                   | 29.912<br>3.797<br>4.732<br>6.312<br>3.515<br>30.348<br>6.42                                                                                                | 0.1925<br>0.16565<br>0.71617<br>0.19895<br>0.1581<br>0.18849<br>0.14453                                                                                                    | 1.67E-06<br>0.00292<br>2.26E-07<br>0.00037<br>0.00696<br>4.70E-06<br>0.00245                                                                                                        |
| 4<br>21<br>29<br>39<br>40<br>58<br>67<br>68                                                             | 0.07826<br>0.69618<br>2.25573<br>0.44023<br>0.73899<br>0.07549<br>0.31341<br>0                                                                             | 2.34093<br>2.64321<br>10.6737<br>2.77875<br>2.59738<br>2.29101<br>2.01221<br>3.80073                                                                                                          | 1.27402<br>1.51427<br>6.69246<br>0.93268<br>2.35517<br>1.52913<br>2.02799<br>2.94594                                                                                        | 29.912<br>3.797<br>4.732<br>6.312<br>3.515<br>30.348<br>6.42<br>Infinite                                                                                    | 0.1925<br>0.16565<br>0.71617<br>0.19895<br>0.1581<br>0.18849<br>0.14453<br>0.32335                                                                                         | 1.67E-06<br>0.00292<br>2.26E-07<br>0.00037<br>0.00696<br>4.70E-06<br>0.00245<br>3.09E-11                                                                                            |
| 4<br>21<br>29<br>39<br>40<br>58<br>67<br>68<br>69                                                       | 0.07826<br>0.69618<br>2.25573<br>0.44023<br>0.73899<br>0.07549<br>0.31341<br>0<br>0.1082                                                                   | 2.34093<br>2.64321<br>10.6737<br>2.77875<br>2.59738<br>2.29101<br>2.01221<br>3.80073<br>3.06838                                                                                               | 1.27402<br>1.51427<br>6.69246<br>0.93268<br>2.35517<br>1.52913<br>2.02799<br>2.94594<br>2.03639                                                                             | 29.912<br>3.797<br>4.732<br>6.312<br>3.515<br>30.348<br>6.42<br>Infinite<br>28.357                                                                          | 0.1925<br>0.16565<br>0.71617<br>0.19895<br>0.1581<br>0.18849<br>0.14453<br>0.32335<br>0.25184                                                                              | 1.67E-06<br>0.00292<br>2.26E-07<br>0.00037<br>0.00696<br>4.70E-06<br>0.00245<br>3.09E-11<br>5.67E-07                                                                                |
| 4<br>21<br>29<br>39<br>40<br>58<br>67<br>68<br>69<br>70                                                 | 0.07826<br>0.69618<br>2.25573<br>0.44023<br>0.73899<br>0.07549<br>0.31341<br>0<br>0.1082<br>0.06815                                                        | 2.34093<br>2.64321<br>10.6737<br>2.77875<br>2.59738<br>2.29101<br>2.01221<br>3.80073<br>3.06838<br>1.17413                                                                                    | 1.27402<br>1.51427<br>6.69246<br>0.93268<br>2.35517<br>1.52913<br>2.02799<br>2.94594<br>2.03639<br>1.24805                                                                  | 29.912<br>3.797<br>4.732<br>6.312<br>3.515<br>30.348<br>6.42<br>Infinite<br>28.357<br>17.23                                                                 | 0.1925<br>0.16565<br>0.71617<br>0.19895<br>0.1581<br>0.18849<br>0.14453<br>0.32335<br>0.25184<br>0.09409                                                                   | 1.67E-06<br>0.00292<br>2.26E-07<br>0.00037<br>0.00696<br>4.70E-06<br>0.00245<br>3.09E-11<br>5.67E-07<br>0.0029                                                                      |
| 4<br>21<br>29<br>39<br>40<br>58<br>67<br>68<br>69<br>70<br>75                                           | 0.07826<br>0.69618<br>2.25573<br>0.44023<br>0.73899<br>0.07549<br>0.31341<br>0<br>0.1082<br>0.06815<br>0                                                   | 2.34093<br>2.64321<br>10.6737<br>2.77875<br>2.59738<br>2.29101<br>2.01221<br>3.80073<br>3.06838<br>1.17413<br>3.52053                                                                         | 1.27402<br>1.51427<br>6.69246<br>0.93268<br>2.35517<br>1.52913<br>2.02799<br>2.94594<br>2.03639<br>1.24805<br>1.67304                                                       | 29.912<br>3.797<br>4.732<br>6.312<br>3.515<br>30.348<br>6.42<br>Infinite<br>28.357<br>17.23<br>Infinite                                                     | 0.1925<br>0.16565<br>0.71617<br>0.19895<br>0.1581<br>0.18849<br>0.14453<br>0.32335<br>0.25184<br>0.09409<br>0.29951                                                        | 1.67E-06<br>0.00292<br>2.26E-07<br>0.00037<br>0.00696<br>4.70E-06<br>0.00245<br>3.09E-11<br>5.67E-07<br>0.0029<br>1.22E-12                                                          |
| 4<br>21<br>29<br>39<br>40<br>58<br>67<br>68<br>67<br>68<br>69<br>70<br>75<br>77                         | 0.07826<br>0.69618<br>2.25573<br>0.44023<br>0.73899<br>0.07549<br>0.31341<br>0<br>0.1082<br>0.06815<br>0<br>0.59912                                        | 2.34093<br>2.64321<br>10.6737<br>2.77875<br>2.59738<br>2.29101<br>2.01221<br>3.80073<br>3.06838<br>1.17413<br>3.52053<br>1.71616                                                              | 1.27402<br>1.51427<br>6.69246<br>0.93268<br>2.35517<br>1.52913<br>2.02799<br>2.94594<br>2.03639<br>1.24805<br>1.67304<br>1.89864                                            | 29.912<br>3.797<br>4.732<br>6.312<br>3.515<br>30.348<br>6.42<br>Infinite<br>28.357<br>17.23<br>Infinite<br>2.864                                            | 0.1925<br>0.16565<br>0.71617<br>0.19895<br>0.1581<br>0.18849<br>0.14453<br>0.32335<br>0.25184<br>0.09409<br>0.29951<br>0.09503                                             | 1.67E-06<br>0.00292<br>2.26E-07<br>0.00037<br>0.00696<br>4.70E-06<br>0.00245<br>3.09E-11<br>5.67E-07<br>0.0029<br>1.22E-12<br>0.04187                                               |
| 4<br>21<br>29<br>39<br>40<br>58<br>67<br>68<br>67<br>68<br>69<br>70<br>75<br>77<br>80                   | 0.07826<br>0.69618<br>2.25573<br>0.44023<br>0.73899<br>0.07549<br>0.31341<br>0<br>0.1082<br>0.06815<br>0<br>0.59912<br>0.07268                             | 2.34093<br>2.64321<br>10.6737<br>2.77875<br>2.59738<br>2.29101<br>2.01221<br>3.80073<br>3.06838<br>1.17413<br>3.52053<br>1.71616<br>2.46722                                                   | 1.27402<br>1.51427<br>6.69246<br>0.93268<br>2.35517<br>1.52913<br>2.02799<br>2.94594<br>2.03639<br>1.24805<br>1.67304<br>1.89864<br>1.81151                                 | 29.912<br>3.797<br>4.732<br>6.312<br>3.515<br>30.348<br>6.42<br>Infinite<br>28.357<br>17.23<br>Infinite<br>2.864<br>33.948                                  | 0.1925<br>0.16565<br>0.71617<br>0.19895<br>0.1581<br>0.18849<br>0.14453<br>0.32335<br>0.25184<br>0.09409<br>0.29951<br>0.09503<br>0.20372                                  | 1.67E-06<br>0.00292<br>2.26E-07<br>0.00037<br>0.00696<br>4.70E-06<br>0.00245<br>3.09E-11<br>5.67E-07<br>0.0029<br>1.22E-12<br>0.04187<br>7.45E-07                                   |
| 4<br>21<br>29<br>39<br>40<br>58<br>67<br>68<br>67<br>68<br>69<br>70<br>75<br>77<br>80<br>81             | 0.07826<br>0.69618<br>2.25573<br>0.44023<br>0.73899<br>0.07549<br>0.31341<br>0<br>0.1082<br>0.06815<br>0<br>0.59912<br>0.07268<br>1.00E-06                 | $\begin{array}{c} 2.34093\\ 2.64321\\ 10.6737\\ 2.77875\\ 2.59738\\ 2.29101\\ 2.01221\\ 3.80073\\ 3.06838\\ 1.17413\\ 3.52053\\ 1.71616\\ 2.46722\\ 3.90974 \end{array}$                      | 1.27402<br>1.51427<br>6.69246<br>0.93268<br>2.35517<br>1.52913<br>2.02799<br>2.94594<br>2.03639<br>1.24805<br>1.67304<br>1.89864<br>1.81151<br>2.0962                       | 29.912<br>3.797<br>4.732<br>6.312<br>3.515<br>30.348<br>6.42<br>Infinite<br>28.357<br>17.23<br>Infinite<br>2.864<br>33.948<br>3909740                       | 0.1925<br>0.16565<br>0.71617<br>0.19895<br>0.1581<br>0.18849<br>0.14453<br>0.32335<br>0.25184<br>0.09409<br>0.29951<br>0.09503<br>0.20372<br>0.33263                       | 1.67E-06<br>0.00292<br>2.26E-07<br>0.00037<br>0.00696<br>4.70E-06<br>0.00245<br>3.09E-11<br>5.67E-07<br>0.0029<br>1.22E-12<br>0.04187<br>7.45E-07<br>3.21E-11                       |
| 4<br>21<br>29<br>39<br>40<br>58<br>67<br>68<br>67<br>68<br>69<br>70<br>75<br>77<br>80<br>81<br>95       | 0.07826<br>0.69618<br>2.25573<br>0.44023<br>0.73899<br>0.07549<br>0.31341<br>0<br>0.1082<br>0.06815<br>0<br>0.59912<br>0.07268<br>1.00E-06<br>0            | $\begin{array}{c} 2.34093\\ 2.64321\\ 10.6737\\ 2.77875\\ 2.59738\\ 2.29101\\ 2.01221\\ 3.80073\\ 3.06838\\ 1.17413\\ 3.52053\\ 1.71616\\ 2.46722\\ 3.90974\\ 0.67051 \end{array}$            | 1.27402<br>1.51427<br>6.69246<br>0.93268<br>2.35517<br>1.52913<br>2.02799<br>2.94594<br>2.03639<br>1.24805<br>1.67304<br>1.89864<br>1.81151<br>2.0962<br>0.65981            | 29.912<br>3.797<br>4.732<br>6.312<br>3.515<br>30.348<br>6.42<br>Infinite<br>28.357<br>17.23<br>Infinite<br>2.864<br>33.948<br>3909740<br>Infinite           | 0.1925<br>0.16565<br>0.71617<br>0.19895<br>0.1581<br>0.18849<br>0.14453<br>0.32335<br>0.25184<br>0.09409<br>0.29951<br>0.09503<br>0.20372<br>0.33263<br>0.05704            | 1.67E-06<br>0.00292<br>2.26E-07<br>0.00037<br>0.00696<br>4.70E-06<br>0.00245<br>3.09E-11<br>5.67E-07<br>0.0029<br>1.22E-12<br>0.04187<br>7.45E-07<br>3.21E-11<br>0.01594            |
| 4<br>21<br>29<br>39<br>40<br>58<br>67<br>68<br>67<br>68<br>69<br>70<br>75<br>77<br>80<br>81<br>95<br>97 | 0.07826<br>0.69618<br>2.25573<br>0.44023<br>0.73899<br>0.07549<br>0.31341<br>0<br>0.1082<br>0.06815<br>0<br>0.59912<br>0.07268<br>1.00E-06<br>0<br>0.07123 | $\begin{array}{c} 2.34093\\ 2.64321\\ 10.6737\\ 2.77875\\ 2.59738\\ 2.29101\\ 2.01221\\ 3.80073\\ 3.06838\\ 1.17413\\ 3.52053\\ 1.71616\\ 2.46722\\ 3.90974\\ 0.67051\\ 1.0356\\ \end{array}$ | 1.27402<br>1.51427<br>6.69246<br>0.93268<br>2.35517<br>1.52913<br>2.02799<br>2.94594<br>2.03639<br>1.24805<br>1.67304<br>1.89864<br>1.81151<br>2.0962<br>0.65981<br>2.21379 | 29.912<br>3.797<br>4.732<br>6.312<br>3.515<br>30.348<br>6.42<br>Infinite<br>28.357<br>17.23<br>Infinite<br>2.864<br>33.948<br>3909740<br>Infinite<br>14.538 | 0.1925<br>0.16565<br>0.71617<br>0.19895<br>0.1581<br>0.18849<br>0.14453<br>0.32335<br>0.25184<br>0.09409<br>0.29951<br>0.09503<br>0.20372<br>0.33263<br>0.05704<br>0.08204 | 1.67E-06<br>0.00292<br>2.26E-07<br>0.00037<br>0.00696<br>4.70E-06<br>0.00245<br>3.09E-11<br>5.67E-07<br>0.0029<br>1.22E-12<br>0.04187<br>7.45E-07<br>3.21E-11<br>0.01594<br>0.00796 |