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Abstract: Backgrounds: Drugs with the ability to displace bilirubin from albumin-binding sites
subsequently leading to an increased bilirubin level may cause hyperbilirubinemia in neonates.
Ibuprofen is commonly used to treat patent ductus arteriosus (PDA) in neonates, yet the use of
ibuprofen has drawn mixed conclusions. We performed a retrospective study to determine how
ibuprofen use influences the total serum bilirubin (TSB) level in neonates of differing birth weight
(BW). Materials and methods: Neonates (including premature infants) born at Chang Gung Memo-
rial Hospital, Taiwan during January 2004 to July 2020 were entered into this study. We recorded
the phototherapy duration, including the initial day and end day, and determined the average
influence of one-day phototherapy on TSB level. The highest monitored TSB level post-ibuprofen
use minus the one measured prior to ibuprofen use was considered the TSB change following
ibuprofen administration in this study, and the above-mentioned influence of daily phototherapy
on the TSB level was used to correlate the results. Neonates with any of the following conditions
were excluded: those who received ceftriaxone, those with intraventricular hemorrhage, and those
infected with TORCH. Results: The average daily influence of phototherapy on the TSB level of
neonates was −0.20 (−0.57~0.05) mg/dL, −0.28 (−0.84~0.13) mg/dL, −0.75 (−1.77~0.10) mg/dL,
and −1.60 (−2.70~−0.50) mg/dL in neonates with BWs of <1 kg, 1–1.49 kg, 1.5–2.49 kg, and ≥2.5 kg,
respectively, indicating that neonates with a BW ≥ 1.5 kg experienced a greater reduction in TSB level
following phototherapy as compared with those with a BW < 1.5 kg. The average TSB increase follow-
ing ibuprofen use in neonates was 3.38 ± 2.77 mg/dL, 2.04 ± 2.53 mg/dL, and 1.34 ± 2.24 mg/dL
in neonates with BWs of <1 kg, 1–1.49 kg, and ≥1.5 kg, respectively, i.e., an elevated TSB change
with a decreased neonate BW was noted post-ibuprofen use (p = 0.026, one-way analysis of variance
(ANOVA)). Conclusions: As ibuprofen use is correlated with an apparent increase in TSB level in
neonates with a lower BW, especially in those with a BW < 1 kg, iv acetaminophen can be an appro-
priate alternative to ibuprofen for ELBW neonates for the treatment of PDA if they are experiencing
severe unconjugated hyperbilirubinemia.
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1. Introduction

Neonatal hyperbilirubinemia, an increased total serum bilirubin (TSB) level, is a com-
mon occurrence in neonates [1]. Bilirubin, a product of hemoglobin degradation [2], is
transported in an unconjugated form, largely bound to albumin in the blood, and the liver
transforms it into conjugated bilirubin, which is then excreted in bile [1]. Hyperbilirubine-
mia is caused by increased bilirubin deposition in the tissue, causing yellow pigmentation
of the skin [1], as bilirubin production surges by thrice in neonates in comparison with
adults, mostly owing to a neonate’s reduced red blood cell (RBC) lifespan and an impaired
ability to eliminate bilirubin [3].

Blood incompatibility and glucose-6-phosphate dehydrogenase (G6PD) deficiency
have been implicated in the development of neonatal hyperbilirubinemia [4], and hemolytic
disease of the newborn (HDN) may lead to severe hyperbilirubinemia. [5] The etiology
of HDN starts with the attack of fetal RBCs by maternal antibodies owing to incompati-
bility of fetal and maternal blood attributed to the Rhesus and ABO antigen systems [5].
Hyperbilirubinemia that continues without appropriate management may result in harm-
ful effects including jaundice, neurotoxicity, and brain dysfunction, and may also cause
pharmacokinetic alterations of drugs [6,7].

Unbound (free) bilirubin has a better sensitivity and specificity than TSB and can
predict the risk of bilirubin neurotoxicity more precisely [8]. Free bilirubin is capable of
penetrating the blood–brain barrier [9], and in serum is controlled by albumin binding
due to both a large quantity of albumin and its affinity for bilirubin [7]. The binding
of bilirubin to albumin is reversible and quick, involving a dynamic equilibrium with
bilirubin continuously binding with albumin and then separating [7]. However, a method
of measuring free bilirubin is not widely available, thus suggesting that clinicians ought to
consider methods other than this with regard to therapeutic decisions.

Although not useful as a sensitive and specific predictor of neurological outcomes,
and poorly correlated with bilirubin neurotoxicity [9], TSB is nowadays regularly used to
guide treatment post-phototherapy for hyperbilirubinemia in neonates. TSB indicates the
risk of neurological damage regarding the beginning or ending of phototherapy treatment,
or when to initiate exchange transfusions if necessary [10]. Clinical drugs with the ability
to displace bilirubin from albumin-binding sites, subsequently leading to increased TSB,
have been associated with certain causes of hyperbilirubinemia in neonates, especially in
those with certain diseases or genetic variations [6,11].

Ibuprofen is known to inhibit prostaglandin synthesis, although the mechanism of
action by which ibuprofen closes the patent ductus arteriosus (PDA) is still undetermined,
and this drug is commonly used for the treatment of PDA in neonates [12]. However, the
use of ibuprofen has drawn mixed conclusions, with one study [13] reporting that it is
associated with a higher peak TSB level, and another study [14] indicating that ibuprofen
may not be associated with the bilirubin displacement effect in relatively stable premature
infants with mild to moderate unconjugated hyperbilirubinemia.

As TSB, the most constantly monitored index for hyperbilirubinemia, is poorly corre-
lated with bilirubin neurotoxicity, we performed a retrospective study to determine how
ibuprofen use influences the TSB level in neonates of differing birth weight (BW) and
gestational age (GA).

2. Materials and Methods
2.1. Data Source

The present study utilized the birth record files of Chang Gung Research Database
(CGRD), encompassing all neonates (including premature infants) born at Chang Gung
Memorial Hospital (including multiple centers), Taiwan (including those being hospitalized,
or in an outpatient clinic or the emergency department). The study period was between
January 2004 and July 2020. All neonates were recorded within 30 days after birth. Those
who were administered ibuprofen iv or via oral solution (10 mg/kg, followed by 5 mg/kg
every 24 h for 2 doses) (ref: Micromedex) were designated the experimental group, while
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those who were not were included in the control group. This study was approved by the
Institutional Review Board of Chang Gung Memorial Hospital (IRB No. 202001147B0C503),
and the need for consent was waived by said IRB’s Ethics Committee.

2.2. Patients Studied

GA, BW, gender, number of days post-birth on initiation of ibuprofen use, hypoal-
buminemia (<2.5 g/dL), G6PD deficiency incidence [13,15], receiving blood transfusion
or not, phenobarbital use or not, presence of cholestasis or not, and TSB level monitored
within 30 days after birth were recorded for each neonate.

Phototherapy is the most common and effective way to treat neonates with hyperbiliru-
binemia, and our phototherapy devices (atom phototherapy 106 stand type, Tokyo, Japan)
delivering wavelengths of 430 to 490 nm is most frequently used to convert unconjugated
bilirubin [16]. The potency of phototherapy in reducing TSB is determined by TSB level
at the beginning of management, the spectrum of light emitted, origin of jaundice, and
uncovered body surface area [17]. Infants delivered at a younger gestational age have
lower thresholds for the initiation of phototherapy [18], and initiation or suspension of
phototherapy for the treatment of neonatal hyperbilirubinemia complies with “Treatment
protocols using the new treatment criteria” [17]. We recorded and adjusted the influence of
phototherapy on the TSB level. The phototherapy duration was documented, including
the initial day and end day. Two monitored TSB levels were recorded, from which the
average influence of one-day phototherapy on TSB could be determined: (TSB-TSB)/days
of phototherapy. We categorized neonates based on their birth weight and gestational age,
into BW < 1 kg, 1–1.49 kg, 1.50–2.49 kg, and ≥2.5 kg, and GA 21–27 weeks, 28–31 weeks,
32–33 weeks, 34–36 weeks, and ≥37 weeks, respectively.

The TSB level within 48 h prior to ibuprofen use and within seven days follow-
ing ibuprofen use were recorded and compared. The highest monitored TSB level post-
ibuprofen use minus the TSB level recorded prior to ibuprofen use was considered the TSB
change in this study. The above-mentioned influence of daily phototherapy on the TSB
level was used to correlate the results.

Neonates with any of the following conditions were excluded: those who received
ceftriaxone; those with intraventricular hemorrhage (IVH) that had a significant influence
in terms of increasing the BBI (bilirubin divided by birth weight index); those with TORCH
(toxoplasmosis, rubella, cytomegalovirus, herpes simplex, and other organisms including
syphilis, parvovirus, and varicella zoster) infections; those who died within 30 days after
birth, and those with fewer than two recorded TSB levels.

2.3. Statistics

All statistical analyses were performed using commercial software (SAS 9.4, SAS
Institute, Cary, NC, USA). We performed a normality test using the Kolmogorov–Smirnov
test. We adopted the Chi-square test or Fisher’s exact test to compare categorical variables,
and the Mann–Whitney U test for comparison of continuous variables between groups.
The Kruskal–Wallis test was applied to compare the reduction in TSB post-phototherapy
among groups of neonates with different BWs and different GAs. One-way ANOVA was
used to compare the average TSB change before and after ibuprofen use in neonates within
the same BW group, and one-way ANOVA by linear contrast was used to examine trends
in the TSB change among neonates within different BW groups. We also applied one-way
ANOVA to compare the average TSB change before and after ibuprofen use in neonates of
differing GA.

3. Results

In total, 151,015 neonates were born at Chang Gung Memorial Hospital (based on
birth record files) during the period from January 2004 to July 2020. Of those, 382 had
missing data or a BW < 400 g, 1784 were duplicates (mainly caused by having no ID at
birth), five were of unknown gender, 102,473 only had their TSB monitored once, 444 died
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within 30 days after birth, 31,464 did not undergo phototherapy (no TSB monitoring), and
147 were infected with cytomegalovirus, herpes simplex, syphilis, or varicella zoster, were
administered ceftriaxone, or experienced intraventricular hemorrhage. The aforementioned
neonates were excluded, and hence a total of 14,316 neonates were identified. Among these
14,316 neonates, 97 were administered ibuprofen, while 14,219 were not. Furthermore,
33 neonates given ibuprofen were excluded owing to not having had their TSB level
monitored within 48 h before or 7 days after initiation of ibuprofen use, and 792 not given
ibuprofen were excluded due to not having phototherapy between two monitored TSB
levels. Therefore, in total, 13,491 neonates were entered into this study, 64 who were
administered ibuprofen and 13,427 who were not (Figure 1).
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This study included 33 male neonates (51.6%) in the group of ibuprofen users and
7299 male neonates (54.4%) in the non-user group, and ibuprofen use was inversely cor-
related with BW and GA (p < 0.001). More ibuprofen users than non-users experienced
hypoalbuminemia. (15.6% vs. 2.3%, p < 0.001), and the days of phototherapy (5.3–14.8 vs.
1–3, p < 0.001) and ratio of phenobarbital use (3.1% vs. 0.3%, p = 0.015) were higher in the
ibuprofen users than in the non-users. We observed no significant differences between
these two groups in terms of G6PD deficiency (0.0% vs. 0.7%, p = 1.00), blood transfusion
(1.6% vs. 0.3%, p = 0.177), or cholestasis (0.0% vs. 0.2%, p = 1.00) (Table 1). We adopted the
Chi-Square test or Fisher’s exact test for categorical variables and the Mann–Whitney U
test for continuous variables. The average daily influence of phototherapy on the TSB level
was −0.20 (−0.57~0.05) mg/dL, −0.28 (−0.84~0.13) mg/dL, −0.75 (−1.77~0.10) mg/dL,
and −1.60 (−2.70~−0.50) mg/dL in neonates with a BW < 1 kg, 1–1.49 kg, 1.5–2.49 kg,
and ≥2.5 kg, respectively (Table 2), indicating that neonates with a BW ≥ 1.5 kg ex-
perienced a greater reduction in TSB following phototherapy as compared with those
with a BW < 1.5 kg. The average daily influence of phototherapy on the TSB level
was −0.17 (−0.54~0.13) mg/dL, −0.33 (−0.96~0.18) mg/dL, −0.48 (−1.00~0.23) mg/dL,
−0.95 (−2.00~0.00) mg/dL, and −1.63 (−2.70~−0.50) mg/dL in neonates with a GA of
21−27 weeks, 28−31 weeks, 32−33 weeks, 34−36 weeks, and ≥37 weeks, respectively
(Table 3), suggesting that more mature neonates experienced a greater reduction in the TSB
level post-phototherapy.

Table 1. Characteristics of neonates receiving ibuprofen and none-users.

Ibuprofen Users
(n = 64)

Non-Users
(n = 13,427) p-Value

GA <0.001

GA 21–27 28 (45.9 %) 414 (3.2 %)

GA 28–31 23 (37.7%) 819 (6.3 %)

GA 32–33 8 (13.1 %) 827 (6.3 %)

GA 34–36 1 (1.6 %) 2055 (15.7 %)

GA ≥ 37 1 (1.6 %) 8934 (68.5 %)

BW <0.001

<1 kg 16 (25.0 %) 329 (2.5 %)

1–1.49 kg 32 (50.0 %) 668 (5.0 %)

1.5–2.49 kg 13 (20.3 %) 2882 (21.5 %)

≥2.5 kg 3 (4.7 %) 9548 (71.1 %)

Gender (male) 33 (51.6%) 7299 (54.4%) 0.637

Number of days post
birth for ibuprofen use 13.0 (10.0–18.8)

Hypoalbuminemia 10 (15.6%) 303 (2.3%) <0.001

G6PD deficiency 0 (0.0%) 96 (0.7%) 1.00

Days of phototherapy 9.5 (5.3–14.8) 1 (1–3) <0.001

Blood transfusion 1 (1.6%) 40 (0.3%) 0.177

Phenobarbital use 2 (3.1%) 38 (0.3%) 0.015

Cholestasis 0 (0.0%) 21 (0.2%) 1.00
Chi-square test or Fisher’s exact test for categorical variables; Mann–Whitney U test for continuous variables;
GA: gestational age; BW: birth weight; hypoalbuminemia: <2.5 g/dL; G6PD deficiency: glucose-6-phosphate
dehydrogenase deficiency incidence; TSB: total serum bilirubin; ibuprofen users: 64 neonates with BW; 61 neonate
with GA; non-users: 13,427 neonates with BW; 13,049 neonates with GA.
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Table 2. Average daily influence of phototherapy on TSB levels of neonates with different BWs
(Kruskal–Wallis Test).

Neonate BW No. of Neonates (TSB2-TSB1)/Days of
Phototherapy (mg/dL)

<1 kg 329 −0.20(−0.57~0.05)

1–1.49 kg 668 −0.28(−0.84~0.13)

1.5–2.49 kg 2882 −0.75(−1.77~0.10)

≥2.5 kg 9548 −1.60(−2.70~−0.50)

Total 13,427 −1.28(−2.40~−0.20)

TSB1 prior to phototherapy: TSB monitored within 48 h prior to phototherapy; TSB2 post phototherapy: TSB
monitored within 48 h after phototherapy; TSB2-TSB1: TSB monitored after phototherapy-TSB monitored prior
to phototherapy.

Table 3. Average daily influence of phototherapy on TSB levels of neonates with different GAs
(Kruskal–Wallis Test).

Neonates No. of Neonates (TSB2-TSB1)/Days of
Phototherapy (mg/dL)

GA 21–27 414 −0.17(−0.54~0.13)

GA 28–31 819 −0.33(−0.96~0.18)

GA 32–33 827 −0.48(−1.00~0.23)

GA 34–36 2055 −0.95(−2.00~0.00)

GA ≥ 37 8934 −1.63(−2.70~−0.50)

Total 13,049 −1.30(−2.40~−0.20)

TSB1 prior to phototherapy: TSB monitored within 48 h prior to phototherapy; TSB2 post phototherapy: TSB
monitored within 48 h after phototherapy; TSB2-TSB1: TSB monitored after phototherapy-TSB monitored prior
to phototherapy. GA: gestational age; extremely premature—21–27 weeks; very premature—28–31 weeks;
moderately premature—32–33 weeks; late preterm—34–37 weeks; term ≥ 37 weeks.

The average TSB value increase following ibuprofen use was 3.38 ± 2.77 mg/dL,
2.04 ± 2.53 mg/dL, and 1.34 ± 2.24 mg/dL in neonates with a BW < 1 kg, 1–1.49 kg, and
≥1.5 kg, respectively (Table 4; owing to only three neonates having been administered
ibuprofen in the group with a BW ≥ 2.5 kg, we combined this group with neonates of a
BW 1.5–2.49 kg, forming a new group of neonates with a BW ≥ 1.5 kg, i.e., this table only
contains three groups). Non-significant differences were found in the change of TSB level
following ibuprofen use between these three groups (p = 0.073), but increased TSB changes
with decreased neonate BW were noted post-ibuprofen use (p = 0.026, one-way ANOVA).
We categorized GA into only three groups in Table 5: GA 21–27 weeks, GA 28–31 weeks,
and GA ≥ 32 weeks, as only one neonate was in the GA 34–36 weeks group and one in the
GA ≥ 37 weeks group. Table 5 shows non-significant differences in the change in TSB level
following ibuprofen use between these three groups (p = 0.45), and a decreased neonatal
GA resulted in an increased TSB change (p = 0.217).
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Table 4. Average changes of TSB levels before and after ibuprofen use in neonates with different BWs
(One-way ANOVA).

Neonate BW No. of
Neonates

TSB Prior to
Ibuprofen Use

Highest TSB Post
Ibuprofen Use

TSB-TSB
(mg/dL)

<1 kg 16 3.93 ± 1.84 5.54 ± 2.35 3.38 ± 2.77

1–1.49 kg 32 6.48 ± 2.49 6.61 ± 2.59 2.04 ± 2.53

≥1.5 kg 16 8.08 ± 2.53 8.14 ± 2.66 1.34 ± 2.24

Total 64 6.24 ± 2.76 6.72 ± 2.68 2.20 ± 2.60
TSB before ibuprofen use: TSB monitored within 48 h before ibuprofen use; TSB post ibuprofen use: highest
monitored TSB within 7 days after ibuprofen use; TSB-TSB: highest monitored TSB after ibuprofen use—TSB
monitored prior to ibuprofen use.

Table 5. Average changes of TSB levels before and after ibuprofen use in neonates with different GAs
(One-way ANOVA).

Neonate GA No. of
Neonates

TSB Prior to
Ibuprofen Use

Highest TSB Post
Ibuprofen Use

TSB-TSB
(mg/dL)

GA 21–27 28 5.06 ± 2.24 6.01 ± 2.29 2.59 ± 3.03

GA 28–31 23 6.68 ± 2.11 6.80 ± 2.45 2.15 ± 2.29

GA ≥ 32 10 6.87 ± 3.40 7.15 ± 3.15 1.35 ± 2.24

Total 61 5.97 ± 2.52 6.50 ± 2.50 2.22 ± 2.65
This table contains only 61 neonates due to three neonates without a GA record, different from the 64 neonates in
Table 4.

4. Discussion

The lower the birth weight, the more significant impact ibuprofen had on the TSB
level (Table 4), and very low birth weight (VLBW) (BW < 1.5 kg) neonates are at greater
risk of kernicterus and brain injury due to hyperbilirubinemia [19]; as such, neonates with
severe jaundice should be carefully followed while receiving ibuprofen. Extremely low
birth weight (ELBW) (BW < 1 kg) neonates presented the highest TSB increase following
ibuprofen use in this study at 3.38 ± 2.77 mg/dL (Table 4), and a lower TSB reduction by
phototherapy was observed, at −0.20 (−0.57~0.05) mg/dL/one-day phototherapy (Table 2).
In addition, aggressive phototherapy may reduce the TSB level in this group of neonates,
but it increases deaths as well [20]. For preventing potential brain injury, iv acetaminophen,
which has proved safe and effective for the treatment of PDA and no apparent increase of
TSB, can be an appropriate alternative to ibuprofen for ELBW neonates for the treatment of
PDA if they are experiencing severe unconjugated hyperbilirubinemia [21–24].

An increased TSB change was not correlated with a decreased neonatal GA (Table 5) as
expected, indicating that GA, a term commonly used in neonates, is not consistent with the
trend of BW post-ibuprofen use. The reasons commonly involved in inconsistency of GA
with BW of neonates include being small for the gestational age, such as the unborn fetus
did not get enough nutrients, the presence of chromosome problems, maternal multiple
pregnancy, or infections, or being large for the gestational age, reasons for which include
the parents being large, a diabetic mother, the mother gaining too much weight during
pregnancy, or simply due to the small case number of 64 neonates (with only 61 neonates
having GA).

In total, 133,937 neonates who either had their TSB level monitored once or never
were excluded from this study, as we aimed to investigate the influence of ibuprofen on
TSB change, and therefore required TSB monitoring at least twice in the same neonate.
Those infected with any one of TORCH were excluded, as explained in previous studies of
infants [25–27]. As most significant TSB changes occur within 30 days after birth, the TSB
level was followed and recorded during this time period. Those who died within 30 days
after birth were also excluded, as our objective was to explore the influence of phototherapy
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on TSB level and its correlation with the influence of ibuprofen on TSB level up to 30 days
after birth.

Phototherapy, the use of visible light, lowers the level of TSB by converting bilirubin
into water-soluble isomers that can be easily eliminated without conjugation in the liver.
This method is the most common and effective way to treat neonatal hyperbilirubinemia
and causes the most significant reduction in TSB level. Furthermore, phototherapy use
is commonly administered to a neonate over 20 h a day, which made a comparatively
equal basis for comparison in this study. Therefore, we recorded and correlated daily
phototherapy use, if any, for neonates in the calculation of the influence of ibuprofen on
TSB level in neonates.

Breastfeeding may slightly increase the level of TSB [28], yet we designed a study
with big data involving 13,427 neonates as a comparison group (non-users) and calculated
the daily influence of phototherapy on TSB, which we then used to correlate the TSB
change before and after ibuprofen use in the same neonate who used ibuprofen. Hence,
we assumed that breastfeeding did not have a significant impact on the results of this
study. Maternal diabetes mellitus [29], maternal hypertension [29], genetic risk factors [30]
and congenital hypothyroidism [31] have all been inferred to affect the development of
hyperbilirubinemia in neonates. No neonate was excluded from this study due to any of
these situations, as the difference in the level change of TSB was monitored and calculated in
the same neonate. Therefore, we do not consider that any of the abovementioned situations
played a significant role in the study results.

While protein binding is essential, this may not be the only factor related to a drug’s
influence on the elevation of TSB in neonates. With a high protein binding of 99% (ref:
Micromedex), ibuprofen doses used in neonates for the treatment of PDA are only 5 to
10 mg/kg/day, which are not as high a dose as for drugs that profoundly interfere with
the binding of bilirubin in jaundiced neonates, such as ceftriaxone [32] or sulfisoxazole [11],
with a daily dosage ranging from 50~100 mg/kg/day and 75–150 mg/kg/day, respectively
(ref: Micromedex). Moles or daily dosage of a drug may also play a pivotal role in the
net effect of displacing TSB, ultimately leading to significant hyperbilirubinemia or even
kernicterus in susceptible neonates. Prior to measurement of free bilirubin being broadly
available, TSB should be evaluated to screen for potential hyperbilirubinemia in susceptible
neonates whenever a new drug is approved for use.

This study may have some biases regarding TSB change before and after ibuprofen use.
We used the highest monitored TSB level within 7 days following initiation of ibuprofen
use from which to deduct the one monitored within 48 h before ibuprofen in order to
standardize the process and compare the TSB level increase among different groups of
neonates. The TSB increases shown in Table 4 provide a clue regarding the impact of
ibuprofen on neonates with different BWs, yet this result may not perfectly reflect the real
influence of ibuprofen despite a regular ibuprofen dosage and a logical and fair study
design, and hence we list this as a study limitation.

5. Conclusions

As ibuprofen use is correlated with apparent increases in TSB in neonates of a lower
BW, especially in those with a BW < 1 kg, iv acetaminophen can be an appropriate alter-
native to ibuprofen for ELBW neonates for the treatment of PDA if they are experiencing
severe unconjugated hyperbilirubinemia.
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