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Abstract

OBJECTIVES—To understand the mechanism of white fat expansion in the presence of 

inflammation, we examined the balance of pro- and anti-inflammatory cytokines in epididymal fat 

during weight gain in DIO mice.

METHODS—The pro- and anti-inflammatory cytokines were examined in white fat of diet-

induced obese mice and lean mice. The mechanism of gene expression was investigated with a 

focus on intracellular ATP (iATP). ATP activity was tested in cellular and non-cellular systems in 

activation of serine kinases (IKKβ, JNK and ERK).

RESULTS—The pro- (TNF-α, IL-1β, IL-6, MCP-1, IFN-γ and OPN) and the anti-inflammatory 

cytokines (IL-10, IL-1Ra, IL-13, sTNFR2, PEDF and adiponectin) were increased at the same 

time during the weight gain. The balance was observed even in the absence of tissue expansion 

upon feeding in lean and obese mice. The iATP levels were positively associated with the cytokine 

elevation in the adipose tissue. In macrophages, induction of iATP with lauric acid stimulated the 

expression. Inhibition of iATP with β-oxidation inhibitor (Etomoxir) or mitochondrial uncoupler 

(2,4-dinitrophenol, DNP) suppressed the expression. ATP exhibited an activity in the activation of 

inflammatory kinases (IKKβ, JNK and ERK) in the living cells and cell lysate. The kinase 

activation was blocked in the cells by ATP inhibition.
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CONCLUSIONS—The data suggest that the pro- and anti-inflammatory cytokines are 

dynamically balanced in the white adipose tissue by iATP.
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INTRODUCTION

White adipose tissue is the primary site of chronic inflammation in obesity as indicated by 

the expression of proinflammatory cytokines (type 1 cytokine) and infiltration of various 

immune cells1–3. It is generally believed that the adipose inflammation is detrimental to the 

adipose tissue function, insulin sensitivity and glucose metabolism. This view leads to the 

assumption that inhibition of the inflammation will improve insulin sensitivity. Although the 

assumption is supported by a huge body of literature, anti-inflammatory therapies fail to 

improve insulin sensitivity in patients in most clinical trials4. In addition, more evidence 

supports that the adipose inflammation has favorite activities in the regulation of 

metabolism, such as induction of energy expenditure and stimulation of adipose tissue 

remodeling in obesity4–6. The beneficial activities are further supported by the report that 

inflammation is required for adipose tissue growth and function in several transgenic 

models7, which represents a new support to the “positive effect” of adipose inflammation8. 

There is an ongoing debate on the beneficial and detrimental effects of adipose 

inflammation. One of the key points in the debate is that what controls the switch of the 

“positive” and “negative” effects in obesity? To address the issue, we propose that the switch 

is controlled by the balance of pro- (type 1 cytokines) and anti-inflammatory cytokines (type 

2 cytokines) in the white fat. The possibility is supported by the interplay of two types of 

cytokines in the adipose tissue9, 10, and the favorite activities of anti-inflammatory cytokines 

in the regulation of metabolism11–13. However, characteristic of the balance remains be 

revealed in physiological conditions.

In the late stage of obesity, the inflammation is a result of tissue stress responses to several 

factors, such as hypoxia14, 15, ER stress16, 17 and endotoxin (LPS)18, etc. However, the pro-

inflammatory cytokines is elevated in the white fat of mice at the first week on a high fat diet 

(HFD)19, which is not associated with the stress conditions above. The molecular 

mechanism remains unknown for the early inflammatory response. To explore the 

mechanism, we tested the role of adenosine triphosphate (ATP) in the cytosol. The 

extracellular ATP (eATP) regulates inflammation through interaction with the adenosine 

receptors in the cell membrane, which have been documented in both immune and non-

immune cells20, 21. The current knowledge about the ATP in inflammation is from eATP. In 

obesity, eATP is not required for the adipose inflammation as suggested by the phenotype of 

P2X7 receptor knockout mice22. iATP is elevated in the liver of obese mice23. It is not 

known if the elevation occurs in the fat tissue. iATP may have a signaling activity as 

suggested by its impact on AMPK through the AMP/ATP ratio24, 25. There is no direct 

evidence for iATP in the control of inflammatory response. We propose that iATP may play 

a role in the induction of early inflammation in DIO mice.
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In this study, expression of pro- and anti-inflammatory cytokines was measured in 

epididymal fat with and without weight gain to understand the cytokine balance. The study 

was conducted in both lean and DIO mice. iATP was examined in those conditions to test its 

role in the regulation of cytokine expression. An impact of iATP was tested in the activation 

of several serine kinases (IKKβ, JNK and ERK). The results suggest that the balance is 

maintained in the white fat by iATP through activation of the serine kinases.

MATERIALS AND METHODS

Reagents

Lauric acid (L-9755) and ATP (A6559) were obtained from Sigma (St. Louis, MO). Mouse 

serum adipokine immunoassay kit (#MADPK-71K-01) was obtained from Multiplex™ 

MAP. All antibodies used in this study were from as follows: rabbit monoclonal antibodies 

to p-IKK (Ser176/180) (#2697), IKKβ (#8943) and AMPK (#2532) were from Cell 

Signaling Technology (Danvers, MA 01923). Antibodies to JNK (sc-827), p-JNK (sc-6254), 

p-ERK (sc-7383), ERK (sc-514302), p-AMPK (sc-101630), and p-cJUN (sc-822) were from 

Santa Cruz Biotechnology (Dallas, TX 75220), and antibody to p65 (PC137) was from 

Oncogene Science, Inc. (Uniondale, NY, 11553). Epigallocatechin gallate (50299), 

resveratrol (R5010), curcumin (C7727), quercetin (1592409), etomoxir (E1095) and 2,4-

dinitrophenol (D198501) were purchased from Sigma.

Diet-induced obese (DIO) mice

All animal experiments were performed according to the animal protocols approved by the 

Institutional Animal Care and Use Committee (IACUC) at the Pennington Biomedical 

Research Center. Male C57BL/6J mice were purchased at 4 weeks (wks) of age from the 

Jackson Laboratory (Bar Harbor, ME) and housed in groups of 4 mice/cage at 12:12h light-

dark cycle under room temperatures of 22–24 °C. The mice had free access to water and 

diet. Chow (Cat. No. 5001, containing 11% calories in fat, Labdiet, St. Louis, MO) and HFD 

diet (58% kcal in fat, D12331; Research Diets, New Brunswick, NJ) were used. HFD 

feeding was started at 8 wks of age for 10 wks. Tissues were collected in the morning under 

fed (non-fasted) or fasting (16 h) conditions.

Measurement of insulin

Blood were collected from each mouse weekly during the 10 wks study and the plasma was 

prepared after centrifugation at 4,000 rpm for 20 min. The plasma was stored at −80 °C until 

use. The insulin was measured using a Mouse serum adipokine immunoassay kit according 

to protocol provided by the manufacturer (Cat. #MMHMAG-44K, EMD Millipore 

Corporation, Temecula, California).

Nuclear magnetic resonance (NMR)

Body composition was measured using a quantitative Brucker model mq10 NMR analyzer. 

Shortly, the individual mice placed in small tube were inserted into NMR and then 

monitored about the fat and lean mass of each mouse within 1 min.
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Blood glucose

The blood glucose test was conducted as described in our previous study26.

Cell culture

Raw 264.7 macrophages (ATCC TIB-71) were purchased from American Type Culture 

Collection (Manassas, VA). The cells were cultured in DMEM culture medium 

supplemented with 10% FBS and 50 mg/l gentamicin.

Western blot

Cells were harvested by trypsinization in 0.05% trypsin-0.02% EDTA and used in 

preparation of whole cell lysate in lysis buffer (1% Triton X-100, 50 mM KCl, 125 μM 

dithiothreitol, 25mM HEPES, pH 7.8, 10 μg/ml leupeptin, 20 μg/ml aprotinin, 1 mM 

phenylmethylsulfonyl fluoride, and 1 mM sodiumorthovanadate) with sonication. After 

vigorously vortex, the supernatant was collected as the whole cell lysate after centrifugation 

at 12,000 rpm, 4 °C for 10 mins. Western blotting was conducted using the whole cell lysate 

after quantification of protein concentration using the BCA Protein Assay Kit (71285, EMD 

Millipore Corporation). The blot membrane was stripped with stripper buffer (GM6001, GM 

Biosciences, Inc., Rockville, MD 20847-2501) when different signals were blotted. The 

intensity of the individual protein was quantified using NIH Image software (Image J).

qRT-PCR

mRNA expression was examined in total RNA prepared with the Trizol methods (Sigma). 

The TaqMan probes were used in qRT-PCR to determine mRNA of tumor necrosis factor 

alpha (TNF-α, Mm00443258_ml), interleukin 6 (IL-6, Mm00446190_ml), interleukin 1 beta 

(IL-1β, Mm00434228_ml), monocyte chemoattractant protein 1 (MCP1, Mm00441242_ml), 

interferon gamma (IFN-γ, Mm01168134_ml), osteopontin (OPN, Mm00436767_ml), F4/80 

(Mm00802530_ml), inducible nitric oxide synthase (iNOS, Mm00440485_ml), interleukin 

13 (IL-13, Mm00434204_ml), interleukin 10 (IL-10, Mm01288386_ml), interleukin 1 

receptor antagonist (IL-1Ra, Mm00446185_ml), soluble TNF receptor 2 (sTNFR2, 

Mm00441889_ml), pigment epithelium-derived factor (PEDF, Mm00441270_ml) and 

adiponectin (ACDC, Mm00456425_ml) with the 7900 HT Fast Real-Time PCR System 

(Applied Biosystems, Foster City, CA). The expression was normalized to mouse ribosome 

18S rRNA.

ATP assay

ATP was determined in the whole cell lysate after treatment of cells with 200 μM of lauric 

acid. Anti-inflammation agents such as EGCG (Epigallocatechin gallate), Res (Resveratrol), 

Cur (Curcumin) and Que (Quercetin) were used at the final concentration of 100 μM to 

inhibit the inflammatory response. Etomoxir (ET, 50 μM) that blocks β-oxidation of fatty 

acid and 2,4-dinitrophenol (DNP, 100 μM) that uncouples oxidative phosphorylation in 

mitochondria were used as ATP inhibitors. All of the chemical inhibitors were dissolved in 

DMSO and the final concentration of DMSO was below 0.05% in the cell culture. 

Intracellular ATP was determined using the ATP determination Kit (A22066; Thermo Fisher 

Scientific, Waltham, MA USA 02451) according to the instruction by the manufacturer.
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Induction of kinase phosphorylation by ATP

The whole cells lysate was kept in −80 °C overnight to decrease the endogenous ATP. The 

lysate was incubated with exogenous ATP at 37 °C for different times. ATP was added into 

the cell lysate at different concentrations as indicated in the figure legend. The 

phosphorylation status of IKKβ, JNK, c-JUN and ERK were determined in Western blot to 

access their activation status.

Statistical analysis

All data were analyzed by Student’s t test or one way ANOVA using SPSS software (version 

11.0 for Windows, SPSS Inc., Chicago, IL). A statistical significance was considered at P < 

0.05. The results are presented as the mean values ± SEM of three individual experiments.

RESULTS

Association of pro- and anti-inflammatory cytokines in adipose tissue

An increase in pro- and anti-inflammatory cytokines has been widely reported in the adipose 

tissue of obese models. However, the increases have not been examined simultaneously 

during adipose tissue expansion. To address the issue, the expression was monitored in the 

epididymal fat pads of DIO mice in the 10 wk study. Six representative pro-inflammatory 

cytokines (TNF-α, IL-6, MCP-1, IL-1β, IFN-γ and OPN) were examined together with 

iNOS and F4/80 (macrophage markers). Four of them (TNF-α, IL-6, MCP-1 and IL-1β) 

were elevated in the 1st week on HFD (Fig.1, A–D), and the expression was further 

increased thereafter along the HFD feeding. An increase in IFN-γ and OPN were detected in 

the second week (Fig. 1, E and F). Interestingly, iNOS expression was decreased in the 

tissue (Fig. 1G). An increase in macrophage infiltration was detected in the second week by 

F4/80 (Fig.1H). Six representative anti-inflammatory cytokines (IL-10, IL-1Ra, IL-13, 

sTNFR2, PEDF, and adiponectin) were examined in the same condition. A similar pattern of 

increase was observed for most of the cytokines except adiponectin (Fig. 2). Adiponectin 

was not significantly altered by the weight gain. These data suggest that expression of pro- 

and anti-inflammatory genes are increased together during the fat tissue expansion in DIO 

mice. The activities of pro-inflammatory cytokines are balanced by the anti-inflammatory 

cytokines to favor adipose tissue expansion, which explains adipose tissue growth in the 

presence of pro-inflammatory cytokines.

Cytokine expression without weight gain

The gene expression was associated with weight gain in DIO mice. It is not known the 

expression is a result of tissue expansion or energy surplus in the obese condition. To 

address this issue, fasting and fed conditions were used as energy deficient and surplus 

models. The cytokines were determined in the two conditions in both lean and obese mice. 

A low level of expression was observed in the fasting condition in both lean and obese mice 

(Fig. 3). A high level of expression was observed in the fed condition (Fig. 3). The increase 

was detected in TNFα, MCP-1, IL-1β (Fig. 3, A, B and D) and F4/80 (Fig. 3E). 

Interestingly, IL-6 expression was not significantly altered by the feeding (Fig. 3C). The 

anti-inflammatory cytokines (IL-10 and IL-13) exhibited a similar pattern of increase to the 
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pro-inflammatory cytokines (Fig. 3. F and G). Adiponectin expression was not changed by 

feeding or obesity in the fat tissue (Fig. 3H). The feeding effect was observed in some of the 

anti-inflammatory cytokines (IL-10 and IL-13), but not in others including IL-1Ra, sTNFR2 

and PEDF (data not shown). The data suggest that the balance of pro- and anti-inflammatory 

cytokines is regulated by energy supply in the fat tissue regardless of fat tissue expansion.

ATP in control of gene expression

Feeding is associated with an increase in energy metabolism as indicated by an increase in 

oxygen consumption. Oxygen promotes ATP production in mitochondria through 

stimulation of oxidative phosphorylation, which may increase the intracellular ATP 

abundance. This possibility was examined by monitoring ATP in the adipose tissue of lean 

and obese mice. The ATP level was significantly elevated in the fed condition in both lean 

and obese mice (Fig. 4A). The basal level of ATP was significantly higher in the obese mice 

over the lean mice, which is positively associated with the cytokine expression in the obese 

condition. The data suggest that ATP may regulate the cytokine expression.

Macrophage is the major source of pro-inflammatory cytokines in the adipose tissue. To test 

the ATP activity, cytokine expression was investigated in mouse macrophage cell line Raw 

cells, in which intracellular ATP was up- and down-regulated in multiple conditions. ATP 

abundance was induced in the cultured cells with lauric acid treatment in a time-dependent 

study (Fig. 4B). The abundance was significantly increased at 4 h, and further elevated at 8 h 

of the treatment. Expression of TNF-α and IL-10 was examined to determine the ATP 

activity. Both cytokines were induced by lauric acid in the macrophages (Fig. 4C). The 

induction was suppressed by several chemicals with anti-inflammatory activities, such as 

epigallocatechin gallate (EGCG), resveratrol (Res), curcumin (Cur) and quercetin (Que) 

(Fig. 4, D and E). The suppression was observed with a reduction in the intracellular ATP 

(Fig. 4F), suggesting that ATP elevation is required for the induction of TNF-α and IL-10 

expression by lauric acid.

Inhibition of cytokine expression by ATP inhibitors

To confirm the role of ATP, the cytokine expression was examined after suppression of ATP 

production in macrophages with two additional ATP inhibitors. If ATP elevation is required 

for the cytokine induction, the expression should be blocked by inhibitors. Etomoxir is an 

inhibitor of β-oxidation of fatty acids and DNP is an uncoupler of the oxidative 

phosphorylation. The induction of ATP was blocked by the two inhibitors as expected (Fig. 

5A), in which lauric acid was unable to induce the intracellular ATP. Under the condition, 

induction of TNF-α and IL-10 was also blocked in the macrophages (Fig. 5, C and D). 

These data suggest that ATP elevation is required for the inflammatory response of 

macrophages.

Activation of IKKβ, JNK and ERK by ATP

Cytokine expression is controlled at the transcriptional level, which involves activation of 

the transcription factors, such as NF-kB and AP-1. The activation is dependent on the 

upstream serine kinases, such as IKKβ, JNK and ERK in the cytoplasm. To understand the 

mechanism of ATP action, activities of those kinases were examined. An increase in their 
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activities was observed in adipose tissue of DIO mice as indicated by the phosphorylation 

status (Fig. 6A). The increase was observed with ATP elevation as indicated by the 

decreased AMPK phosphorylation (Fig. 6A). In vitro, IKKβ and JNK (c-JUN 

phosphorylation) were activated in cells by lauric acids (Fig. 6B). The activation was 

blocked by the ATP inhibitors (Fig. 6C). Serine kinases use ATP as a substrate in the 

phosphorylation of target proteins. Substrate elevation should be able to activate the kinases. 

To test the possibility, the kinase activities were examined in the whole cell lysate upon ATP 

elevation through addition of exogenous ATP. Activation was observed in both IKKβ and 

JNK in the system (Fig. 6, D and E). ERK, another serine kinase associated with 

inflammation response, was also activated by ATP in the system (Fig. 6D). These data 

suggest that ATP may directly induce activation of IKKβ, JNK and ERK to promote 

transcriptional expression of the inflammatory cytokines, which provides a new mechanism 

for the induction of inflammatory genes by fatty acids.

DISCUSSION

In this study, a balance of pro- and anti-inflammatory genes was demonstrated in the white 

fat tissue regardless of tissue expansion. Expression of pro-inflammatory cytokines was 

companied by the anti-inflammatory cytokines in the tissue in both lean and obese mice. The 

balance was dynamic and affected by feeding in the two conditions. The profile of pro-

inflammatory cytokines was relatively consistent regardless of fat expansion. However, the 

profile of anti-inflammatory cytokines was not. Expression of IL-1Ra, sTNFR2 and PEDF 

were induced by fat expansion, but not by feeding. The association of those anti-

inflammatory cytokine with fat expansion suggests that the increased activity of anti-

inflammatory cytokines is more pronounced during fat expansion to override the increased 

activity of pro-inflammatory cytokines. This balance provides a restriction of the pro-

inflammatory activities in the inhibition of fat tissue expansion in favor of tissue expansion. 

The possibility is in line with the observations on the dynamic changes of type 1 and type 2 

macrophages during adipose tissue expansion9, 27.

Our observation suggests a role of iATP in the control of inflammation gene expression. The 

resting metabolic rate is decreased by fasting and calorie restriction8. The decrease 

correlates to the reduction in pro- and anti-inflammatory cytokines in this study, which 

suggests a role of energy supply in the control of the gene expression. This possibility was 

tested with a focus on intracellular ATP in the regulation of gene expressions in current 

study. The role of ATP was examined in multiple systems including adipose tissue, 

macrophages, and whole cell lysate. Induction of ATP abundance led to the stimulation of 

gene expression, and inhibition of ATP led to the suppression of gene expression. The 

inhibition was observed with chemical inhibitors such as Etomoxir, DNP, EGCG 

(Epigallocatechin gallate), Res (resveratrol), Cur (curcumin) and Que (quercetin). This 

group of data suggests that iATP may induce inflammatory gene expression in the early 

stage of obesity before the occurrence of adipose tissue hypoxia14, 28.

Activation of serine kinases (IKK, JNK and ERK) by ATP in the cytosol represents a new 

mechanism of inflammation response. eATP has been documented in the regulation of 

inflammatory response in several reviews20, 21. eATP is elevated in the cellular stress 
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conditions due to release of iATP. eATP interacts with the purinergic receptor P2X7 to 

trigger secretion of IL-1β and IL-18 in the inflammasome response. However, this eATP 

pathway is not required for the adipose inflammation in obesity22. In addition, eATP may 

inhibit the inflammatory response through an interaction with the receptor P2Y and its 

downstream cAMP-PKA pathway. Therefore, eATP has both pro- and anti-inflammatory 

activities according to the difference in receptor types. iATP is at a high concentration (1–

10mM) in the cytosol, which is 1000 times higher than that of eATP (1–10 nM)21. However, 

not much is known for iATP activity in the regulation of inflammatory response. Our data 

suggest that iATP may activate IKKβ, JNK and ERK in the cytosol to trigger the cytokine 

expression. The activity is unlikely mediated by the cell membrane receptors as the activity 

was observed in the cell free system of cell lysate, suggesting a receptor-independent 

mechanism of ATP activity. IKKβ activation is able to induce transcription of both type 1 

and type 2 cytokines through the NF-kB pathway in macrophages29.

In summary, we found that the pro-inflammatory cytokines are companied by the anti-

inflammatory cytokines in the white fat in the lean and obese conditions. The dynamic 

balance of two types of cytokines is regulated by iATP through activation of IKK, JNK and 

ERK. The observations provide a mechanism for the adipose tissue expansion in the 

presence of elevated pro-inflammatory cytokines. The role of iATP suggests a mechanism 

for the association of inflammatory status and energy expenditure in physiological 

conditions such as obesity and calorie restriction8.
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Figure 1. 
Pro-inflammation in adipose tissue of DIO mice. mRNA of representative pro-inflammatory 

cytokines was measured weekly in epididymal fat of mice fed HFD and the data on week 1, 

2 and 10 are shown. (a) TNF-α. (b) IL-6. (c) MCP1. (d) IL-1β. (e) IFN-γ. (f) OPN. (g) 

iNOS. (h) F4/80. The data represent fold change in means ± SEM (n=5). * p<0.05 and ** 

p<0.001 compared with the chow group.

Lee et al. Page 11

Int J Obes (Lond). Author manuscript; available in PMC 2017 August 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Anti-inflammatory cytokines in epididymal fat of DIO mice. The anti-inflammatory 

cytokines were measured weekly in the epididymal fat of DIO mice and the mRNA data of 

1, 2 and 10 wks are shown. (a) IL-10. (b) IL-1Ra. (c) IL-13. (d) sTNFR2. (e) PEDF. (f) 

Adiponectin (ACDC). The data represent fold change in means ± SEM (n=5). * p<0.05 and 

** p<0.001 compared with the chow group.
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Figure 3. 
Feeding increased inflammatory response. mRNA of representative pro- and anti-

inflammatory cytokines were compared between fed and overnight fasting conditions in the 

epididymal fat of mice. The study was performed at 2 wks on HFD. (a) TNF-α. (b) MCP1. 

(c) IL-6. (d) IL-1β. (e) F4/80. (f) IL-10. (g) IL-13. (h) Adiponectin. The data represents fold 

change over the fed mice with means ± SEM (n=5). * p<0.05 and ** p<0.001 compared 

with the fasting group.
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Figure 4. 
Inhibition of ATP by inflammation inhibitors. (a) ATP in adipose tissue. ATP was 

determined in epididymal fat of fed (non-fasting) and fasting mice. The study was performed 

in mice at 4 wks on HFD. (b) ATP in Raw cells. ATP was determined in Raw cells after 

treatment with lauric acid (200 μM) at various times. (c) Expression of TNF-α and IL-10 in 

Raw cells treated with lauric acid. mRNA was determined at 8 h with lauric acid treatment. 

(d) Inhibition of TNF-α expression by inhibitors. TNF-α mRNA was examined in Raw cells 

after pretreatment with the inhibitors and then lauric acids for 8 h. The inhibitors were used 

at 100 μM. EGCG: Epigallocatechin gallate; Res: Resveratrol; Cur: Curcumin; Que: 

Quercetin. (e) Inhibition of IL-10 expression by the inhibitors. (f) Reduction of ATP by the 

inhibitors. ATP levels were determined in cell lysate after 4 h treatment of RAW cells with 

lauric acid in the presence of anti-inflammatory agents. The data represent the fold change 

relative to the control in means ± SEM (n=5). * or # p<0.05 and ** p<0.001 compared with 

the control.
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Figure 5. 
Suppression of cytokine expression by ATP inhibitors. (a) ATP inhibition by ET and DNP. 

ATP was examined in Raw cells after pretreatment with ET(50 μM) and DNP (100 μM) 

followed by lauric acid (LA) treatment for 4 h. (b) Inhibition of TNF-α expression. mRNA 

was determined in Raw cells after the inhibitor treatment. (c) Inhibition of IL-10 expression. 

The bar figure represents data of mean ± SEM (n=3). # or *, p< 0.05 compared with the 

controls.
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Figure 6. 
Activation of IKKβ, JNK and ERK by ATP. (a) Kinase activation in adipose tissue by HFD. 

Phosphorylation of IKKβ, JNK and AMPK were determined in epididymal fat of mice at 5 

wks on HFD. (b) Kinase activation by lauric acid in Raw cells. Phosphorylation of IKKβ 
and c-JUN were determined in Raw cells after lauric acid treatment at different time points 

as indicated. (c) Suppression of IKKβ and JNK by ATP inhibitors. Phosphorylation of IKKβ 
and JNK was determined in Raw cell after treatment with the inhibitors. (d) Activation of 

IKKβ by ATP in cell lysate. Phosphorylation of IKKβ was determined in Raw cell lysate 

after incubation with 10 mM ATP in the test tube at 37 °C. (e) Activation of JNK and ERK 

by ATP. Phosphorylation of JNK and ERK were determined in Raw cell lysate after 

incubation with ATP at different concentration for 15 mins. The bar figure represents data of 

mean ± SEM (n=3). # or *, p< 0.05 compared with the controls.
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