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Abstract

Over the years, considerable research has been conducted to investigate the mechanisms

of speech perception and recognition. Electroencephalography (EEG) is a powerful tool for

identifying brain activity; therefore, it has been widely used to determine the neural basis of

speech recognition. In particular, for the classification of speech recognition, deep learning-

based approaches are in the spotlight because they can automatically learn and extract rep-

resentative features through end-to-end learning. This study aimed to identify particular

components that are potentially related to phoneme representation in the rat brain and to

discriminate brain activity for each vowel stimulus on a single-trial basis using a bidirectional

long short-term memory (BiLSTM) network and classical machine learning methods. Nine-

teen male Sprague-Dawley rats subjected to microelectrode implantation surgery to record

EEG signals from the bilateral anterior auditory fields were used. Five different vowel

speech stimuli were chosen, /a/, /e/, /i/, /o/, and /u/, which have highly different formant fre-

quencies. EEG recorded under randomly given vowel stimuli was minimally preprocessed

and normalized by a z-score transformation to be used as input for the classification of

speech recognition. The BiLSTM network showed the best performance among the classifi-

ers by achieving an overall accuracy, f1-score, and Cohen’s κ values of 75.18%, 0.75, and

0.68, respectively, using a 10-fold cross-validation approach. These results indicate that

LSTM layers can effectively model sequential data, such as EEG; hence, informative fea-

tures can be derived through BiLSTM trained with end-to-end learning without any additional

hand-crafted feature extraction methods.

Introduction

Speech carries vast amounts of information to the brain, and it is one of the typical features of

the brain to recognize and categorize the sounds of behaving animals. Given its importance,

attempts to investigate the mechanisms of speech sound recognition have been conducted for
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over 100 years. One of the first neurolinguistic study of speech recognition was conducted

through an observational study in the 1870s by a German neuropsychiatrist who found the

crucial role of the superior temporal gyrus in speech perception, deducing that deficits in

speech recognition were associated with damage to the left superior temporal gyrus [1]. It is

now known that speech recognition relies predominantly on the dorsolateral temporal lobes,

including the superior temporal gyrus, which contains the primary auditory cortex (A1) and

anterior auditory field (AAF) [2]. Although the manner phonemes are encoded and inter-

preted in the brain remains controversial, it has been widely accepted that the recognition of

sound is categorical. That is, discrimination is better for stimuli belonging to different pho-

netic categories than for stimuli belonging to the same category, even if the acoustic differences

are equivalent [3, 4]. Not only humans, but also animals’ perceptual systems sort continuously

varying sound stimuli into a set of discrete categories [5].

With the advances in neurophysiological studies, electroencephalography (EEG) has been

widely used in research involving neuroscience and neural engineering [6]. The high temporal

resolution and sensitivity to different functional brain states make EEG a powerful tool to

investigate real-time brain activity, and there has been increasing interest in illuminating the

neural basis for categorical perception. Traditionally, EEG signals are recorded non-invasively

from scalp in human study. At the level of sound or speech perception, mismatch negativity

(MMN), a component of auditory evoked potential (AEP), which is elicited by oddball sounds,

is widely used to study neural correlates of categorical perception [7, 8]. Naatanen et al. found

evidence for language-dependent vowel representations in the human brain [9]. Another

study examined the categorical perception of lexical tones and found that across-category con-

trast elicited a larger MMN than within-category distinction [10]. In animal experiments,

more accurate EEG signals were obtained through invasive procedures. For instance, neural

correlates of categorical perception and neural representations of various sounds have been

studied using extra-cellular recording of action potential. Striatum-projecting neurons of song

birds display categorical auditory responses and are highly sensitive to changes in note dura-

tion [11]. In addition, Kilgard et al. studied distinct neural representations of consonant and

vowel sounds using intraparenchymal recording in the rat brain. Recording the multi- and sin-

gle-unit responses from the inferior colliculus and A1, they suggested that the spike count

encodes vowel sounds, while spike timing encodes consonant sounds [12, 13]. The effects of

sound discrimination training in a rat model of autism were also investigated based on previ-

ous findings correlate neural responses to sound stimuli with sound perception ability [14].

Moreover, a recent study demonstrated that electrocorticography recorded with multi-channel

array correlates with a passive exposure to a specific sound even in the auditory cortex of anes-

thetized rats [15].

Machine learning approaches have been used to make practical use of EEG in a wide variety

of studies. Utilizing machine learning methods enables the investigation of rich information

that is inherent and difficult to uncover from EEG signals [6]. Therefore, EEG-based classifica-

tion can be performed in the following fields through conventional machine learning algo-

rithms (e.g., support vector machine (SVM), k-nearest neighbors (KNN), and naïve Bayes

(NB)): motor imagery, emotion recognition, mental illness detection, event-related potential

(ERP) detection, and so on [16, 17]. Furthermore, in recent years, owing to the increasing

advances in graphic processing units and the availability of large dataset, it has become possi-

ble to conduct EEG-based classification using various deep learning networks [6, 18, 19].

Compared with conventional machine learning methods, deep learning networks are able to

automatically detect and extract appropriate representations from input data [20, 21]. Hence,

even with insufficient prior expert knowledge, promising results can be obtained through deep

learning algorithms that do not require an additional handcrafted feature extraction process
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[22, 23]. For example, in the field of speech, images, and video, the results were significantly

improved by applying deep learning algorithms [24–26]. However, it is not clear whether such

outperforming results always accompany the EEG-based classification domain when utilizing

deep learning approaches instead of traditional machine learning methods [27]. Roy et al.

showed that in most of the studies (excluding four out of 102 studies), the deep learning

approach led to a higher performance than the traditional machine learning approach, and the

highest improvement in accuracy was 35.3% [18, 28].

Furthermore, among the various fields of EEG-based classification studies, ERP classifica-

tion studies are actively conducted by applying both conventional machine learning and deep

learning methods. In an early study, the traditional grand averaging method was utilized to

improve the low signal-to-noise ratio (SNR), one of the limitations of EEG signals, and to

obtain ERP signals. In these studies, several ERP components were treated as feature sets for

classification [29, 30]. In animal studies, the ERP features such as peak amplitude and latency

are also used to discriminate ERP signals [31, 32]. However, single-trial EEG-based classifica-

tion has also received much attention, since it is known that EEG data at the single-trial level

possess more functional and rich information than the ERP signals obtained through the tradi-

tional grand averaging method [33, 34]. Therefore, in subsequent studies, features extracted by

various algorithms such as wavelet-based algorithms [35], Gaussian mixture models [36], and

spatial filtering [37] for classification using conventional machine learning methods [38, 39].

However, extracting the optimal hand-crafted features from the single-trial EEG is time-con-

suming and labor-intensive because additional processing steps must be executed. In this con-

text, deep learning methods can alleviate this problem by allowing end-to-end learning. The

most prevalent deep learning architecture is convolutional neural network (CNN), followed by

recurrent neural network (RNN). The CNN is a special type of deep learning architecture

widely used for single-trial EEG-based classification [6]. The CNN inputs are derived from

raw or preprocessed EEG data, primarily in the following form: number of channels × number

of time points in a single trial. Moreover, considerable classification results have been demon-

strated and it has been known to perform best when using spectrogram images as inputs [40–

44]. In contrast to CNN, RNN is a highly preferred architecture, especially when handling

sequential data (as in natural language processing applications) because the recurrent connec-

tion of RNN learning architecture makes it possible to utilize the previous information of the

network recursively as the current input data [45]. Long short-term memory (LSTM) is a kind

of RNN architecture proposed by Hochreiter and Schmidhuber to overcome the exploding

and vanishing gradient problems of RNN [46]. Bidirectional LSTM (BiLSTM) is a further

development of LSTM that combines the forward and backward hidden layers to access both

the preceding and succeeding information. Although BiLSTM model is much complex and

might need additional computational power, it is expected to solve the sequential modelling

and classification task better than LSTM [47].

Previously we tried to classify EEG signals on a single-trial basis for three vowel sounds, /a/,

/o/, and /u/, using machine learning techniques for the human brain. After the application of

appropriate signal processing algorithms, including multivariate empirical mode decomposi-

tion (MEMD), the EEG responses were effectively classified according to each vowel sound

using a linear discriminant analysis (LDA) classifier. From the time-frequency representation

(TFR) of the EEG signals, it was also determined that the alpha band components were the

most related neural responses of vowel sound perception [48]. However, due to the low SNR

of human EEG signals, phoneme representation in the brain needs to be further assessed with

a more invasive recording technique, allowing the acquisition of more reliable EEG signals. In

addition, it is necessary to conduct further studies on the classification performance of each

machine learning algorithm in classifying EEG responses to different phonemes.
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The primary purpose of this study was to determine specific EEG components that might

be related to speech representation in the rat brain to further illuminate brain responses to

speech sound recognition. To acquire more accurate EEG signals, epidural EEG signals in

response to auditory stimuli were recorded in AAF, which has been known to play an essential

role in auditory perception and categorization [2]. In addition, this study tried to discriminate

different brain responses for each speech sound on a single-trial basis using LSTM networks

and other conventional machine learning techniques. It was hypothesized that the BiLSTM

network would be appropriate for classifying EEG responses to vowel stimuli and would out-

perform other classical classifiers, because the network can perform robustly in modeling

long-term dependencies of sequential data such as EEG. To the authors knowledge, LSTM net-

works have not been applied to the classification of EEG responses to auditory stimuli, and

this is the first study to use a deep learning algorithm to analyze epidural EEG signals from

AAF. Moreover, using the deep learning algorithm, EEG responses were classified to auditory

stimuli using end-to-end learning with minimally preprocessed EEG signals with no addi-

tional feature extraction methods.

Materials and methods

Animals

The minimum required sample size was calculated to be 11 to 19, referring to previous animal

studies that characterized neural responses to different human syllables [12, 13, 49]. Consider-

ing both scientific validity and animal ethics, a total of 19 male Sprague-Dawley rats (325–400

g, 11–13 weeks of age at the time of the experiment, Orient Bio Inc., Seongnam, Korea) were

enrolled in the study. Only male rats were included in this study to avoid the potential effects

of estrogen on EEG [50]. The animals were individually housed in standard plastic cages with

free access to food and water and were maintained at a constant temperature (21 ± 1˚C) with a

12 h light/dark cycle. All experimental protocols and procedures were approved by the Institu-

tional Animal Care and Use Committee (IACUC) of the Gwangju Institute of Science and

Technology (GIST). According to the committee, the study belonged to United States Depart-

ment of Agriculture Category D; pain or distress was appropriately relieved with anesthetics,

analgesics and/or tranquilizer drugs or other methods of relieving pain and distress. Therefore,

all the surgical procedures and animal care were carried out in accordance with their guide-

lines to ensure minimal discomfort to the animals (approval number: GIST-2019-047).

Surgical procedures

All rats underwent microelectrode implantation surgery to acquire EEG signals in response to

the speech sound stimuli. Before the surgery, the rats were anesthetized with isoflurane (5%)

mixed with oxygen gas (0.6 L/min flow rate) in an induction chamber. Once the rats lost the

righting reflex, they were moved into a stereotactic frame and applied an anesthetic nosecone.

Isoflurane gas (maintenance dose of 1.5%) mixed with oxygen was redirected to the nosecone.

Next, ear bars were inserted into the ear canals to fix the head. We then shaved the fur from

the ears to just between the eyes. A line block with 2% lidocaine was performed on the scalp,

and an incision was made to expose the skull. Next, the bilateral temporalis muscles were

partly removed and durotomy was performed on each AAF with a dental drill to insert the epi-

dural EEG electrodes. The electrode was a single micro-electrode that was custom-made using

a micro-screw, silver wire, and a connector. The coordinates of the AAF were as follows: 4 mm

posterior, 7.6 mm lateral, and 4 mm ventral to the bregma [51]. Finally, the implanted elec-

trodes were connected to a multi-pin connector and fixed to the skull using bone cement.

After completing all the surgical procedures, the rats were injected with an antibiotic (ceftazol
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20 mg/kg, Guju Pharma Co, Korea) and an analgesic agent (ketoprofen 2.5 mg/kg, Uni Bio-

tech, Korea) intramuscularly for three consecutive days. All animals were allowed to recover

for a week and closely observed for any signs of pain such as reduced appetite, hunched pos-

ture, or piloerection.

Speech stimulation

Frequency information of speech sounds is known to be essential for categorical perception

and recognition of different vowels [52]. In addition, components of AEP vary according to

sounds with varying frequencies, and these different brain responses can be used to study

sound recognition mechanisms [9]. Therefore, five different vowel speech sounds, /a/, /e/, /i/,

/o/, and /u/, which have very distinct formant frequencies for each speech stimulus were cho-

sen [53].

All speech stimuli were generated using a text-to-speech program provided by Google and

the sound pitch was increased by one octave using the shiftPitch function in MATLAB 2017b

(Mathworks, Inc., MA, USA) to accommodate the rat hearing range and applied root mean

square normalization. The stimuli were delivered by a speaker (SRS-X88, SONY Co., Japan),

which was located above one side of the cage, approximately 15 cm from the rat’s head and the

maximal intensity of the sound was calibrated to 60 dB SPL. The vowel speech sound was ana-

lyzed according to the time course, linear predictive coefficient (LPC) spectra, and spectro-

grams to verify that each stimulus has its own sound property (see Fig 1). Though the rat

auditory system is not optimized for human vowel sound perception, we assumed that it is

able to detect most of the sound stimuli since the frequency of sound belongs to the rat hearing

range, that is, from 0.5 kHz to 64 kHz at 60 dB SPL [54].

Data acquisition

EEG signal responses to each vowel sound stimulus were acquired from the bilateral AAF after

the one-week recovery period. First, the rats were anesthetized with isoflurane (5%) mixed

Fig 1. Characteristics of each vowel speech sound. (a) Time course, (b) linear predictive coefficient (LPC) spectra, and (c) the

spectrogram of five vowel sounds used in this experiment. The peaks of LPC spectra refer to the formant frequencies of the sound

stimuli. Vowel /a/ shows peaks at F1 = 651 Hz, F2 = 2034 Hz, F3 = 3234 Hz; vowel /e/ at F1 = 1211 Hz, F2 = 2559 Hz, F3 = 3570 Hz;

vowel /i/ at F1 = 559 Hz, F2 = 1630 Hz, F3 = 2988 Hz; vowel /o/ at F1 = 845 Hz, F2 = 1564 Hz, F3 = 2921 Hz; vowel /u/ at F1 = 699 Hz,

F2 = 1636 Hz, F3 = 3299 Hz.

https://doi.org/10.1371/journal.pone.0270405.g001
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with oxygen gas (0.6 L/min flow rate) for the induction. After the rats lost the righting reflex,

the anesthesia was maintained with isoflurane (1.5%) via nosecone during recording to pre-

vent contamination of EEG signals from motion artifacts. Next, a multi-pin connector was

connected to a recording device (g.USBamp and g.HEADstage, g.tec medical engineering

GmbH, Graz, Austria), which acquired signals at a 1200 Hz sampling frequency. The epidural

EEG recording was performed for 1500 s per session, during which the five vowel speech

sounds were randomly presented to each rat through the experimental speaker. Each speech

stimulus appeared 130–150 times per stimulus in one session. To obtain sufficient EEG data,

the recording session was repeated for five consecutive days. All recordings were performed

in a soundproof booth to maximize SNR. A schematic diagram of the experiment is shown in

Fig 2.

EEG signal preprocessing and analysis

The acquired EEG signals were analyzed in response to each vowel sound using the FieldTrip

toolbox [55] in MATLAB 2017b (Mathworks, Inc., MA, USA). In the first step, the raw EEG

data were down sampled from 1200 to 250 Hz and band-pass filtered in the frequency range of

1 to 60 Hz. Then, the continuous EEG data were segmented into stimulus-specific trials with a

500 ms pre-stimulus period and 1500 ms post-stimulus period. Baseline correction was con-

ducted based on the pre-stimulus period. To discard residual artifacts, contaminated trials

were manually rejected using visual inspection methods.

Fig 2. Schematic description of the experimental setup.

https://doi.org/10.1371/journal.pone.0270405.g002
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After the pre-processing, the artefact-free EEG data were averaged for each speech stimulus

to create the AEP waveforms and the TFR of the grand-averaged waveforms was calculated.

TFR analysis was conducted based on Morlet wavelets to assess dynamic changes in spectral

power over time for each speech stimulus. Utilizing grand-averaged AEP waveforms and their

TFR, the time or frequency range that mainly reflected the brain response to speech stimulus

was determined. In the case of TFR analysis, the analysis of variance (ANOVA) test and Bon-

ferroni correction were performed to identify the statistical significance between the TFRs of

EEG signals for each speech stimulus [48]. Through these results, the pre-processed EEG data

was reorganized for later use for the purpose of classification. To ensure that the reconstructed

data is meaningful, the time and frequency ranges of all EEG trials were restricted. The time

range was set to 0.2–0.8 s and the frequency range was set to 1–60 Hz. After redefining the

time and frequency ranges, all EEG trials were normalized using z-score normalization, a com-

monly used method to reduce variability among trials while maintaining a similar tendency

within the trials [56, 57]. It is well known that the overall classification performance is

improved following z-score normalization [56]. After this, the z-score normalized dataset was

randomly shuffled and separated into a training set (90%) and test set (10%) to be used as

inputs for deep learning and machine learning classifiers for speech recognition classification.

Bidirectional long short-term memory networks

LSTM is a special recurrent neural network (RNN) architecture that overcomes the vanishing/

exploding gradient problem by incorporating gate structures that control the state of memory

cells [46, 58]. For this reason, LSTM has shown stable and powerful performance for modeling

long-term dependencies in a variety of temporal or sequential tasks [46, 58–61]. The structure

of the LSTM is shown in Fig 3A. The main difference between conventional RNN and LSTM

is the memory cell, ct, which can preserve the state information which is modulated by three

kinds of self-parameterized gates: the input gate it, forget gate ft, and output gate ot. The input

gate it decides whether a new input will be accumulated in the memory cell; the forget gate ft
can discard the past status of the memory cell, ct−1; and the output gate ot regulates the

Fig 3. Structure of the BiLSTM network. (a) The structure of a long short-term memory (LSTM) cell and (b)

architecture of bidirectional LSTM (BiLSTM) network.

https://doi.org/10.1371/journal.pone.0270405.g003
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propagation of the output from the current memory cell ct into the output response ht. The

key processing of LSTM is described by the following equations:

it ¼ sðWixt þ Riht� 1 þ biÞ ð1Þ

ft ¼ sðWfxt þ Rf ht� 1 þ bf Þ ð2Þ

ot ¼ sðWoxt þ Roht� 1 þ boÞ ð3Þ

~ct ¼ tanhðWcxt þ Rcht� 1 þ bcÞ ð4Þ

ct ¼ ft � ct� 1 þ it � ~ct ð5Þ

ht ¼ ot � tanhðctÞ ð6Þ

where σ and tanh are nonlinear activation functions. The logistic sigmoid function, defined as

σ(x) = 1/(1+e−x) is utilized as the gate activation function, and the hyperbolic tangent function,

tanh(x) = (ex−e−x)/(ex+e−x), is used as the block input and output activation function. Ele-

ment-wise multiplication of two vectors is denoted by�; W, R represent the weight matrices,

and b denotes the bias vector, which are learnable parameters that control each gate.

LSTM is attested as a powerful structure for handling sequential data [59]; however, the

standard LSTM captures only the past information from the sequence in the forward direction.

BiLSTM was implemented to improve the structure. BiLSTM is a type of LSTM version of a

bidirectional RNN [47, 62]. It has two layers of LSTM, as shown in Fig 3B; one processes infor-

mation in the forward direction while another processes it in the backward direction. By

accessing both past and future information, these structures can capture rich information

from a sequence. Hence, the existing literatures shows that BiLSTM performs better than the

standard LSTM in classifying EEG signals according to each task [63–67].

In this study, the BiLSTM network was used to classify five different vowel speech

sounds using single-trial basis EEG signals. A BiLSTM layer containing 600 LSTM units

was set and to avoid overfitting, the dropout ratio on the LSTM layers was set to 0.3 [68]. After

the LSTM layers, the hidden states were concatenated into the fully connected layer with a soft-

max activation function, used for multiclass classification. Categorical cross entropy was

adopted as the loss function with the ADAM optimizer [69] and the initial learning rate and

learning rate decay were set to 1e-3 and 1e-6, respectively. Furthermore, the model was trained

with 500 epochs and a batch size of 64. The learning curve reached a stable plateau within

500 epochs.

These hyper-parameters were adjusted to best fit the model to the data. A stratified 10-fold

cross-validation (10-CV) was used to evaluate model performance. The k-fold cross-validation

is an effective method to test the success rate of models used for classification and k = 10 is

generally considered as the most reasonable parameter in applied machine learning [70].

The model was implemented using the Keras library [71] with TensorFlow backend [72]

and the Scikit-Learn library [73] in Python.

Machine learning classifiers

The performance of BiLSTM was compared with conventional machine learning classifiers:

SVM with linear kernel (SVM_lin), SVM with radial basis function kernel (SVM_rbf), random

forests (RF), NB, and KNN. SVM [74] aims to determine the optimally separated hyperplane

by maximizing the margin, which is the distance between the support vectors. By using the
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kernel trick, SVM is capable of mapping feature space from low to high dimensions; therefore,

it can efficiently perform linear classification and non-linear classification. RF [75] operates by

constructing multiple decision trees during the training phase and generating the final class

that combines the results of each decision tree. NB [76, 77] is a probabilistic classifier based on

Bayes’ theorem and conditional probability which usually assume that all features are indepen-

dent of each other. KNN [78] is a non-parametric approach that classifies the input based on

the majority class of its k-nearest neighbors in the feature space. Usually, the k value is selected

as an odd number to avoid tied classes. To train and evaluate the above machine learning mod-

els, the same 10-CV was used as in BiLSTM. All machine learning models were implemented

using the Scikit-Learn library [73] in Python.

Statistical analyses

All statistical analyses were performed using SPSS software (SPSS version 20.0, SPSS Inc.,

Armonk, NY, USA) and MATLAB software version 2017b (Mathworks, Inc., MA, USA). The

data was analyzed with parametric statistics since all the data in the study showed a normal dis-

tribution in the Shapiro–Wilk test (p> 0.05). ANOVA was used to analyze the statistical sig-

nificance of the TFRs according to the different vowel stimuli. In addition, a repeated-

measures ANOVA was conducted to compare the performance of each classifier. Subse-

quently, pairwise comparisons using paired t-tests were performed between the BiLSTM net-

work and other classical machine-learning classifiers and a Bonferroni correction was

performed to adjust for the type I error rate inflation. The statistical significance of the p-value

was set at 0.01, when comparing the TFR of EEG responses, while the significance level of the

p-value was set at 0.05, when comparing the performance between the BiLSTM network and

other machine learning classifiers.

Results

Auditory evoked potentials in response to vowel sounds

A total of 19 Sprague-Dawley rats underwent epidural electrode implantation surgery, and all

rats survived the surgical procedure. As a result, EEG responses to five English vowel sounds

were recorded from 19 isoflurane-anesthetized rats. To extract the mean AEP waveforms, all

the neural responses were averaged over the subjects for each stimulus. Fig 4 presents the aver-

aged AEP waveforms for each vowel sound from bilateral AAF.

As expected, each categorical vowel sound evoked distinct neural activities in the bilateral

AAF with varying peak amplitudes and latencies. The peak amplitude of AEPs, defined as the

highest recorded voltage after the vowel stimuli, was smallest for /i/ (61.74㎶ in left AAF and

61.27㎶ in right AAF), while AEPs in response to /a/ showed the largest peak amplitudes

(92.12㎶ in left AAF and 90.18㎶ in right AAF). The peak latency, defined as the duration

from stimulus onset to the peak amplitude was approximately 0.39 s to 0.5 s, shortest in /i/

(0.39 s in left and right AAFs), and longest in the /o/ sound (0.51 s in left and right AAFs). As

shown in Fig 4, similar AEP waveforms were observed from the left and right AAFs.

Time-frequency analysis of the EEG signals

Time-frequency analysis is a powerful method for analyzing nonstationary EEG signals over a

time-frequency plane and is used to provide qualitative information for the classification of

EEG [79, 80]. Therefore, the TFR of the grand-averaged EEG was calculated for each sound to

identify vowel recognition-related changes in the magnitude and phase of EEG oscillations at

specific frequencies (Fig 5A). From the TFR analysis, high power activation was observed

PLOS ONE Categorical speech perception using LSTM network

PLOS ONE | https://doi.org/10.1371/journal.pone.0270405 June 23, 2022 9 / 20

https://doi.org/10.1371/journal.pone.0270405


Fig 5. Subject-averaged time-frequency power results. (a) The time-frequency representation (TFR) of the event-related EEG signals (speech stimulation /a/

, /e/, /i/, /o/, or /u/) over all subjects on the right and left anterior auditory fields. TFRs were plotted for the frequency range of 4 to 40 Hz, 0.2 to 0.8 s after

each stimulus. One can observe high power activation in the low frequency band (especially in the delta, theta, and alpha band) between 0.3 and 0.6 s

regardless of the sound stimulation. (b) Time-frequency regions with significant differences after the Bonferroni correction (p< 0.01 on the ANOVA test) are

plotted. The color scale represents the F-values and non-significant regions are colored in white. Note that most of the brain responses between 0.2 and 0.8 s

after the stimuli showed distinct neural responses across each vowel sound.

https://doi.org/10.1371/journal.pone.0270405.g005

Fig 4. Averaged auditory evoked potentials (AEP) waveforms over the subjects to each vowel sound. AEPs were recorded on the

right and left anterior auditory fields (AAFs). Overall, the neural responses were elicited 0.2–0.4 s after the sounds stimulus onset and

showed different peak latencies and amplitudes depending on the vowel stimulus. The AEPs recorded on both AAFs were generally

similar. The bold lines represent the averaged AEP waveforms, and the shaded areas represent the standard deviation.

https://doi.org/10.1371/journal.pone.0270405.g004
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around the delta (1–4 Hz), theta (4–8 Hz), and alpha (8–12 Hz) band at 0.3–0.6 s from the

stimulus onset, regardless of the speech sound stimulation.

In addition, an ANOVA test with a Bonferroni correction was conducted to analyze the sta-

tistically significant TFR components according to each vowel stimulus. Subsequently, the

power of statistically significant areas (p< 0.01) was represented by the F-value (Fig 5B). In

the analysis, most of the EEG frequency band from 0.2–0.8 s was significantly different accord-

ing to the vowel stimuli. In addition, part of the TFR from 0.8–1 s was also statistically different

for each stimulus. Considering the AEP waveforms and the results of the ANOVA tests, it was

inferred that the AEPs from 0.2–0.8 s after the vowel stimulus were the most informative neu-

ral responses and were related with the vowel sound recognition.

Model training and evaluation of the BiLSTM networks

Based on the results of Fig 5B, EEG data that were band-pass filtered between 1–60 Hz with a

time window of 0.2–0.8 s were selected. Then, the z-scores of the selected EEG data were used

as the input to the BiLSTM network. All EEG data were divided into 10 folds within each sub-

ject to evaluate the BiLSTM networks. Therefore, the test performance was obtained per fold

using the trained model with the remaining folds in a 10-CV scheme. The performance of the

network was evaluated using metrics of accuracy, f1-score, and Cohen’s kappa statistic κ (Fig 6

and Table 1). The average five-class EEG discrimination accuracy of the BiLSTM network was

75.18 ± 7.06% and the f1-score was 0.74 ± 0.08. Cohen’s κ was 0.68 ± 0.09, which was inter-

preted as a moderate agreement [81].

To analyze the performance of the BiLSTM network in more detail, the confusion matrix in

Fig 7 was plotted. This indicated that many of the errors were due to the misclassification of

the EEG responses to /u/ as /a/ and /e/ as /o/. However, the BiLSTM network classified most of

Fig 6. Comparison of the performance of the BiLSTM network and other conventional machine learning

methods. The bar plots with standard deviation were drawn using the results of 10-fold cross-validation of each

subject. Each bar represents accuracy (entire), f1-score (diagonal), and Cohen’s kappa statistic κ (horizon) of each

classifier. Asterisk (�) above the bar plot indicates the significant differences (p< 0.01) between the performance of the

BiLSTM and all other conventional machine learning methods. BiLSTM, bidirectional long short-term memory;

SVM_lin, support vector machine with linear kernel; SVM_rbf, support vector machine with radial basis function

kernel; RF, random forests; NB, naïve Bayes; KNN, k-nearest neighbors.

https://doi.org/10.1371/journal.pone.0270405.g006
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the EEG responses with more than 50% accuracy, a high accuracy in the five-class EEG

classification.

Comparison of the BiLSTM network with other machine learning methods

To validate the effectiveness of the BiLSTM networks in classifying EEG for vowel sound rec-

ognition, the results were compared with those of other conventional machine learning meth-

ods. Fig 6 and Table 1 show the performance of the machine learning classifiers. The RF

demonstrated the highest classification accuracy among the conventional machine learning

algorithms (accuracy: 63.21 ± 7.41%, f1-score: 0.62 ± 0.09, and Cohen’s: 0.52 ± 0.1). In the sta-

tistical analysis, the classification performance of RF was not significantly higher than that of

SVM_lin and SVM_rbf, while it showed higher performance when compared with those of

NB and KNN. However, when the performance of conventional machine learning algorithms,

including RF, was compared with BiLSTM, it was obvious that the BiLSTM network was supe-

rior for all the metrics used in the study (p< 0.01).

In the confusion matrix, conventional machine-learning algorithms cannot discriminate

certain EEG responses well. In particular, all the conventional machine learning algorithms

had difficulty distinguishing the sound /u/. It was noted that the algorithms showed a tendency

to misclassify sound /u/ as /a/ on average 30% of the time (25.96% in NB to 36.97% in KNN),

resulting in a decrease in the overall classification performance (Fig 7).

Discussion

In this study, rat epidural EEG responses to five categorical vowel sounds (/a/, /e/, /i/, /o/, and

/u/) were discriminated using the BiLSTM network. Five-class classifications of epidural EEG

signals were performed on a single-trial basis, which is known to be challenging. To maximize

learning performance, this study tried to determine specific EEG components that might be

related to the recognition of speech sounds in the rat brain and utilized these EEG components

as input features. As a result, a relatively high performance in classifying AEPs to five different

vowel sounds was achieved using BiLSTM. A comparison of the classification performance of

the BiLSTM network with other machine learning algorithms showed that the BiLSTM net-

work outperformed other classical classifiers. These results indicate that the BiLSTM network

trained with speech recognition-related EEG components reliably classifies AEPs to each cate-

gorical vowel sound with a high degree of accuracy. To our knowledge, LSTM networks have

not been applied to the classification of EEG responses to auditory stimuli, and this is the first

study to use a deep learning algorithm to analyze EEG signals from rat AAF.

Table 1. Overall performance of the BiLSTM network and other conventional machine learning methods.

Classifier Accuracy (%) F1-score Cohen’s kappa (κ)

BiLSTM 75.18 ± 7.06 0.74 ± 0.08 0.68 ± 0.09

SVM_lin 61.47 ± 6.52 0.60 ± 0.08 0.50 ± 0.09

SVM_rbf 63.11 ± 7.04 0.62 ± 0.08 0.51 ± 0.1

RF 63.21 ± 7.41 0.62 ± 0.09 0.52 ± 0.1

NB 53.39 ± 8.40 0.52 ± 0.09 0.41 ± 0.11

KNN 56.80 ± 6.76 0.55 ± 0.07 0.43 ± 0.09

Data are presented as the mean ± standard deviation. BiLSTM, bidirectional long short-term memory; SVM_lin, support vector machine with linear kernel; SVM_rbf,

support vector machine with radial basis function kernel; RF, random forests; NB, naïve Bayes; KNN, k-nearest neighbors.

https://doi.org/10.1371/journal.pone.0270405.t001
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Currently, only a few studies have used LSTM architecture to achieve state-of-the-art results

in EEG-based classification. The LSTM architecture is suitable for EEG-based classification

because its chain-like structure can capture the temporal sequence of EEG data [82]. In the

beginning, research focused on improving the classification results through various LSTM

architectures; however, the input features were still extracted manually, as in conventional

machine learning methods [83, 84]. Tsiouris et al. evaluated the performance of diverse combi-

nations of LSTM network elements in order to find the most efficient LSTM architectures for

detecting epileptic seizures, thus obtaining near-perfect results in seizure prediction (100%

sensitivity and 99.86% specificity) [83]. Because LSTM is a powerful structure for processing

sequential data, there are also studies that use raw EEG data as input features with minimal

preprocessing. As the LSTM network directly learns features from raw EEG data, the perfor-

mance in emotion recognition studies improved by at least 12% [85], and the results of motor

imagery classification studies also improved [86], when compared with other traditional fea-

ture extraction techniques. Moreover, the BiLSTM architecture was utilized for EEG-based

classification because it can access information from both past and future states. Therefore, in

detecting various brain states reflected in EEG data, such as seizure, sleep, etc. [63–67], the

BiLSTM network generally outperformed the LSTM network that only captures past informa-

tion from the sequence in the forward direction. For this reason, high performance has been

reported in recent EEG-based classification using BiLSTM networks. Sharma et al. achieved

82.01% classification accuracy for four types of emotions based on the BiLSTM algorithm and

higher-order statistics [87]. In addition, the BiLSTM networks successfully classified epilepsy

types and sleep stages [88, 89].

Similar to previous studies, this study achieved comparatively good results using BiLSTM

networks. The proposed algorithm successfully discriminated the EEG responses to five vowel

sounds with high values of accuracy, f1-score, and Cohen’s κ of 75.18%, 74.43%, and 0.68,

Fig 7. Confusion matrix for the BiLSTM network and other conventional machine learning classifiers. BiLSTM, bidirectional long

short-term memory; SVM_lin, support vector machine with linear kernel; SVM_rbf, support vector machine with radial basis function

kernel; RF, random forests; NB, naïve Bayes; KNN, k-nearest neighbors.

https://doi.org/10.1371/journal.pone.0270405.g007
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respectively. The value of Cohen’s κ for five-class classification is higher than that seen in most

current studies [90]. As illustrated in Fig 6, the BiLSTM method produced the highest value

for all metrics compared with the other machine learning methods. In addition, to determine

the statistical difference in classification performance, repeated-measured ANOVA results

were analyzed between BiLSTM and other classical machine learning methods using all the

metric values. Through statistical analysis, it was determined that the classification perfor-

mance of the BiLSTM network was significantly higher than that of other classical machine

learning methods (p< 0.01). This result was also consistent with the confusion matrix. As

shown in Fig 7, the BiLSTM network predicted the true labels of the five vowel sounds well,

whereas classical machine learning methods did not. The prediction acquired through the con-

ventional machine learning classifier was especially poor at classifying the /u/ sound; the /u/

sound was mainly misinterpreted as /a/. Even RF, which showed the best performance among

the five conventional machine learning classifiers, had a classification rate of 34.48% for the

/u/ sound, with a 33.89% misclassification rate of the /u/ sound as an /a/ sound. As can be seen

in Fig 4, the /a/ and /u/ sounds had a similar peak latency, which is one of the main characteris-

tics of AEP waveforms (peak latency of sound /a/: 0.448, peak latency of sound /u/: 0.444).

When classification was performed based on minimally pre-processed single-trial EEG signals,

it seems that such similarities could not be distinguished by conventional machine learning

algorithms, whereas the BiLSTM network could distinguish them. Given that the BiLSTM net-

work can simultaneously access all past and future contexts, rich information can be learned

through this network. In addition, even though the features reflecting the characteristics of

EEG responses to each vowel sound were extracted directly from the forward and backward

directions of the LSTM layer, the classification performance was improved. In this study, we

can derive good classification results using a simple BiLSTM architecture without an addi-

tional handcrafted feature extraction process.

Classifying the ERP responses to speech stimuli in a single trial is very challenging owing to

the characteristics of the low SNR of EEG. Although one of the key advantages of the deep

learning method is its ability to learn high-level features without hard-core feature extraction,

we attempted to select the most relevant EEG signals related to speech recognition to achieve

better performance. In this study, distinct AEP waveforms corresponding to each speech

sound stimulus were observed with the high-power activation of the low-frequency band,

including the delta, theta, and alpha bands, in the TFR analyses. Neural oscillations in the

alpha band have been widely recognized to play an important role in auditory processing.

Mazaheri et al. reported that the attenuation of alpha activity is closely related to the discrimi-

nation of auditory targets [91]. Staruß et al. proved that cortical alpha oscillations are a pivotal

mechanism for selectively inhibiting the processing of noise to improve the auditory selective

attention toward target signals [92]. Previously, we also found that alpha power was highly

activated in bilateral temporal areas after specific sound stimuli that were statistically different

in terms of the type of sound [48]. In addition, the delta and theta bands are known to be asso-

ciated with shaping the segmentation and perceptual influence of acoustic information [93].

Although this study is based on animal experimental data, similar speech-related components,

as compared to the previous studies on human subjects, were observed in the TFR analyses.

Moreover, in the statistical analysis, all the EEG bands were found to be significant within 1 s

after the stimuli and represented the EEG components related to sound perception. These

results were somewhat different from those of previous studies, suggesting that only specific

EEG bands, such as the alpha band, were related to sound perception. It is expected that even

subtle changes across all the EEG band activities are recorded through the epidural EEG

recording, because it provides a higher SNR by reducing volume conduction and eliminating

the artifacts that are inherent to extracranial EEG recordings.
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In this study, the speech sound recognition related EEG components in rats were deter-

mined and the AEP components were successfully classified using the BiLSTM network. How-

ever, this study had some limitations. First, the number of subjects included was too small,

especially for deep learning. Moreover, this study did not evaluate each classifier’s performance

with external validation, but instead used 10-CV to overcome the limited sample sizes. Besides,

we cannot rule out the possibility that the rat’s auditory system responds continuously to

sound, since only a single utterance of each vowel sound was used in this study. In addition,

the acquired EEG responses were affected by the anesthetic effects. Although minimal anes-

thetic dose was used, frequency slowing with increase in delta power is a typical finding of

EEG changes after isoflurane inhalation [94]. Therefore, the vowel recognition EEG compo-

nents suggested in this study may be different from EEG signals acquired from rats that are

awake. However, we believe that the quality of the EEG signal is good enough since we

recorded EEG through epidural electrode implantation, and it was not contaminated by

motion artifacts.

Conclusions

In conclusion, this study extracted meaningful neural components related to categorical

speech perception. Furthermore, based on the characteristics of the LSTM networks, it was

proved that the BiLSTM network was suitable for classifying EEG responses with minimally

pre-processed AEPs. Since this study is pioneer research with animal data, it may not be

directly transferable to other practical applications such as brain-computer interfaces or alter-

native communication aids for humans. Therefore, future studies with human EEG data are

required to verify the effectiveness of the BiLSTM network in classifying auditory EEG-based

speech recognition. Additionally, it needs to be re-evaluated for optimal parameter tuning and

feature extraction. It is expected that this study will provide a novel approach for analyzing

EEG signals and as well as valuable information regarding the mechanisms of speech percep-

tion and recognition in the brain.
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9. Näätänen R, Lehtokoski A, Lennes M, Cheour M, Huotilainen M, Iivonen A, et al. Language-specific

phoneme representations revealed by electric and magnetic brain responses. Nature. 1997; 385: 432–

434. https://doi.org/10.1038/385432a0 PMID: 9009189

10. Xi J, Zhang L, Shu H, Zhang Y, Li P. Categorical perception of lexical tones in Chinese revealed by mis-

match negativity. Neuroscience. 2010; 170: 223–231. https://doi.org/10.1016/j.neuroscience.2010.06.

077 PMID: 20633613

11. Prather JF, Nowicki S, Anderson RC, Peters S, Mooney R. Neural correlates of categorical perception

in learned vocal communication. Nat Neurosci. 2009; 12: 221–228. https://doi.org/10.1038/nn.2246

PMID: 19136972

12. Perez CA, Engineer CT, Jakkamsetti V, Carraway RS, Perry MS, Kilgard MP. Different timescales for

the neural coding of consonant and vowel sounds. Cereb Cortex. 2013; 23: 670–683. https://doi.org/10.

1093/cercor/bhs045 PMID: 22426334

13. Engineer CT, Perez CA, Chen YH, Carraway RS, Reed AC, Shetake JA, et al. Cortical activity patterns

predict speech discrimination ability. Nat Neurosci Vol. 2008;11. https://doi.org/10.1038/nn.2109 PMID:

18425123

14. Engineer CT, Centanni TM, Im KW, Kilgard MP. Speech sound discrimination training improves audi-

tory cortex responses in a rat model of autism. Front Syst Neurosci. 2014; 0: 137. https://doi.org/10.

3389/FNSYS.2014.00137 PMID: 25140133

15. Kang H, Auksztulewicz R, An H, Abi Chacra N, Sutter ML, Schnupp JWH. Neural correlates of auditory

pattern learning in the auditory cortex. Front Neurosci. 2021; 0: 261. https://doi.org/10.3389/fnins.2021.

610978 PMID: 33790730

16. Hosseini MP, Hosseini A, Ahi K. A review on machine learning for EEG signal processing in bioengi-

neering. IEEE Rev Biomed Eng. 2021; 14: 204–218. https://doi.org/10.1109/RBME.2020.2969915

PMID: 32011262

PLOS ONE Categorical speech perception using LSTM network

PLOS ONE | https://doi.org/10.1371/journal.pone.0270405 June 23, 2022 16 / 20

https://doi.org/10.1007/978-94-010-3378-7%5F2
https://doi.org/10.3389/fnins.2019.01374
https://doi.org/10.3389/fnins.2019.01374
http://www.ncbi.nlm.nih.gov/pubmed/31920524
https://doi.org/10.1037/h0044417
http://www.ncbi.nlm.nih.gov/pubmed/13481283
http://site.ebrary.com/id/10483227
http://site.ebrary.com/id/10483227
https://doi.org/10.1093/BEHECO/ARAA004
https://doi.org/10.1088/1741-2552/ab0ab5
http://www.ncbi.nlm.nih.gov/pubmed/30808014
https://doi.org/10.1016/j.clinph.2007.04.026
https://doi.org/10.1016/j.clinph.2007.04.026
http://www.ncbi.nlm.nih.gov/pubmed/17931964
https://doi.org/10.1016/j.clinph.2008.11.029
https://doi.org/10.1016/j.clinph.2008.11.029
http://www.ncbi.nlm.nih.gov/pubmed/19181570
https://doi.org/10.1038/385432a0
http://www.ncbi.nlm.nih.gov/pubmed/9009189
https://doi.org/10.1016/j.neuroscience.2010.06.077
https://doi.org/10.1016/j.neuroscience.2010.06.077
http://www.ncbi.nlm.nih.gov/pubmed/20633613
https://doi.org/10.1038/nn.2246
http://www.ncbi.nlm.nih.gov/pubmed/19136972
https://doi.org/10.1093/cercor/bhs045
https://doi.org/10.1093/cercor/bhs045
http://www.ncbi.nlm.nih.gov/pubmed/22426334
https://doi.org/10.1038/nn.2109
http://www.ncbi.nlm.nih.gov/pubmed/18425123
https://doi.org/10.3389/FNSYS.2014.00137
https://doi.org/10.3389/FNSYS.2014.00137
http://www.ncbi.nlm.nih.gov/pubmed/25140133
https://doi.org/10.3389/fnins.2021.610978
https://doi.org/10.3389/fnins.2021.610978
http://www.ncbi.nlm.nih.gov/pubmed/33790730
https://doi.org/10.1109/RBME.2020.2969915
http://www.ncbi.nlm.nih.gov/pubmed/32011262
https://doi.org/10.1371/journal.pone.0270405


17. Khosla A, Khandnor P, Chand T. A comparative analysis of signal processing and classification meth-

ods for different applications based on EEG signals. Biocybern Biomed Eng. 2020; 40: 649–690.

https://doi.org/10.1016/j.bbe.2020.02.002

18. Roy Y, Banville H, Albuquerque I, Gramfort A, Falk TH, Faubert J. Deep learning-based electroenceph-

alography analysis: A systematic review. J Neural Eng. 2019; 16: 37. https://doi.org/10.1088/1741-

2552/ab260c PMID: 31151119

19. Rim B, Sung NJ, Min S, Hong M. Deep learning in physiological signal data: A survey. Sensors (Switzer-

land). 2020; 20: 969. https://doi.org/10.3390/s20040969 PMID: 32054042

20. Acharya UR, Oh SL, Hagiwara Y, Tan JH, Adeli H. Deep convolutional neural network for the automated

detection and diagnosis of seizure using EEG signals. Comput Biol Med. 2018; 100: 270–278. https://

doi.org/10.1016/j.compbiomed.2017.09.017 PMID: 28974302

21. Plis SM, Hjelm DR, Salakhutdinov R, Allen EA, Bockholt HJ, Long JD, et al. Deep learning for neuroim-

aging: a validation study. Front Neurosci. 2014; 8: 229. https://doi.org/10.3389/fnins.2014.00229 PMID:

25191215

22. An X, Kuang D, Guo X, Zhao Y, He L. A deep learning method for classification of EEG data based on

motor imagery. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intel-

ligence and Lecture Notes in Bioinformatics). Springer Verlag; 2014. pp. 203–210. https://doi.org/10.

1007/978-3-319-09330-7_25

23. Ay B, Yildirim O, Talo M, Baloglu UB, Aydin G, Puthankattil SD, et al. Automated depression detection

using deep representation and sequence learning with EEG signals. J Med Syst. 2019; 43: 1–12.

https://doi.org/10.1007/s10916-019-1345-y PMID: 31139932

24. Graves A, Mohamed AR, Hinton G. Speech recognition with deep recurrent neural networks. ICASSP,

IEEE International Conference on Acoustics, Speech and Signal Processing—Proceedings.

2013. pp. 6645–6649. https://doi.org/10.1109/ICASSP.2013.6638947

25. Guerra E, de Lara J, Malizia A, Dı́az P. Supporting user-oriented analysis for multi-view domain-specific

visual languages. Inf Softw Technol. 2009; 51: 769–784. https://doi.org/10.1016/j.infsof.2008.09.005

26. Karpathy A, Toderici G, Shetty S, Leung T, Sukthankar R, Fei-Fei L. Large-scale video classification

with convolutional neural networks. Proceedings of the IEEE Conference on Computer Vision and Pat-

tern Recognition. 2014. pp. 1725–1732.

27. Lotte F, Bougrain L, Clerc M. Electroencephalography (EEG)-based brain-computer interfaces. Wiley

Encycl Electr Electron Eng. 2015; 1–20. https://doi.org/10.1002/047134608X.W8278

28. Yin Z, Zhang J. Cross-subject recognition of operator functional states via EEG and switching deep

belief networks with adaptive weights. Neurocomputing. 2017; 260: 349–366. https://doi.org/10.1016/j.

neucom.2017.05.002

29. Blankertz B, Lemm S, Treder M, Haufe S, Müller KR. Single-trial analysis and classification of ERP

components—A tutorial. Neuroimage. 2011; 56: 814–825. https://doi.org/10.1016/j.neuroimage.2010.

06.048 PMID: 20600976

30. Wang C, Xiong S, Hu X, Yao L, Zhang J. Combining features from ERP components in single-trial EEG

for discriminating four-category visual objects. J Neural Eng. 2012; 9: 056013. https://doi.org/10.1088/

1741-2560/9/5/056013 PMID: 22983495

31. Onoda K, Sakata S. An ERP study of temporal discrimination in rats. Behav Processes. 2006; 71: 235–

240. https://doi.org/10.1016/J.BEPROC.2005.12.006 PMID: 16427215

32. Richard N, Laursen B, Grupe M, Drewes AM, Graversen C, Sørensen HBD, et al. Adapted wavelet

transform improves time-frequency representations: a study of auditory elicited P300-like event-related

potentials in rats. J Neural Eng. 2017; 14: 026012. https://doi.org/10.1088/1741-2552/aa536e PMID:

28177924

33. Makeig S, Westerfield M, Jung TP, Enghoff S, Townsend J, Courchesne E, et al. Dynamic brain

sources of visual evoked responses. Science (80-). 2002; 295: 690–694. https://doi.org/10.1126/

science.1066168 PMID: 11809976

34. Quian Quiroga R, Garcia H. Single-trial event-related potentials with wavelet denoising. Clin Neurophy-

siol. 2003; 114: 376–390. https://doi.org/10.1016/s1388-2457(02)00365-6 PMID: 12559247

35. Mustafa M, Guthe S, Magnor M. Single-trial EEG classification of artifacts in videos. ACM Trans Appl

Percept. 2012; 9: 12. https://doi.org/10.1145/2325722.2325725

36. Tzovara A, Murray MM, Plomp G, Herzog MH, Michel CM, De Lucia M. Decoding stimulus-related infor-

mation from single-trial EEG responses based on voltage topographies. Pattern Recognit. 2012; 45:

2109–2122. https://doi.org/10.1016/j.patcog.2011.04.007

37. DaSalla CS, Kambara H, Sato M, Koike Y. Spatial filtering and single-trial classification of EEG during

vowel speech imagery. i-CREATe 2009—International Convention on Rehabilitation Engineering and

PLOS ONE Categorical speech perception using LSTM network

PLOS ONE | https://doi.org/10.1371/journal.pone.0270405 June 23, 2022 17 / 20

https://doi.org/10.1016/j.bbe.2020.02.002
https://doi.org/10.1088/1741-2552/ab260c
https://doi.org/10.1088/1741-2552/ab260c
http://www.ncbi.nlm.nih.gov/pubmed/31151119
https://doi.org/10.3390/s20040969
http://www.ncbi.nlm.nih.gov/pubmed/32054042
https://doi.org/10.1016/j.compbiomed.2017.09.017
https://doi.org/10.1016/j.compbiomed.2017.09.017
http://www.ncbi.nlm.nih.gov/pubmed/28974302
https://doi.org/10.3389/fnins.2014.00229
http://www.ncbi.nlm.nih.gov/pubmed/25191215
https://doi.org/10.1007/978-3-319-09330-7%5F25
https://doi.org/10.1007/978-3-319-09330-7%5F25
https://doi.org/10.1007/s10916-019-1345-y
http://www.ncbi.nlm.nih.gov/pubmed/31139932
https://doi.org/10.1109/ICASSP.2013.6638947
https://doi.org/10.1016/j.infsof.2008.09.005
https://doi.org/10.1002/047134608X.W8278
https://doi.org/10.1016/j.neucom.2017.05.002
https://doi.org/10.1016/j.neucom.2017.05.002
https://doi.org/10.1016/j.neuroimage.2010.06.048
https://doi.org/10.1016/j.neuroimage.2010.06.048
http://www.ncbi.nlm.nih.gov/pubmed/20600976
https://doi.org/10.1088/1741-2560/9/5/056013
https://doi.org/10.1088/1741-2560/9/5/056013
http://www.ncbi.nlm.nih.gov/pubmed/22983495
https://doi.org/10.1016/J.BEPROC.2005.12.006
http://www.ncbi.nlm.nih.gov/pubmed/16427215
https://doi.org/10.1088/1741-2552/aa536e
http://www.ncbi.nlm.nih.gov/pubmed/28177924
https://doi.org/10.1126/science.1066168
https://doi.org/10.1126/science.1066168
http://www.ncbi.nlm.nih.gov/pubmed/11809976
https://doi.org/10.1016/s1388-2457%2802%2900365-6
http://www.ncbi.nlm.nih.gov/pubmed/12559247
https://doi.org/10.1145/2325722.2325725
https://doi.org/10.1016/j.patcog.2011.04.007
https://doi.org/10.1371/journal.pone.0270405


Assistive Technology. Association for Computing Machinery; 2009. pp. 1–4. https://doi.org/10.1145/

1592700.1592731

38. Yi HG, Xie Z, Reetzke R, Dimakis AG, Chandrasekaran B. Vowel decoding from single-trial speech-

evoked electrophysiological responses: A feature-based machine learning approach. Brain Behav.

2017; 7: e00665. https://doi.org/10.1002/brb3.665 PMID: 28638700

39. Treder MS, Purwins H, Miklody D, Sturm I, Blankertz B. Decoding auditory attention to instruments in

polyphonic music using single-trial EEG classification. J Neural Eng. 2014; 11: 026009. https://doi.org/

10.1088/1741-2560/11/2/026009 PMID: 24608228

40. Liu M, Wu W, Gu Z, Yu Z, Qi FF, Li Y. Deep learning based on Batch Normalization for P300 signal

detection. Neurocomputing. 2018; 275: 288–297. https://doi.org/10.1016/j.neucom.2017.08.039

41. Carabez E, Sugi M, Nambu I, Wada Y. Convolutional neural networks with 3D input for P300 identifica-

tion in auditory brain-computer interfaces. Comput Intell Neurosci. 2017; 2017. https://doi.org/10.1155/

2017/8163949 PMID: 29250108

42. Pereira A, Padden D, Jantz J, Lin K, Alcaide-Aguirre R, Pereira AE, et al. Cross-subject EEG event-

related potential classification for brain-computer interfaces using residual networks. 2018 Sep. https://

doi.org/10.13140/RG.2.2.16257.10086

43. Lawhern VJ, Solon AJ, Waytowich NR, Gordon SM, Hung CP, Lance BJ. EEGNet: A compact convolu-

tional neural network for EEG-based brain-computer interfaces. J Neural Eng. 2018; 15: 056013.

https://doi.org/10.1088/1741-2552/aace8c PMID: 29932424

44. Ditthapron A, Banluesombatkul N, Ketrat S, Chuangsuwanich E, Wilaiprasitporn T. Universal joint fea-

ture extraction for P300 EEG classification using multi-task autoencoder. IEEE Access. 2019; 7:

68415–68428. https://doi.org/10.1109/ACCESS.2019.2919143

45. Yildirim Ö. A novel wavelet sequence based on deep bidirectional LSTM network model for ECG signal

classification. Comput Biol Med. 2018; 96: 189–202. https://doi.org/10.1016/j.compbiomed.2018.03.

016 PMID: 29614430

46. Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput. 1997; 9: 1735–1780. https://

doi.org/10.1162/neco.1997.9.8.1735 PMID: 9377276

47. Graves A, Schmidhuber J. Framewise phoneme classification with bidirectional LSTM and other neural

network architectures. Neural Networks. Pergamon; 2005. pp. 602–610. https://doi.org/10.1016/j.

neunet.2005.06.042 PMID: 16112549

48. Kim J, Lee SK, Lee B. EEG classification in a single-trial basis for vowel speech perception using multi-

variate empirical mode decomposition. J Neural Eng. 2014; 11: 036010. https://doi.org/10.1088/1741-

2560/11/3/036010 PMID: 24809722

49. Mahmoudzadeh M, Dehaene-Lambertz G, Wallois F. Electrophysiological and hemodynamic mismatch

responses in rats listening to human speech syllables. Astikainen PS, editor. PLoS One. 2017; 12:

e0173801. https://doi.org/10.1371/journal.pone.0173801 PMID: 28291832

50. Swift KM, Keus K, Echeverria CG, Cabrera Y, Jimenez J, Holloway J, et al. Sex differences within sleep

in gonadally intact rats. Sleep. 2020; 43: 1–14. https://doi.org/10.1093/sleep/zsz289 PMID: 31784755

51. Polley DB, Read HL, Storace DA, Merzenich MM. Multiparametric auditory receptive field organization

across five cortical fields in the albino rat. J Neurophysiol. 2007; 97: 3621–3638. https://doi.org/10.

1152/JN.01298.2006/ASSET/IMAGES/LARGE/Z9K0050782110014.JPEG

52. Moore BCJ. Perceptual consequences of cochlear damage. Perceptual consequences of cochlear

damage. New York, NY, US: Oxford University Press; 1995. https://doi.org/10.1093/acprof:oso/

9780198523307.001.0001

53. Peterson GE, Barney HL. Control methods used in a study of the vowels. J Acoust Soc Am. 1952; 24:

175–184. https://doi.org/10.1121/1.1906875

54. Heffner HE, Heffner RS. Hearing ranges of laboratory animals. J Am Assoc Lab Anim Sci. 2007 [cited 2

May 2022]. Available from: http://www.nrel.gov/docs/fy02osti/30844.pdf#search=%22avi

55. Oostenveld R, Fries P, Maris E, Schoffelen JM. FieldTrip: Open source software for advanced analysis

of MEG, EEG, and invasive electrophysiological data. Comput Intell Neurosci. 2011. https://doi.org/10.

1155/2011/156869 PMID: 21253357

56. Zhang X, Yao L, Zhang D, Wang X, Sheng QZ, Gu T. Multi-person brain activity recognition via compre-

hensive EEG signal analysis. ACM Int Conf Proceeding Ser. 2017; 28–37. Available from: http://arxiv.

org/abs/1709.09077

57. Qiu Y, Zhou W, Yu N, Du P. Denoising sparse autoencoder-based ictal EEG classification. IEEE Trans

Neural Syst Rehabil Eng. 2018; 26: 1717–1726. https://doi.org/10.1109/TNSRE.2018.2864306 PMID:

30106681

58. Goodfellow I, Bengio Y, Courville A. Deep learning. MIT Press; 2016. Available from: https://www.

deeplearningbook.org/

PLOS ONE Categorical speech perception using LSTM network

PLOS ONE | https://doi.org/10.1371/journal.pone.0270405 June 23, 2022 18 / 20

https://doi.org/10.1145/1592700.1592731
https://doi.org/10.1145/1592700.1592731
https://doi.org/10.1002/brb3.665
http://www.ncbi.nlm.nih.gov/pubmed/28638700
https://doi.org/10.1088/1741-2560/11/2/026009
https://doi.org/10.1088/1741-2560/11/2/026009
http://www.ncbi.nlm.nih.gov/pubmed/24608228
https://doi.org/10.1016/j.neucom.2017.08.039
https://doi.org/10.1155/2017/8163949
https://doi.org/10.1155/2017/8163949
http://www.ncbi.nlm.nih.gov/pubmed/29250108
https://doi.org/10.13140/RG.2.2.16257.10086
https://doi.org/10.13140/RG.2.2.16257.10086
https://doi.org/10.1088/1741-2552/aace8c
http://www.ncbi.nlm.nih.gov/pubmed/29932424
https://doi.org/10.1109/ACCESS.2019.2919143
https://doi.org/10.1016/j.compbiomed.2018.03.016
https://doi.org/10.1016/j.compbiomed.2018.03.016
http://www.ncbi.nlm.nih.gov/pubmed/29614430
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
https://doi.org/10.1016/j.neunet.2005.06.042
https://doi.org/10.1016/j.neunet.2005.06.042
http://www.ncbi.nlm.nih.gov/pubmed/16112549
https://doi.org/10.1088/1741-2560/11/3/036010
https://doi.org/10.1088/1741-2560/11/3/036010
http://www.ncbi.nlm.nih.gov/pubmed/24809722
https://doi.org/10.1371/journal.pone.0173801
http://www.ncbi.nlm.nih.gov/pubmed/28291832
https://doi.org/10.1093/sleep/zsz289
http://www.ncbi.nlm.nih.gov/pubmed/31784755
https://doi.org/10.1152/JN.01298.2006/ASSET/IMAGES/LARGE/Z9K0050782110014.JPEG
https://doi.org/10.1152/JN.01298.2006/ASSET/IMAGES/LARGE/Z9K0050782110014.JPEG
https://doi.org/10.1093/acprof%3Aoso/9780198523307.001.0001
https://doi.org/10.1093/acprof%3Aoso/9780198523307.001.0001
https://doi.org/10.1121/1.1906875
http://www.nrel.gov/docs/fy02osti/30844.pdf#search=%22avi
https://doi.org/10.1155/2011/156869
https://doi.org/10.1155/2011/156869
http://www.ncbi.nlm.nih.gov/pubmed/21253357
http://arxiv.org/abs/1709.09077
http://arxiv.org/abs/1709.09077
https://doi.org/10.1109/TNSRE.2018.2864306
http://www.ncbi.nlm.nih.gov/pubmed/30106681
https://www.deeplearningbook.org/
https://www.deeplearningbook.org/
https://doi.org/10.1371/journal.pone.0270405


59. Sutskever I, Vinyals O, Le Q V. Sequence to sequence learning with neural networks. Adv Neural Inf

Process Syst. 2014; 4: 3104–3112. Available from: http://arxiv.org/abs/1409.3215

60. Graves A. Generating sequences with recurrent neural networks. 2013; 1–43.

61. Pascanu R, Mikolov T, Bengio Y. On the difficulty of training recurrent neural networks. 30th Interna-

tional Conference on Machine Learning, ICML 2013. 2013.

62. Schuster M, Paliwal KK. Bidirectional recurrent neural networks. IEEE Trans Signal Process. 1997; 45:

2673–2681. https://doi.org/10.1109/78.650093

63. Ni Z, Yuksel AC, Ni X, Mandel MI, Xie L. Confused or not confused?: Disentangling brain activity from

EEG data using bidirectional LSTM recurrent neural networks. ACM-BCB 2017—Proceedings of the

8th ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics.

Association for Computing Machinery, Inc; 2017. pp. 241–246. https://doi.org/10.1145/3107411.

3107513

64. Ogawa T, Sasaka Y, Maeda K, Haseyama M. Favorite video classification based on multimodal bidirec-

tional LSTM. IEEE Access. 2018; 6: 61401–61409. https://doi.org/10.1109/ACCESS.2018.2876710

65. Geng M, Zhou W, Liu G, Li C, Zhang Y. Epileptic seizure detection based on stockwell transform and

bidirectional long short-rerm memory. IEEE Trans Neural Syst Rehabil Eng. 2020; 28: 573–580. https://

doi.org/10.1109/TNSRE.2020.2966290 PMID: 31940545

66. Hu X, Yuan S, Xu F, Leng Y, Yuan K, Yuan Q. Scalp EEG classification using deep Bi-LSTM network

for seizure detection. Comput Biol Med. 2020; 124: 103919. https://doi.org/10.1016/j.compbiomed.

2020.103919 PMID: 32771673

67. Fraiwan L, Alkhodari M. Investigating the use of uni-directional and bi-directional long short-term mem-

ory models for automatic sleep stage scoring. Informatics Med Unlocked. 2020; 20: 100370. https://doi.

org/10.1016/j.imu.2020.100370

68. Srivastava N, Hinton G, Krizhevsky A, Salakhutdinov R. Dropout: A simple way to prevent neural net-

works from overfitting. J Mach Learn Res. 2014. https://doi.org/10.5555/2627435.2670313

69. Kingma DP, Ba JL. Adam: A method for stochastic optimization. 3rd International Conference on Learn-

ing Representations, ICLR; 2015. Available from: https://arxiv.org/abs/1412.6980v9

70. Marcot BG, Hanea AM. What is an optimal value of k in k-fold cross-validation in discrete Bayesian net-

work analysis? Comput Stat. 2021; 36: 2009–2031. https://doi.org/10.1007/S00180-020-00999-9/

TABLES/5

71. Chollet F. Keras: Deep learning library for Theano and Tensorflow. Available from: https//keras.io/

2015; 7: T1.

72. Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, et al. TensorFlow: A system for large-scale

machine learning. 12th {USENIX} Symposium on Operating Systems Design and Implementation

({OSDI} 16). Savannah, GA: {USENIX} Association; 2016. pp. 265–283. Available from: https://www.

usenix.org/conference/osdi16/technical-sessions/presentation/abadi

73. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine learn-

ing in Python. J Mach Learn Res. 2011; 12: 2825–2830.

74. Cortes C, Vapnik V. Support-vector networks. Mach Learn. 1995; 20: 273–297. https://doi.org/10.1007/

bf00994018

75. Breiman L. Random forests. Mach Learn. 2001; 45: 5–32.

76. Langley P, Iba W, Thompson K. An analysis of Bayesian classifiers. AAAI. 1992. pp. 223–228.

77. Duda RO, Hart PE, Stork DG. Pattern classification and scene analysis. Wiley New York; 1973.

78. Altman NS. An introduction to kernel and nearest-neighbor nonparametric regression. Am Stat. 1992;

46: 175–185. https://doi.org/10.1080/00031305.1992.10475879

79. Boashash B, Azemi G, Ali Khan N. Principles of time-frequency feature extraction for change detection

in non-stationary signals: Applications to newborn EEG abnormality detection. Pattern Recognit. 2015;

48: 616–627. https://doi.org/10.1016/j.patcog.2014.08.016

80. Harpale VK, Bairagi VK. Time and frequency domain analysis of EEG signals for seizure detection: A

review. International Conference on Microelectronics, Computing and Communication, MicroCom

2016. Institute of Electrical and Electronics Engineers Inc.; 2016. https://doi.org/10.1109/MicroCom.

2016.7522581

81. McHugh ML. Interrater reliability: The kappa statistic. Biochem Medica. 2012; 22: 276–282. https://doi.

org/10.11613/bm.2012.031 PMID: 23092060

82. Jozefowicz R, Zaremba W. An Empirical exploration of recurrent network architectures. PMLR;

2015. pp. 2342–2350. Available from: http://proceedings.mlr.press/v37/jozefowicz15.html

PLOS ONE Categorical speech perception using LSTM network

PLOS ONE | https://doi.org/10.1371/journal.pone.0270405 June 23, 2022 19 / 20

http://arxiv.org/abs/1409.3215
https://doi.org/10.1109/78.650093
https://doi.org/10.1145/3107411.3107513
https://doi.org/10.1145/3107411.3107513
https://doi.org/10.1109/ACCESS.2018.2876710
https://doi.org/10.1109/TNSRE.2020.2966290
https://doi.org/10.1109/TNSRE.2020.2966290
http://www.ncbi.nlm.nih.gov/pubmed/31940545
https://doi.org/10.1016/j.compbiomed.2020.103919
https://doi.org/10.1016/j.compbiomed.2020.103919
http://www.ncbi.nlm.nih.gov/pubmed/32771673
https://doi.org/10.1016/j.imu.2020.100370
https://doi.org/10.1016/j.imu.2020.100370
https://doi.org/10.5555/2627435.2670313
https://arxiv.org/abs/1412.6980v9
https://doi.org/10.1007/S00180-020-00999-9/TABLES/5
https://doi.org/10.1007/S00180-020-00999-9/TABLES/5
http://https//keras.io/
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://doi.org/10.1007/bf00994018
https://doi.org/10.1007/bf00994018
https://doi.org/10.1080/00031305.1992.10475879
https://doi.org/10.1016/j.patcog.2014.08.016
https://doi.org/10.1109/MicroCom.2016.7522581
https://doi.org/10.1109/MicroCom.2016.7522581
https://doi.org/10.11613/bm.2012.031
https://doi.org/10.11613/bm.2012.031
http://www.ncbi.nlm.nih.gov/pubmed/23092060
http://proceedings.mlr.press/v37/jozefowicz15.html
https://doi.org/10.1371/journal.pone.0270405


83. Tsiouris K, Pezoulas VC, Zervakis M, Konitsiotis S, Koutsouris DD, Fotiadis DI. A long short-term mem-

ory deep learning network for the prediction of epileptic seizures using EEG signals. Comput Biol Med.

2018; 99: 24–37. https://doi.org/10.1016/j.compbiomed.2018.05.019 PMID: 29807250

84. Michielli N, Acharya UR, Molinari F. Cascaded LSTM recurrent neural network for automated sleep

stage classification using single-channel EEG signals. Comput Biol Med. 2019; 106: 71–81. https://doi.

org/10.1016/j.compbiomed.2019.01.013 PMID: 30685634

85. Alhagry S, Fahmy AA, El-Khoribi RA. Emotion recognition based on EEG using LSTM recurrent neural

network. International Journal of Advanced Computer Science and Applications (IJACSA). 2017. Avail-

able from: www.ijacsa.thesai.org

86. Wang P, Jiang A, Liu X, Shang J, Zhang L. LSTM-based EEG classification in motor imagery tasks.

IEEE Trans Neural Syst Rehabil Eng. 2018; 26: 2086–2095. https://doi.org/10.1109/TNSRE.2018.

2876129 PMID: 30334800

87. Sharma R, Pachori RB, Sircar P. Automated emotion recognition based on higher order statistics and

deep learning algorithm. Biomed Signal Process Control. 2020; 58: 101867. https://doi.org/10.1016/j.

bspc.2020.101867

88. Fraiwan L, Alkhodari M. Classification of focal and non-focal epileptic patients using single channel

EEG and long short-term memory learning system. IEEE Access. 2020; 8: 77255–77262. https://doi.

org/10.1109/ACCESS.2020.2989442

89. Fraiwan L, Alkhodari M. Neonatal sleep stage identification using long short-term memory learning sys-

tem. Med Biol Eng Comput. 2020; 58: 1383–1391. https://doi.org/10.1007/s11517-020-02169-x PMID:

32281071

90. Wei Y, Qi X, Wang H, Liu Z, Wang G, Yan X. A multi-class automatic sleep staging method based on

long short-term memory network using single-lead electrocardiogram signals. IEEE Access. 2019; 7:

85959–85970. https://doi.org/10.1109/ACCESS.2019.2924980

91. Mazaheri A, Picton TW. EEG spectral dynamics during discrimination of auditory and visual targets.

Cogn Brain Res. 2005; 24: 81–96. https://doi.org/10.1016/j.cogbrainres.2004.12.013 PMID: 15922161
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