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Abstract

At the early stage of infection, human immunodeficiency virus (HIV)-1 predominantly uses the CCR5 coreceptor for host cell
entry. The subsequent emergence of HIV variants that use the CXCR4 coreceptor in roughly half of all infections is
associated with an accelerated decline of CD4+ T-cells and rate of progression to AIDS. The presence of a ‘fitness valley’
separating CCR5- and CXCR4-using genotypes is postulated to be a biological determinant of whether the HIV coreceptor
switch occurs. Using phylogenetic methods to reconstruct the evolutionary dynamics of HIV within hosts enables us to
discriminate between competing models of this process. We have developed a phylogenetic pipeline for the molecular
clock analysis, ancestral reconstruction, and visualization of deep sequence data. These data were generated by next-
generation sequencing of HIV RNA extracted from longitudinal serum samples (median 7 time points) from 8 untreated
subjects with chronic HIV infections (Amsterdam Cohort Studies on HIV-1 infection and AIDS). We used the known dates of
sampling to directly estimate rates of evolution and to map ancestral mutations to a reconstructed timeline in units of days.
HIV coreceptor usage was predicted from reconstructed ancestral sequences using the geno2pheno algorithm. We
determined that the first mutations contributing to CXCR4 use emerged about 16 (per subject range 4 to 30) months before
the earliest predicted CXCR4-using ancestor, which preceded the first positive cell-based assay of CXCR4 usage by 10 (range
5 to 25) months. CXCR4 usage arose in multiple lineages within 5 of 8 subjects, and ancestral lineages following alternate
mutational pathways before going extinct were common. We observed highly patient-specific distributions and time-scales
of mutation accumulation, implying that the role of a fitness valley is contingent on the genotype of the transmitted variant.
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Introduction

Human immunodeficiency virus type 1 (HIV-1) enters into a

host cell by binding the CD4 receptor and one of two HIV

coreceptors, CCR5 or CXCR4. Most HIV-1 variants manifest

preferential binding to one or the other coreceptor, a phenotype

that is referred to as HIV coreceptor usage or tropism. HIV

populations are predominantly CCR5-using at the start of

infection and switch to being CXCR4-using in roughly 50% of

HIV subtype B infections before progressing to AIDS [1,2]; this

proportion varies substantially among HIV subtypes with the

highest reported in subtype D [3]. This HIV coreceptor switch is

clinically significant because it is associated with accelerated

deterioration of the CD4+ T-cell population and rate of

progression to AIDS [1,2]. In addition, a new class of antiretro-

viral drugs (HIV coreceptor antagonists) inhibit HIV infection by

competitively binding the CCR5 coreceptor. A patient carrying

detectable CXCR4-using variants is essentially not responsive to

this class of drugs [4]. Despite its clinical significance, the

biological determinants underlying the evolution of the HIV

coreceptor switch remain poorly understood [5].

HIV coreceptor usage is a genetically complex phenotype. The

primary genetic determinant is the third variable region (V3) of the

HIV gp120 envelope glycoprotein comprising a disulfide-bonded

loop that varies between 30 and 40 amino acids in length. The

presence of basic residues at V3 reference positions 11 and 25 is

strongly predictive of CXCR4 usage [6] but there are many

exceptions to this rule. Although as few as one or two amino acid

replacements in V3 may be sufficient to change coreceptor usage

[7], the earliest detectable CXCR4-using viruses in vivo tend to

carry additional compensatory mutations in V3 [8]. The effects of

mutations in V3 can also be modulated by mutations within other

regions of the HIV envelope glycoprotein [9]. Furthermore, the

V3 region is targeted by both the cellular and humoral immune

responses and undergoes extremely rapid host-specific adaptation

[10], which may influence evolution of CXCR4 use. Consequent-
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ly, CXCR4 use could potentially evolve through a series of

intermediate genotypes (mutational pathways) that are unique to

each individual.

The nature of the mutational pathway to evolving CXCR4

usage is postulated to be a significant determinant of the limited

incidence of the HIV coreceptor switch [5]. If CCR5- and

CXCR4-using genotypes are separated by intermediate genotypes

of reduced fitness, then the traversal of this ‘fitness valley’ is a

chance event that might never occur over the course of an HIV

infection. Negative selection prevents intermediate genotypes from

reaching substantial frequencies in the population. As a result, any

lineage must rapidly accumulate multiple mutations to reach the

CXCR4 genotype before going extinct; this process is known as

‘stochastic tunnelling’ [11]. In contrast, if the pathway passes

through intermediates of progressively greater fitness, then

CXCR4 usage evolves by the gradual and deterministic accumu-

lation of mutations that would unfold at a similar rate in all

individuals (Figure 1). Reconstructing the evolutionary history of

CXCR4 usage within individuals would lend important insight

into which model better explains the evolution of HIV coreceptor

tropism and hence the genetic determinants of HIV pathogenesis.

Specifically, we want to determine whether the dynamics of the

evolution of HIV coreceptor use in these subjects was consistent

with a gradual (immediate and slow) or fitness valley model

(delayed and rapid; Figure 1).

Recently, an exceptional set of HIV genetic sequence data was

collected for the purpose of identifying putative evolutionary

intermediates in eight chronically-infected subjects from the

Amsterdam Cohort Studies on HIV infection and AIDS (ACS)

whose virus populations had undergone an HIV coreceptor switch

[12]. These data were generated by ‘deep sequencing’, an

application of next-generation sequencing technology for large-

scale automated clonal sequencing of individual nucleic acids

along a fixed interval [13]. By generating thousands of clonal

sequences per amplicon, deep sequencing can provide a detailed

sample of the genetic variation in a virus population. Accordingly,

it has been used with success to reliably detect drug resistant HIV

variants at frequencies as low as 2% in the population [14,15].

Based on deep sequence data generated from serial samples of

HIV at three month intervals, Bunnik and colleagues [12] were

able to observe HIV sequence variants that were intermediate of

the predominant CCR5- and CXCR4-using variants in these

samples as determined by a minimum spanning tree, the shortest

acyclic graph connecting all sequences in the sample where

distance was quantified by the number of nucleotide differences

(Hamming distance). While a minimum spanning tree can provide

a useful visual representation of the genetic diversity in a sample, it

should not be construed as representing the evolutionary history of

the sample. First, a minimum spanning tree can only traverse the

set of observed sequences. It does not attempt to reconstruct the

ancestors from which the observed sequences descended. This

limitation is problematic if a significant amount of the evolution of

HIV coreceptor use takes place prior to the time of the first

sample, or between subsequent samples. Second, a minimum

spanning tree does not explicitly incorporate a time dimension.

Connections in the graph are drawn between sequences

irrespective of time of sampling, which can make it exceedingly

difficult to interpret the minimum spanning tree with respect to

time. For instance, it is difficult to assess from a minimum

spanning tree the rate at which evolution has unfolded, which is a

prerequisite to differentiate between the gradual and fitness valley

models of the HIV coreceptor switch.

In this study, we apply a phylogenetic modelling framework to

these data with the direct objective of reconstructing the

evolutionary history of HIV coreceptor use within subjects over

Figure 1. Simulated trajectories of genotype frequencies (solid
and dashed lines) and population-level coreceptor usage
phenotype (shaded regions) under the fitness valley and
gradual models of HIV coreceptor usage evolution. Simulations
were generated under a five-allele Moran model with mortality
selection [42], effective population size N~104 , forward mutation rate
of 10{4 per replication, and fitness vectors of (1, 1.025, 1.05, 1.075, 1.1)
and (1, 0.999, 0.999, 0.999, 1.1) corresponding to gradual and valley
landscapes, respectively. Note that the relatively rapid and complete
fixation of the fifth variant is partly due to the model assumption of no
back mutation, and is not consistent with the observation that CXCR4-
using variants tend to remain a minority species in HIV infections.
doi:10.1371/journal.pcbi.1002753.g001

Author Summary

At the start of infection, human immunodeficiency virus
(HIV) generally requires a specific protein receptor (CCR5)
on the cell surface to bind and enter the cell. In roughly
half of all HIV infections, the virus population eventually
switches to using a different receptor (CXCR4). This ‘HIV
coreceptor switch’ is associated with an accelerated rate of
progression to AIDS. Although it is not known why this
switch occurs in some infections and not others, it is
thought to be shaped by constraints on how HIV can
evolve from one mode to another. In this study, we test
this hypothesis by reconstructing the evolutionary histo-
ries of HIV within 8 patients known to have undergone an
HIV coreceptor switch. Each history is recreated from
samples of HIV genetic sequences that were derived from
repeated blood samples by next-generation sequencing,
an emerging technology that is rapidly becoming an
essential tool in the study of rapidly-evolving populations
such as viruses or cancerous cells. Because we have
samples from different points in time, we can use models
of evolution to extrapolate back in time to the ancestors of
each infection. Our analysis reveals patient-specific dy-
namics in HIV evolution that sheds new light on the
determinants of the coreceptor switch.

Reconstructing HIV Evolution within Hosts
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time. Like a minimum spanning tree, a phylogeny is an acyclic

graph that connects observed sequences. Generally speaking,

however, a phylogeny is a bifurcating tree that relates n observed

sequences at its tips by incorporating n{1 latent nodes that

represent a hierarchy of the most recent common ancestors of the

sample (Supporting Figure S1). Put another way, a phylogeny

directly models the evolutionary relationships among observed

sequences. It can therefore be used as a template to fit models of

sequence evolution that are typically implemented as a continu-

ous-time Markov model [16]. Furthermore, efficient algorithms

have been developed for extracting maximum likelihood recon-

structions of ancestral character states from the combination of the

phylogeny and a model of evolution [17].

The use of phylogenetic methods enables us to take advantage

of the known dates of sampling in these data to directly estimate

the rates of HIV evolution along lineages within each subject over

time. This practice is known as reconstructing a phylogeny with

‘dated tips’ [18], which enables one to measure the heights of

ancestral nodes in the tree in units of real time (such as days or

years). By reconstructing ancestral sequences at these nodes, we

can deduce that one or more mutations have occurred along the

branch between two nodes from differences in the corresponding

sequences [19] and thereby estimate when each mutation first

arose in the population. This is crucial information for quantifying

the dynamics of virus evolution over time. Here we show how the

phylogenetic analysis of the serial deep sequence data from the

ACS cohort can reconstruct the dynamics of HIV coreceptor

usage evolution in each population, ranging from the estimated

start of infection to the last date of sampling.

Methods

Ethics statement
The Amsterdam Cohort Studies on HIV-1 infection and AIDS

(ACS) have been conducted in accordance with the ethical

principles set out in the Declaration of Helsinki, and written

informed consent was obtained prior to data and material

collection. The study was approved by the Academic Medical

Center institutional medical ethics committee.

Data collection
The individuals included in our present study were men who

have sex with men participating in the ACS who were seropositive

and asymptomatic at enrolment into the cohort between 1988 and

1994 [20]. Blood samples were obtained at approximately 3

month intervals from 8 participants who had at least three

negative MT-2 assays in the 12 months prior to their first positive

MT-2 assay result. MT-2 is a human lymphoblastoid cell line that

is highly susceptible to infection by CXCR4-using HIV, which is

manifested by the formation of multinucleate cells (syncytia). We

will refer to the time of the first positive MT-2 syncytium induction

(SI) assay as t0 (‘time zero’). Viral loads associated with these

samples were reported in a previous study, where we have retained

the anonymized identifiers for study participants (DS1 to DS8)

[12]. Over the course of follow-up, all individuals in the present

study were eventually verified as having a CXCR4-using infection

using an in vitro recombinant virus assay (Trofile) and by deep

sequencing [12].

Virus sequences were classified by genotype (env V3 region) as

CXCR4-using by the geno2pheno (g2p) algorithm [21]. The g2p

algorithm is a support vector machine-based classifier trained on a

database of predominantly clonal V3 sequences labelled with HIV

coreceptor tropism as determined by cell-based assays. It yields a

predictive score that is conventionally mapped to an empirical

false positive rate (FPR) distribution for interpretation. Based on

previous studies [4,22], we use an FPR cutoff of ƒ3.5 to classify

sequences as CXCR4-using. At this cutoff, the algorithm predicts

that 3.5% of CCR5-using sequences would be misclassified as

CXCR4-using.

In this study, the range of samples subjected to deep sequencing

has been expanded from the range reported in [12] ({12 to 0

months relative to t0) to encompass up to 24 months prior and up

to 6 months subsequent to t0 ({24 to z6 months). Using a

NucliSENS easyMAG (bioMérieux), HIV RNA was extracted

from 500 mL from previously frozen serum samples and eluted in

60 mL of buffer. Three aliquots of 4 mL eluate each (12 mL total)

were transferred to triplicate RT-PCR amplification reactions

using the SuperScript II OneStep RT-PCR system with Platinum

Taq High Fidelity enzyme (Invitrogen). These amplicons in

triplicate were independently amplified in second-round PCR

reactions using the Expand High Fidelity PCR system (Roche)

with primers that were specific to the interval of the HIV-1

genome surrounding the env V3 region (HXB2 reference

nucleotides (7085–7372) [12] and which incorporated unique

10bp sequence ‘tags’ (also known as barcodes) for multiplexed

pyrosequencing [23]. The triplicate second-round amplicons were

pooled in equal quantities for deep sequencing on Roche/454 GS-

FLX or GS Junior platforms as previously described in [4].

The diluting effects of this experimental protocol will inevitably

reduce the number of nucleic acids in the sample represented by

copies available for clonal sequencing by the 454 platform. This

dilution could have a detrimental effect on phylogenetic recon-

struction. In the extreme case, if all templates being sequenced

were descended from a single copy of HIV RNA in the blood

specimen, then the phylogeny would only reflect genetic diver-

gence due to sequencing error. Suppose that there were N copies

of HIV RNA in 1 mL of serum. This number was immediately

halved as 500 mL was used for extraction. The number of nucleic

acids that entered the RT-PCR step was determined in part by the

efficiency of viral RNA extraction by the NucliSENS easyMAG,

which we estimated to be about 44% (Supporting Text S1).

Hence, we expect that about 0.22N nucleic acids would have been

present in the extraction eluate. Using 12 mL from 60 mL of eluate

for RT-PCR would have further reduced the number of nucleic

acids to 0.044N. Subsequent dilution due to variation in

amplification rates among initial nucleic acids would have been

ameliorated by carrying out RT-PCR in triplicate. Therefore, we

estimate an approximate 20-fold dilution factor due to sample

processing. Viral loads reported from these chronic untreated

subjects were generally high with a median of 17,000 HIV RNA

copies/mL [12]. Consequently, we estimate templates in the

amplicon available for sequencing would have been derived from

about 850 HIV RNA copies in the original specimen. We

randomly subsampled 50 sequences per time point for phyloge-

netic reconstruction (see below). Using a Poisson approximation

validated by simulation, we estimated that the median per-

molecule probability of resampling (appearing twice or more in a

sample of 50 sequences) was about 0.17%.

Data processing and sequence alignment
The raw sequence output (‘reads’) generated by Roche/454 GS-

FLX or GS Junior platforms was processed by a Ruby script that

sorted reads by region, tag and primer; trimmed low quality bases

from the start and end of reads (according to quality scores

reported by Roche/454 GS software version 1.1); and temporarily

collapsed identical reads into unique sequence entries annotated

by read count. We retained the entire read lengths (averaging

about 250 bp) for phylogenetic analysis; in a previous study, the

Reconstructing HIV Evolution within Hosts
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reads had been clipped to the V3 region (105 bp) [12]. The

resulting files were processed using a custom sequence alignment

module implemented in HyPhy [24]. This module was designed to

compensate for the high rate of insertions and deletions (indels)

introduced by pyrosequencing-based platforms by aligning all

three reading frames of each sequence against a reference protein

sequence (HXB2 gp120 residues 278–375). We assumed that true

HIV coding sequences maintained a single reading frame along

their entire length, such that any frame-shifts represented

nucleotide indel errors induced by pyrosequencing. This algorithm

is described in Supporting Text S2.

The resulting sequences were grouped by patient, re-

expanded by read counts, and annotated by sample dates in

units of days since January 1, 1990. For each patient, 50

sequences were randomly subsampled without replacement

from every sampling time point (averaging 3642 reads per

sample) for a median of 350 sequences total. This step was

necessary to reduce the number of all possible trees to a level at

which a Markov chain Monte Carlo (MCMC) sample could

converge to the posterior distribution within a feasible amount

of time (see below). A multiple sequence alignment was

generated for each set of sequences using MUSCLE version

3.8.31 [25] with diagonal optimization and a single iteration,

and refined manually using the alignment viewer Se-Al (Andrew

Rambaut, http://tree.bio.ed.ac.uk/software/seal/). The final

sequence alignments, annotated by specimen and collection

date, have been deposited in the public Genbank database

(accession numbers JX561243-JX564138). Additionally, the

unprocessed short read data have been deposited to the

European Nucleotide Archive (study accession number

ERP001795, run accession numbers ERR169842-ERR169899).

Tree sampling
We used BEAST [26] to reconstruct dated-tips phylogenies

from these data. BEAST uses a Bayesian MCMC procedure to

sample trees from the posterior distribution given the sequence

data and a prior distribution that is usually set to the coalescent

model. Each alignment representing serial samples of HIV

sequences from a given patient was converted into a BEAST

XML format using a custom Python script. These conversions

were based on a template XML file with the following settings:

Tamura-Nei [27] nucleotide substitution model with rate variation

across sites modelled by a discretized gamma distribution with 4

rate categories, and with substitution rates and bias parameters

unlinked between codon positions 1 and 2 and position 3 [28]; an

uncorrelated lognormal molecular clock; a Bayesian skyline model

with 3 population size classes; and a chain length of 108 steps with

chain states written to log files at regular intervals of 104 steps.

These settings were chosen on the basis of preliminary runs on

these data and previous experience [29]. Chains were seeded with

a random coalescent tree. All chain samples were executed in

parallel on a Beowulf cluster using BEAST version 1.6.1 with a

native-compiled likelihood core. We ran two replicate chains for

each XML file to assess convergence. We assessed the effect of

subsampling 50 sequences per time point by running additional

chain samples on a second set of randomly subsampled sequence

alignments and observed no qualitative differences in results based

on phylogenetic or ancestral sequence reconstruction (see

Supporting Figure S2).

Convergence in chain samples was assessed using Gelman and

Rubin’s convergence diagnostic as implemented in the R package

coda [30]. This diagnostic reports a potential scale reduction factor

(PRSF) that is a conservative estimate of the ratio between the

pooled variance across replicate chains to the variance within

chains [31]. Values of PRSF that are substantially greater than 1

indicate a lack of convergence such that the chain samples are still

influenced by their initial values, such as when a chain becomes

trapped on a local optimum. If the upper confidence interval in

estimation of PRSF exceeded 1.25 for replicate chains, then we

ran additional chain samples from the same BEAST XML file for

a longer number of steps and re-evaluated their PRSF. Plots of

posterior traces from replicate chain samples are provided as

Supporting Figure S3. Newick string representations of 100 trees

were extracted from the log files at regular intervals following a

burn-in period of 20% (2|107 steps by default).

Ancestral reconstruction
A Muse-Gaut [32] codon substitution model crossed with a

general time-reversible model of nucleotide substitution [33] was

fit to every tree in the thinned sample for a given sequence

alignment using maximum likelihood heuristics implemented in

HyPhy [24]. Branch lengths in each tree, which were expressed in

units of days, were constrained to scale by a global factor when

estimating the expected number of substitutions per codon site.

Constraining the codon tree to remain congruent to the input tree

not only speeds up computation but also preserves the relative

differences in branch lengths inferred under a molecular clock. For

a given fitted codon model and tree sample, ancestral sequences

were generated by sampling 100 character states from the

posterior distributions reconstructed at every node of the tree

[34]. This approach is similar to the hierarchical Bayes approach

to ancestral reconstruction [35] that integrates over the uncer-

tainty in estimation of tree parameters (such as tree topology and

branch lengths). Because codon substitution models were origi-

nally developed to compare non-synonymous and synonymous

rates of substitution, stop codons are not permitted. As a result, it

was necessary to censor any stop codons in the sequence

alignments with gap characters, which are conventionally handled

as fully ambiguous codons.

Codon substitution models generally do not model insertions

or deletions (indels), and gaps are typically handled as missing

data that can be resolved into any codon with equal probability.

As a result, insertion polymorphisms in the observed sequences

would be propagated to all ancestors when reconstructing

sequences from a fitted codon model. This approach is not

adequate for our purposes because HIV populations within hosts

commonly contain legitimate indel polymorphisms in the env

gene, and sequence length variation in the HIV-1 env V3 region

can influence the HIV coreceptor tropism phenotype. Indeed,

predictive models of HIV coreceptor tropism often incorporate

the presence or absence of indels in V3 relative to a reference

sequence [21]. Accordingly, we implemented a method to

reconstruct indel character states in the ancestral codon

sequences. First, we identified and encoded indel polymorphisms

in the observed sequences as integer values using an algorithm

implemented in Python (see Supporting Text S3).

In brief, an indel polymorphism was defined as a contiguous

interval in the alignment containing one or more codon gaps. This

polymorphism may be comprised of two or more character states

corresponding to the respective lengths and location of each codon

insertion or deletion within the gapped interval. We encoded these

indels by integer values in decreasing order of prevalence, such

that 0 represented the most common character state. Next, we fit a

model of indel evolution to the resulting alignment of integer-

valued sequence encodings. The evolution of indels can be

modelled as a finite-state continuous-time Markov process akin to

those used to model the evolution of nucleotide and amino acid

sequences [36]. Because the maximum number of character states

Reconstructing HIV Evolution within Hosts
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in any indel polymorphism did not exceed 3 in these data, we used

the following instantaneous rate matrix:

Q~

� 1 a02

a10 � 0

a20 0 �

0
B@

1
CA

which assumes that states (1) and (2) are derived from (0), the most

prevalent state, and that there are no transitions directly between (1)

and (2). Rates are scaled arbitrarily to the rate of transition from

state (0) to state (1). When indel rates were assumed to be reversible

(equal rates of insertion and deletion affecting the same codons), we

applied the constraints a10~1 and a02~a20; otherwise, indel

evolution was non-reversible. Character frequencies were computed

dynamically by setting all values in the right-most column of Q to 1

and extracting the last row of the matrix inverse. Both reversible and

non-reversible models were fit using maximum likelihood heuristics

in HyPhy to each sampled tree with branch lengths constrained to

scale by a global factor to preserve the molecular clock character-

istics of the tree as was applied to fitting the codon model (see

above). Since the reversible model is a special case of the non-

reversible model, we calculated the likelihood ratio test statistic (D)

to select between the fitted models. Computing D across replicate

ancestral reconstructions, the reversible model was rejected only for

subject DS2 (mean and interquartile range, �DD~9:1 [7.1, 11.1],
�PP~0:03 [0.004, 0.28]). We proceeded with the ancestral recon-

struction of indel polymorphisms using the respective best models

for each subject data set.

For each tree, 100 ancestral indel character states were sampled

from the resulting posterior distributions at all internal nodes of the

tree. These reconstructions were applied to the ancestral codon

sequence reconstructions by overwriting nucleotides with gap

characters according to the indel reconstructions. In total, we

generated 104 sets of ancestral reconstructions for each patient (100

trees|100 replicate samples). HIV coreceptor tropism predictions

were generated for all ancestral sequences using the g2p algorithm

and time-stamped by their heights in the trees, which we measured

in units of days since an arbitrary date in the past.

Visualization
For every tree in the sample, we tallied the relative frequencies

of every clade (the subset of tips that descend from a given

ancestral node) and then calculated the product of these

frequencies for clades represented in each tree. The tree that

maximized this product was taken as the most representative point

estimate for the sample (the maximum credibility tree) [26]. For

each replicate ancestral reconstruction, we mapped only the

mutations in the V3 region that were predicted to increase the

probability of CXCR4 usage (according to the g2p algorithm) to

branches in the maximum credibility tree. We recorded the

relative frequencies of these branches and identified the replicate

that maximized the sum of these frequencies. In this context, we

used the sum rather than the product to avoid penalizing replicates

for mapping mutations to greater numbers of branches. We refer

to the replicate that maximized this sum as the maximum ancestral

reconstruction credible set (MARCS).

Each maximum credibility tree and corresponding MARCS

was rendered in PostScript to visualize trends in the reconstructed

evolution of HIV within patients. Consider S be the set of all

ancestral nodes corresponding to the ends of branches to which

one or more mutations in the MARCS was mapped. S always

included the root of the tree. Every node in S was plotted with its x
position representing its location on the timeline of the infection

(ranging from the MRCA on the left to the last sampling time on

the right), and its y position representing the midpoint of the

vertical positions of all its descendant extant sequences in the

maximum credibility tree. For every node in S, a line was drawn

back to its most recent ancestor in S. Consequently, any

intervening branches that did not contain any mutations

contributing to the evolution of CXCR4 usage were collapsed in

this visualization. Each branch between members of S was

rendered in a colour representing the FPR prediction from the g2p

algorithm for the ancestral sequence reconstructed at the right-

most (most recent) node. In addition, each branch was labelled

with all reconstructed mutations contributing to CXCR4 usage

that mapped to this branch. These procedures were automated

using a HyPhy/Python pipeline.

Because these visualization strategies focused only on ancestral

lineages accumulating mutations towards CXCR4 usage, we also

visualized the overall diversification of HIV within hosts over time

with respect to coreceptor usage predictions using 2-dimensional

histograms. Across all 100 ancestral reconstructions on the

maximum credibility tree, ancestral sequences were binned with

respect to their predicted FPR value and time. The density of

ancestral sequences in each bin, normalized for each time interval,

was represented by degree of opacity for the bin’s coloration in the

2-dimensional histogram. This visualization procedure was imple-

mented in R using a modification of the hist2d function in the gplots

package.

The entire workflow from raw sequence data to visualization is

presented as a flowchart in Supporting Figure S4 and scripts used

in our analysis are available at http://hyphy.org/wiki/Emerge.

Results

Molecular clock analysis
The root of a phylogenetic tree estimates the most recent

common ancestor (MRCA) of all individuals represented at the

tips of the tree. Because the time of sampling is known for every tip

in the tree, we can use the time elapsed between samples to

directly estimate the rate of evolution (molecular clock) and

extrapolate back to timing branching events deeper in the tree.

Since HIV tends to undergo a severe population bottleneck at

transmission, the time to the MRCA (tMRCA) can provide a

reasonable estimate of the time of HIV infection [29]. The median

estimates of tMRCA for each subject ranged from 25.7 to 59.6

months prior to the time of the first positive MT-2 assay (herein

referred to as t0) with an average of 41.3 months (Figure 2). Since

the sample population consisted of longitudinal samples from

infections undergoing an HIV coreceptor switch, initially deter-

mined by a transition from NSI (non-syncytium inducing) to SI

phenotypes, we also extracted the times to the MRCA of all

observed sequences that were predicted to be CXCR4-using

according to the g2p algorithm with a false positive rate (FPR)

cutoff of 3.5. This ancestor will be referred to as the X4-MRCA.

Generally, estimates of times to the X4-MRCAs (tX4-MRCA) were

similar to the corresponding estimates of tMRCA , indicating that

CXCR4-using variants had emerged independently in multiple

branches of the tree that did not converge until the MRCA

(Figure 2). In one extreme exception, the tX4-MRCA was estimated

in subject DS2 to be about 40 months after the median tMRCA

estimate and about 13.5 months prior to the t0 (Figure 2). In this

case, mutations contributing to CXCR4 usage were reconstructed

along one lineage only (see next section; Figure 3).

We used the coefficient of variation parameter (sr) from the

uncorrelated lognormal clock model to assess whether rates of

evolution varied throughout each tree. A posterior distribution of
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sr with a mode of zero indicates that one cannot reject a strict

molecular clock model given the data [37]. For all subjects, the

modes of the posterior distributions of sr were substantially above

zero, indicating significant variation in rates of evolution over

time. Median clock rates among subjects ranged from 8:3|10{5

(DS2) to 1:9|10{4 (DS3) mutations per nucleotide site per day.

Variation in mean clock rate estimates among subjects was

statistically significant (one-way analysis of variance, F~718:7,

P%0:001).

Emergence of CXCR4-using variants
Because the X4-MRCA was not necessarily itself a CXCR4-

using variant, we reconstructed ancestral sequences throughout

the phylogeny to determine the earliest predicted CXCR4-using

ancestor for each subject. This was accomplished by sampling

ancestral sequences from the posterior distributions reconstructed

under combined models of codon and indel evolution at all

internal nodes of each sampled tree. The times of the earliest

ancestors predicted to be CXCR4-using by the g2p algorithm

(FPRv3.5) ranged from 4.6 to 24.7 months before t0 with a mean

of 10.1 months (Figure 2). In other words, predicted ancestral

CXCR4-using variants were on average present within a patient

nearly one year prior to the first positive MT-2 assay. The time

difference between the median estimate of tMRCA and the earliest

CXCR4-using ancestor ranged from 15.6 to 43.5 months with a

mean of 31.4 months (Figure 2). Because none of the participants

received antiretroviral therapy over the course of the study [12],

this result can be interpreted as estimating the expected waiting

time for the first CXCR4-using variants to emerge as a product of

the accumulation of genetic variation in an HIV infection in the

absence of antiretroviral selection. These molecular clock results

indicated that the evolution of CXCR4 usage could have unfolded

over a period of one to several years within each subject. We

carried out a detailed phylogenetic reconstruction of ancestral

intermediates to characterize the dynamics of HIV coreceptor

usage evolution over time.

Pathways of evolving CXCR4 use
The evolution of CXCR4 use may require one to several amino

acid replacements in V3, the primary genetic determinant of HIV

coreceptor tropism. Because we have reconstructed the sequences

for every ancestral node in the sampled trees, it is possible to map

specific mutations to the branches of any given tree based on

discordances in the reconstructed sequences on either end of a

branch. To facilitate interpretation, we generated tree visualiza-

tions for only the maximum ancestral reconstruction credibility set

(MARCS) on the maximum credibility tree. Figure 3 displays only

the single lineages in the maximum credibility trees for subjects

DS2 and DS7 that accumulated mutations culminating in a

predicted FPR value below 3.5. The complete maximum

credibility trees for all subjects are provided as Supporting Figure

S5. In summary, whether the dynamics of HIV evolution was

consistent with either fitness valley or gradual models depended on

which subject was being evaluated. Subject DS2 provides an

unambiguous example of the gradual accumulation of mutations

contributing to CXCR4 use in a succession of intermediate

genotypes over a period of roughly 3 to 4 years, culminating in the

mutation K25R to yield a genotype with a predicted FPR of 0.6

under the g2p algorithm (Figure 3). In the final sample from DS2,

22% of the observed sequences were inferred to be descended

from this ancestor. The first mutations to emerge (T19A and T3R)

were mapped to a branch descending directly from the MRCA.

Hence, the emergence of HIV coreceptor usage intermediates

began soon after infection as predicted by the gradual model. On

the other hand, multiple mutations occurred within a comparably

narrow time interval of roughly half a year in subject DS7

(Figure 3) and only after a delay of nearly two years after tMRCA ,

which was consistent with the fitness valley model. For the

remaining subjects, the emergence of mutations promoting

CXCR4 use was generally more consistent with the gradual

evolution observed for subject DS2 (Figure S5). We explored this

trend in depth using additional visualization schemes reported

below. In all cases, a substantial portion of HIV coreceptor

evolution was mapped to ancestral lineages preceding the first

sample, underscoring the importance of phylogenetic reconstruc-

tion.

An intriguing feature of the maximum credibility tree maps is

that predicted CXCR4-using ancestors emerged in more than one

lineage in 5 of 8 subjects (Supporting Figure S3). The largest

number of lineages attaining a CXCR4-using genotype was 5 in

subject DS6, although these lineages were related by a common

ancestor preceding these endpoints by only about a year (Figure

S5). We also observed evidence of parallel evolution along 3

lineages within DS8 that accumulated the mutations Q10R,

S11G, H13R, D25K and the insertion 222A (Figure S5). In

addition, the maximum credibility trees featured many lineages

that accumulated a different set of mutations and failed to attain a

CXCR4-using genotype before going extinct. For example, the

main lineage leading to a CXCR4-using ancestor in subject DS1

accumulated the mutations L20M, K10R, G24E, Q25R and I27V

with descendants comprising 44% of the last sample. A second

lineage accumulated L20F, I27V, N29D and a deletion at Q25 to

Figure 2. Kernel density estimates of the distribution of tMRCA

(solid line), tX4-MRCA (red shaded region) and the time of the
earliest CXCR4-using ancestor (defined at FPRv3.5; solid
region) based on molecular clock analyses of HIV sequence
variation from each subject. Double vertical lines indicate the time
of the earliest sample per patient.
doi:10.1371/journal.pcbi.1002753.g002
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reach a predicted FPR of 5.7, leaving descendants comprising

22% of an earlier sample before going extinct (Figure S5).

Consequently, lineage-specific dynamics of HIV coreceptor usage

evolution may become obscured at the population level by other

lineages following divergent mutational pathways.

To compare the locations of reconstructed mutations in the V3

region among subjects, we annotated the V3 amino acid sequence

reconstructed at the root of the maximum credibility tree with the

predominant mutational pathway, which was defined as compris-

ing all mutations contributing to CXCR4 use that were mapped to

the lineage with the largest proportion of descendants in the most

recent sample (Figure 4). This visualization makes it clear that the

predominant mutational pathways followed by each HIV popu-

lation are highly divergent among subjects. The total numbers of

mutations contributing to a CXCR4-usage prediction ranged from

4 to 13 (median 9) mutations per pathway. Mutations occurred

most often at V3 loop positions 11 and 25 (in the predominant

pathways of 7 and 8 subjects, respectively), followed by positions

13, 19, 20 and 32 (Figure 4). Insertions and deletions played a

significant role in the evolution of CXCR4 usage. Specifically, the

predominant pathways in DS6 and DS8 included a deletion at V3

positions 24–26 and an insertion at position 22 in DS8 serum,

respectively, which we were able to reconstruct by incorporating a

model of indel evolution into the ancestral reconstruction

procedure (see Methods).

For all subjects, we quantified the time scale of CXCR4 usage

evolution along the predominant mutational pathway. This time

scale was measured by the estimated number of months between

the start of the evolution of CXCR4 use (the midpoint of the

branch on which the first mutations promoting CXCR4 usage

were mapped) and the earliest CXCR4-using ancestor (the

midpoint of the earliest branch with a predicted FPR below 3.5).

These intervals ranged from 4.1 (DS7) to 30.6 (DS2) months with a

mean of 16.6 months. To assess whether there was any association

between these time intervals and the waiting time until the

emergence of the first mutations promoting CXCR4 use, we

calculated these quantities for all ancestral lineages in all subjects

that eventually attained a predicted FPR below 3.5. We found a

significant negative correlation between the waiting time and time

scale of evolution (one-sided Pearson’s r~{0:564, df~16,

P~0:007) that is consistent with a trade-off between gradual

and fitness-valley modes of evolution. However, this correlation is

biased by the non-independent evolution of lineages within the

same subject. If we adjust for this by averaging values across

lineages per subject, the correlation remains negative but is no

longer significant (r~{0:46, P~0:12).

One of the drawbacks to the preceding visualization schemes is

that they focus on the mutations or a subset of mutations

comprising the MARCS. To summarize all replicate ancestral

reconstructions on the maximum credibility tree for each subject,

we generated 2-dimensional histograms summarizing the distri-

butions of coreceptor usage predictions for all reconstructed

ancestral sequences over time. Darker shaded cells represent

higher densities in the corresponding intervals of reconstructed

FPR predictions, normalized for a given time interval (Figure 5).

In general, each distribution broadens over time (from left to right)

Figure 3. Excerpts from the maximum credibility trees for HIV evolution within subjects DS2 and DS7 with reconstructed mutations
mapped to individual branches (labels comprising the ancestral residue, position in the V3 loop, and the derived residue). These
excerpts emphasize the lineages that attained a CXCR4-using ancestral genotype (FPRv3.5). Branches are coloured with respect to the predicted FPR
value (see legend inset). Vertical lines indicate the times of the first serum sample (dashed) and first positive MT-2 assay (solid), respectively. Open
circles indicate the start of the branch carrying mutations promoting CXCR4 usage, which otherwise cannot be distinguished because other branches
that do not carry such mutations have been collapsed. Percentiles indicate the fraction of the most recent sample that descend from the
corresponding lineage.
doi:10.1371/journal.pcbi.1002753.g003
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as the accumulation of genetic variation manifests itself in the

diversification of coreceptor usage predictions. The histograms

derived from our analysis of sequence variation from subjects DS5

and DS7 are characterized by a distinct and rapid bifurcation into

low FPR values from a main trunk of high FPR values (Figure 5).

We have already determined that this dynamic in subject DS7 can

be attributed to the rapid accumulation of mutations after a

substantial delay (Figure 3) that is consistent with the fitness valley

model of HIV coreceptor usage evolution. The map of mutations

to the maximum credibility tree reconstructed from DS5

sequences is also consistent with this interpretation (Supporting

Figure S5). However, the reconstructed dynamics in the remaining

six subjects exhibited finer gradation in FPR values over time

(Figure 5). An interesting feature of these histograms is the

emergence of lineages (for example, in subjects DS3 and DS8) with

a greater tendency for CCR5 usage than the MRCA, which

represents the putative transmitted variant. Consequently, the

predominant CCR5-using variant at the time of sampling is not

necessarily representative of the CCR5-using ancestor from which

CXCR4-using lineages are derived, which can only be revealed by

ancestral reconstruction using phylogenetic methods.

Discussion

Our findings indicate that a substantial fraction of the

evolutionary history of HIV coreceptor usage preceded the first

samples from these subjects by entire years, a significant amount

on the time scale of HIV evolution. Consequently, the direct

comparison of observed sequences, such as by a minimum-

spanning tree [12], is insufficient to determine whether these data

support the transmission-mutation hypothesis, which stipulates a

fitness valley separating CCR5- and CXCR4-using genotypes [5].

We have shown how phylogenetic methods can be used to

reconstruct the ancestral HIV sequences from which the observed

data descend. The availability of samples from different points in

time enabled us to estimate the rates of HIV evolution using

molecular clock models. In turn, this enabled us to date branches

in the phylogeny down to the most recent common ancestor, and

to date the emergence of specific mutations. We found that the

reconstructed evolutionary dynamics of HIV coreceptor usage did

not equivocally support the fitness valley postulated by the

transmission-mutation hypothesis, although there were two cases

(DS5 and DS7) where dynamics were consistent with the presence

of a fitness valley. Additionally, we found some evidence of a

negative correlation between the time to the onset of the HIV

coreceptor switch and the duration of the switch itself. Hence, the

dynamics of the HIV coreceptor switch cannot be explained by a

single model because it is dependent on the genotype of the

transmitted variant, which determines the pathways available to

evolve CXCR4 usage. In other words, these results suggest that

not every HIV infection begins at the peak of a fitness valley with

respect to HIV coreceptor usage. Furthermore, if the role of a

fitness valley in shaping the evolution of HIV coreceptor usage is

contingent on the genotype of the transmitted variant, as implied

by our results, then the probability of the HIV coreceptor switch

may be a heritable trait among transmitted virus lineages.

This study makes use of next-generation sequencing to

automate the process of sequencing individual nucleic acids from

the sample population (clonal sequencing), which is otherwise

time-consuming and less scaleable. Specifically, we use an ‘ultra-

deep’ application of next-generation sequencing, which generates

thousands of reads from the same region of each nucleic acid to

yield a large sample of genetic variation that is ideal for

phylogenetic analysis. A potential hazard of this application is

that the large number of reads may outnumber the actual number

of HIV RNA copies from the specimen, leading to excessive

resampling of genetic variation. We have estimated that sample

processing would result in about a 20-fold dilution in the number

of nucleic acids (see Methods section). While this is substantial, the

serum samples most likely contained high numbers of nucleic acids

because they were drawn from treatment naı̈ve subjects with

chronic HIV infections. The median viral load previously reported

from these subjects was 17,000 HIV RNA copies/mL [12]. We

would therefore estimate that about 850 nucleic acids would be

represented by copies at the sequencing stage of the sample

processing protocol. Given that we used only 50 random

sequences from each sample, the probability of subsampling was

about 0.2% per molecule.

Additionally, we directly measured the number of HIV RNA

copies available for sequencing by using recently-developed

‘primer ID’ technique [38]. This technique employs a partially-

degenerate primer in the reverse transcription reaction that causes

each complementary DNA strand to be labelled by a random

string of nucleotides. Consequently, sequences sharing the same

primer ID will have been derived from the same nucleic acid at the

initial phase of RT-PCR amplification. In other words, the

number of unique primer IDs should correspond to the number of

nucleic acids transferred from the extraction eluate to the RT-

PCR reactions in triplicate. Because the original sera samples were

too depleted, we reprocessed frozen HIV RNA extracts from four

Figure 4. Mutations within the V3 loop comprising the
predominant pathway for each subject, stratified by time of
emergence. The MARCS V3 sequence reconstructed at the MRCA of
the maximum credibility tree is shown at the top of each plot. Residues
highlighted in red correspond to mutations that arose in a CXCR4-using
background (FPRv3.5). The duration of HIV coreceptor evolution from
tMRCA to the first CXCR4-using ancestor is indicated in months
alongside each plot (see text).
doi:10.1371/journal.pcbi.1002753.g004
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samples using a primer containing a degenerate 9-mer. These

samples corresponded to two time points from DS8 at +3 and +6.8

months since the first positive MT-2 assay (t0), one from DS2 at +6

months since t0, and one from DS6 at +3 months. Viral loads were

previously reported to be approximately 1000 HIV RNA copies

per mL at both DS8 time points [12]; no viral load measurements

were available at the time points from either DS2 or DS6. The

numbers of unique primer ID sequences in the resulting deep

sequence data were 400, 317, 2003, and 343, respectively. Hence,

there was a low probability (ƒ1%) that copies of the same nucleic

acid were resampled in a random selection of 50 sequences per

time point, even when the reported viral loads associated with

these samples were relatively low.

Molecular clock models are an important application of

phylogenetic reconstruction. We have taken advantage of serial

samples with known dates to calibrate the molecular clock, which

enables us to reconstruct the evolutionary history of the HIV

populations back in time [18]. For example, we extrapolated the

time scale of HIV coreceptor usage evolution back to most recent

common ancestors, which we estimated to have preceded the

times of the first positive MT-2 assay by 2 to 5 years. There are

some caveats to be aware of when interpreting estimates of tMRCA

from a molecular clock analysis. First, a strong selective sweep

could conceivably replace the MRCA with a more recent ancestor.

Published estimates of tMRCA from individuals with known or

estimated times of transmission, however, tend to be consistent

with, or moderately overestimate, those times [29,39]. In addition,

the high rate of recombination in HIV-1 can limit the effect of a

selective sweep to a narrower interval of the genome, although it

may also raise other issues related to phylogenetic reconstruction

(see below). Second, the nucleotide substitution models typically

used for molecular clock analyses may become saturated for highly

divergent lineages, causing one to underestimate the actual tMRCA,

although this effect has only been reported for the large-scale

divergence of virus populations among hosts (for example, dating

the zoonotic origin of measles virus from rinderpest virus [40]). If

saturation was present within hosts, it will have been ameliorated

by our use of separate model parameters for the third codon

position that is more susceptible to this effect [28,40].

Recombination can result in phylogenetic incongruence, in

which different regions of a genome are related by different

phylogenies. Although the sequences analyzed here were relatively

short (about 250 bp), we cannot rule out that within-host

recombination within this interval may have interfered with

accurate reconstruction of the phylogeny or ancestral sequences.

For example, multiple lineages in the phylogeny reconstructed for

subject DS8 accumulated the same mutations within the V3 loop

(S11G, D25K, Q10R and H13R; see Supporting Figure S5) that

could conceivably have been transferred from the same parent

lineage into different genomic backgrounds. However, this

putative case of parallel evolution cannot be readily explained

by recombination because many observed sequences derived from

these lineages contained only intermediate subsets of these

mutations, which would have required multiple recombination

events at consistent breakpoints between the same lineages in a

relatively short period of time.

We used a Bayesian Markov chain Monte Carlo (MCMC)

sampling procedure implemented in BEAST [26] because this is

currently the best-maintained software for fitting a molecular clock

phylogeny to serial samples of genetic sequence data. One of the

disadvantages of this procedure, however, is that the analysis

becomes unfeasible when the total number of sequences substan-

tially exceeds 200. This problem arises because the space of all

possible trees becomes too large for an MCMC sampler to

converge to the posterior distribution in a realistic amount of time.

The use of serial samples can ameliorate this limit to some extent

Figure 5. Two-dimensional histograms illustrating the distributions of g2p FPR predictions across all replicate ancestral
reconstructions on the maximum credibility tree. The x-axis corresponds to time intervals from tMRCA to the first positive MT-2 assay (t0),
rescaled for each subject. The y-axis corresponds to the log-transformed FPR predictions for the ancestral sequences. Both axes were partitioned into
25 bins. Each cell is coloured with respect to its FPR value with opacity proportional to the square root of the number of data points in the
corresponding bins, normalized by the total number of points in the time interval.
doi:10.1371/journal.pcbi.1002753.g005
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because it can constrain the range of trees to explore. We

addressed this problem by limiting our analysis to only 50

randomly subsampled sequences per time-point. The resulting

sample size should have been sufficient to characterize the

principal trends in the dynamics of HIV evolution within these

subjects; this is supported by the reproducibility of our results using

a second set of random subsamples (Supporting Figure S2).

Nevertheless, this is clearly a small fraction of the number of reads

produced by next-generation sequencing; indeed, it is closer to the

numbers yielded by conventional clonal sequencing. Thus, there

remain considerable computational challenges to making full use

of next-generation sequencing data from rapidly-evolving virus

populations. For example, this problem may be amenable to

recent innovations in sequential Monte Carlo methods, although

development in this area is at an early stage [41].

It is important to note that our analysis was performed on

samples from a retrospective study where the HIV infections were

determined to have undergone a coreceptor switch by both

phenotypic and genotypic assays. This pre-existing study criterion

prevents us from drawing conclusions on the genetic determinants

of whether an HIV infection will undergo a coreceptor switch.

Further investigations will require a larger sample size including

longitudinal samples from subjects without any positive SI or

CXCR4-usage phenotype assay to identify the genetic determi-

nants in the transmitted variant of the incidence and subsequent

dynamics of the HIV coreceptor switch. Testing these hypotheses

will require ‘time-stamped’ phylogenetic methods of ancestral

reconstruction, including the analytical and visualization tech-

niques we have developed in this study.

Supporting Information

Figure S1 Comparison of a minimum spanning tree and

phylogeny. Open circles represent observed sequences. A

minimum spanning tree (red dashed lines) makes connections

between these observations as a graphical representation of

similarity. Shaded circles represent latent (ancestral) sequences

that cannot be observed and must instead be inferred from the

observed data. A phylogeny (solid lines) makes connections

between observed and ancestral sequences that are inferred under

a model of sequence evolution.

(PDF)

Figure S2 Two-dimensional histograms illustrating the distribu-

tions of g2p FPR predictions across all replicate ancestral

reconstructions on the maximum credibility tree (see Figure 5).

These histograms were generated from a second data set

comprising new random samples of 50 sequences from each time

point.

(PDF)

Figure S3 Posterior traces from replicate chain samples from a

Bayesian MCMC-based molecular clock analysis of longitudinal

HIV sequence datasets from eight subjects. The Gelman-Rubin

convergence diagnostic (GD) point estimate is reported in the

lower-left of each plot.

(PDF)

Figure S4 Schematic diagram of the bioinformatic workflow.

The filenames of scripts written in Python or HyPhy batch

language (unless otherwise indicated) are displayed in the lower

half of each node.

(PDF)

Figure S5 Evolution of HIV coreceptor usage mapped to

maximum credibility trees for eight subjects. Branches in each

tree are coloured with respect to the false positive rate (FPR)

prediction derived from the g2p algorithm. A lower FPR value

indicates greater confidence that the reconstructed ancestral

genotype yielded a CXCR4-using virus. Amino acid substitutions

(labelled by ancestral residue, position in the V3 loop, and derived

residue) inferred from ancestral reconstructions are mapped to the

corresponding branches of each tree. Annotated excerpts from the

trees for DS2 and DS7 are presented in Figure 3.

(PDF)

Text S1 Estimating the efficiency of RNA extraction.

(PDF)

Text S2 Indel error correction algorithm based on pairwise

codon sequence alignment.

(PDF)

Text S3 Algorithm for binary encoding of indel polymorphisms

in a codon sequence alignment.

(PDF)
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