
Citation: Macha, L.; Jala, R.; Na, S.-Y.;

Ha, H.-J. Atom Economical

Multi-Substituted Pyrrole Synthesis

from Aziridine. Molecules 2022, 27,

6869. https://doi.org/10.3390/

molecules27206869

Academic Editor: Alexey

M. Starosotnikov

Received: 28 September 2022

Accepted: 11 October 2022

Published: 13 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molecules

Article

Atom Economical Multi-Substituted Pyrrole Synthesis from
Aziridine
Lingamurthy Macha, Ranjith Jala, Sang-Yun Na and Hyun-Joon Ha *

Department of Chemistry, Hankuk University of Foreign Studies, Yongin 17035, Korea
* Correspondence: hjha@hufs.ac.kr; Tel.: +82-31-330-4369

Abstract: Multi-substituted pyrroles are synthesized from regiospecific aziridine ring-opening and
subsequent intramolecular cyclization with a carbonyl group at the γ-position in the presence of
Lewis acid or protic acid. This method is highly atom economical where all the atoms of the reactants
are incorporated into the final product with the removal of water. This new protocol is applied to the
synthesis of various pyrroles, including natural products.
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1. Introduction

Pyrroles are molecules of great interest as key structural elements of various com-
pounds, including pharmaceuticals and natural products [1,2]. For example, inonotus
obliquus [3–5]. The white rot fungus that belongs to the family Hymenochaetaceae (Basid-
iomycetes) and is mainly distributed in Europe, Asia, and North America has been used
for the treatment of gastrointestinal cancer, cardiovascular disease, and diabetes since the
sixteenth century in Russia, Poland, and the Baltic countries. Moreover, the fungus has been
reported to have anti-inflammatory [6], antioxidant [7–10], immunomodulatory [11], and
hepatoprotective effects [12]. Some representative examples of 5-hydroxymethyl pyrrole-2-
carbaldehydes found in the inonotus obliquus, sometimes referred to as 2-formylpyrroles
or pyrralines, are displayed in Figure 1.
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1. Introduction 
Pyrroles are molecules of great interest as key structural elements of various com-

pounds, including pharmaceuticals and natural products [1,2]. For example, inonotus 
obliquus [3–5]. The white rot fungus that belongs to the family Hymenochaetaceae (Basidio-
mycetes) and is mainly distributed in Europe, Asia, and North America has been used for 
the treatment of gastrointestinal cancer, cardiovascular disease, and diabetes since the six-
teenth century in Russia, Poland, and the Baltic countries. Moreover, the fungus has been 
reported to have anti-inflammatory [6], antioxidant [7–10], immunomodulatory [11], and 
hepatoprotective effects [12]. Some representative examples of 5-hydroxymethyl pyrrole-
2-carbaldehydes found in the inonotus obliquus, sometimes referred to as 2-formylpyr-
roles or pyrralines, are displayed in Figure 1. 
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Figure 1. Structures of 2-formyl pyrrole-containing bioactive natural products. 

The synthesis of highly functionalized pyrroles has drawn considerable attention 
from organic and medicinal chemists. In general, the classical synthesis routes for multi-
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Figure 1. Structures of 2-formyl pyrrole-containing bioactive natural products.

The synthesis of highly functionalized pyrroles has drawn considerable attention
from organic and medicinal chemists. In general, the classical synthesis routes for multi-
substituted pyrroles, including the Knorr condensation [13], the Paal–Knorr reaction [14],
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the Hantzsch reaction [15], transition metal-catalyzed reactions [16,17], and multicompo-
nent coupling reactions [18–20], have been in existence for many years. However, most
of them are limited by the inefficient synthesis of highly functionalized pyrroles; it is
challenging to introduce various substituents to the pyrrole ring due to its harsh reaction
conditions and the instability of widely used keto functionality. The construction of the
pyrrole ring allows regioselective functionalization and subsequent diversification of the
pyrrole ring with various substituents.

Many synthetic methods have commenced from aziridine and its derivatives by
expanding the ring whose nitrogen ends at the pyrrole ring. Specifically, pyrroles are
synthesized from propargyl aziridines through intramolecular cyclization and breaking of
the aziridine ring with the assistance of various metal catalysts (“M”) including “Au(I)”
followed by rearrangement for aromatization (Scheme 1, (1)) [16,17]. Our group developed
a similar pyrrole synthesis method with 3-(aziridine-2-yl)-3-hydroxypropyne taking an ad-
vantage of nucleophilic aziridine ring-opening prior to cyclization [18–20]. Vinyl aziridines
also served as starting materials for pyrrole after 1,3-sigmatropic shift and oxidation or 2+3
cycloaddition reaction with olefin via the cleavage of the C-N bond (Scheme 1, (2)). Similar
[3+2]-cycloadditions were used to generate five-membered rings from 2-methyleneaziridine
as a 1,3-dipole with an olefin (Scheme 1, (3)). However, most of these reported methods
have two critical drawbacks. First, most of the methods require a metal (“M”) catalyst.
Second, only a single substituted pyrrole is generated from one set of aziridine substituents
properly decorated as a starting material with the necessary counterparts, including olefins
and alkynes [21,22].
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In this report, we describe an atom economical synthesis of multi-substituted pyrroles
from regiospecific aziridine ring-opening by various nucleophiles [23–26] and the following
cyclization in Knorr-type reactions.

2. Results and Discussion

Treatment of hydroxy keto aziridine 1a [25,26] with TMSN3 in THF or dioxane un-
der reflux did not yield the desired pyrrole product 2a (entries 1 and 2, Table 1). In
dichloromethane, under reflux conditions, we obtained the expected pyrrole with a 70%
yield (entry 3), whereas in CH3CN the yield increased to 85% (entry 4). In the presence of
various Lewis acids such as BF3.OEt2 and FeCl3 with NaN3 nucleophile, we did not obtain
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the desired pyrrole product 2a (entries 5 and 6, Table 1) with all the starting materials
remaining.

Table 1. Optimization of the reaction conditions.
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Next, the generality of the method was evaluated under optimized conditions that
had been cyclization. This protocol provided a versatile entry for a variety of pyrroles (2)
is well determined in Table 1. Then, we examined the scope and limitations of several
β-(aziridin-2-yl)-β-hydroxy ketones (1) through the one-step regioselective ring-opening of
aziridine followed by intramolecular to moderate yields (Scheme 2).
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In the successive reactions of regioselective ring opening in CH3CN under reflux
and Knorr cyclization, the pyrrole compound 2b was obtained in an 80% yield from
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the aziridine starting compounds bearing a substituent at R2 such as phenyl (1b) using
TMSN3, whereas no pyrrole product 2c or 2d was obtained using TMSCl or TMSCN
(see Scheme 2). After TMSN3 screening (as mentioned in Table 1), we next screened a
substrate variant using aziridines bearing a substituent at R2, such as o-methoxyphenyl
(1e), p-methoxyphenyl (1f), and n-nonanyl (1g), as starting materials, which gave a pyrrole
variant (2e–2g) in moderate to good yield under TMSN3 conditions. The starting substrates
with an additional substituent (R2 as phenyl and t-butyldimethylsilyloxymethyl) and R1 as
methyl and p-methoxyphenyl) gave pyrroles (2h, 2i, and 2j) in 75%, 72%, and 70% yields,
respectively. We also applied various thiol nucleophiles under the ZnCl2 catalyst in MeOH
to compounds (1k–1m) with substituents at C2 and C4, resulting in high yields of pyrroles
(2k–2m) (Scheme 2).

Next, oxidation of the secondary alcohol of compound 3 at the γ-position of aziridine
with Dess–Martin periodinane in CH2Cl2 yielded a complex mixture of compounds, which
were directly reacted for the ring-opening with various nucleophiles such as OMe, OAc, Cl,
and CN to afford 2,3-disubstituted pyrrole 5-aldehydes (4a–4d) in the one-pot procedure as
shown in Scheme 3 with examples in the Scheme 4. Whereas Swern oxidation of secondary
alcohol of compound 3, followed by regio and stereoselective aziridine ring-opening
with incoming nucleophile, yielded OTBS-protected pyrrole 2 as shown in Scheme 3 (see
compounds 2k–2l in Scheme 2).
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The difference in cyclization is raised by the substituent of R2, whether the substituent
R2 is a simple alkyl or aryl, or hydroxymethyl in Scheme 2. The initial Paal–Knorr cycliza-
tion step gives either 6 or 7, regardless of the characteristics of R2, with the removal of water
molecules. After the generation of the hydroxy pyrrolidine intermediate 6, generated from
most substrates with alkyl or aryl substituent on R2, the reaction proceeds to aromatization
to yield 2 as shown in Scheme 2. From the substrate-bearing hydroxymethyl group, the
ammonium ion intermediate 8 was generated, from which the deprotonation occurs to give
9 and its resonance form as 10. One more deprotonation from 10 gives rise to the final
2-formyl pyrroles 4, as shown in Scheme 4 (Scheme 5).
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Scheme 5. Proposed reaction mechanism for the formation of 2 and 4 from 1 and 3 in two different
pathways.

This method was extended to the synthesis of the natural product inotopyrrole 19
(Scheme 5). Treatment of compound 11 with Weinreb salt and i-PrMgCl to give compound
12, followed by allyl magnesium bromide and a subsequent reduction of aziridine ketone
by NaBH4 yielded the alcohol compound 13 in 68% yield for two steps. Protection of
the secondary alcohol with TBSOTf and 2,6-lutidine to furnish olefin 14 at a 73% yield.
Olefin 14 was subjected to simple dihydroxylation using OsO4 and NMO to give a diol
compound, followed by selective protection of the primary alcohol with TBSCl to afford
secondary alcohol, and subsequently, Swern oxidation of alcohol afforded key intermediate
keto compound 15 in a 62% yield. Then, we applied our optimized method on compound
15 for the synthesis of pyrrole derivative 16 from a one-step regioselective ring-opening
followed by cyclization of keto compound by using AcOH and CH2Cl2 at 0 ◦C in 82% yield.
Then, deacetylation of 16 with K2CO3 to give alcohol 17, followed by Dess-martin oxidation
of primary alcohol, afforded aldehyde 18 with a 74% yield. Removal of the TBS group
with TBAF gave rise to the desired natural product, inotopyrrole (19), in an 84% yield.
Spectral data (1H, 13C NMR) and HRMS data of our synthetic ionotopyrrole (19) were in
full agreement with those reported for the natural product (Scheme 6) [3–5].
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2 h, 78%. (b) (i) Allylmagenisium bromide, THF, 0 oC, 1 h; (ii) NaBH4, MeOH, 0 oC, 1 h; 87% (over 
two steps). (c) TBSOTf, 2,6-Lutidine, CH2Cl2, 0 oC to rt, 2 h, 73%. (d) (i) OsO4, NMO, 0 oC to rt, 4 h; 

Scheme 6. Synthesis of inotopyrrole (19) from aziridine (11). (a) NHMe(OMe), i-PrMgCl, THF, 0 ◦C,
2 h, 78%. (b) (i) Allylmagenisium bromide, THF, 0 ◦C, 1 h; (ii) NaBH4, MeOH, 0 ◦C, 1 h; 87% (over
two steps). (c) TBSOTf, 2,6-Lutidine, CH2Cl2, 0 ◦C to rt, 2 h, 73%. (d) (i) OsO4, NMO, 0 ◦C to rt, 4 h;
(ii) TBSCl, Imidazole, CH2Cl2, 0 ◦C to rt, 2 h; (iii) DMSO, (COCl)2, CH2Cl2, −78 ◦C, 2 h; 62% (over
three steps). (e) AcOH, CH2Cl2, 0 ◦C, 12 h, 82%. (f) K2CO3, MeOH, 0 ◦C, 12 h, 80%. (g) DMP, CH2Cl2,
0 ◦C, 2 h, 74%. (h) TBAF, THF, 0 ◦C, 1 h, 84%.
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3. Materials and Methods
3.1. General Information

Chiral aziridines are available from Sigma-Aldrich as reagents. They are also available
from Imagene Co., Ltd. (http://www.imagene.co.kr/) in bulk quantities. All commercially
available compounds were used as received unless stated otherwise. All reactions were
carried out under an atmosphere of nitrogen in oven-dried glassware with magnetic stir-
rer. Dichloromethane was distilled from calcium hydride. Reactions were monitored by
thin layer chromatography (TLC) with 0.25 mm E. Merck pre-coated silica gel plates (60
F254). Visualization was accomplished with either UV light, or by immersion in solutions
of ninhydrin, p-anisaldehyde, or phosphomolybdic acid (PMA) followed by heating on
a hot plate for about 10 sec. Purification of reaction products was carried out by flash
chromatography using Kieselgel 60 Art 9385 (230–400 mesh). The 1H-NMR and 13C-NMR
spectra were obtained using Varian unity lNOVA 400WB (400 MHz) or Bruker AVANCE
III HD (400 MHz) spectrometer. Chemical shifts are reported relative to chloroform
(δ = 7.26) for 1H NMR, chloroform (δ = 77.2) for 13C NMR, acetonitrile (δ = 1.94) for
1H NMR, and acetonitrile (δ = 1.32) for 13C NMR (see Supplementary Materials). Data are
reported as br = broad, s = singlet, d = doublet, t = triplet, q = quartet, p = quintet, m = mul-
tiplet. Coupling constants are given in Hz. Ambiguous assignments were resolved using
standard one-dimensional proton decoupling experiments. Optical rotations were obtained
using a Rudolph Autopol III digital polarimeter and JASCO P-2000. Optical rotation data
are reported as follows: [α]20 (concentration c = g/100 mL, solvent). High-resolution mass
spectra were recorded on a 4.7 Tesla IonSpec ESI-TOFMS, JEOL (JMS-700), and an AB Sciex
4800 Plus MALDI TOFTM, (2,5-dihydroxybenzoic acid (DHB) matrix was used to prepare
samples for MS. Data were obtained in the reflector positive mode with internal standards
for calibration).

3.2. General Procedure for the Synthesis of Pyrroles

To a stirred solution of 1a (100 mg, 0.38 mmol) in CH3CN (3 mL) was added trimethylsi-
lyl azide (0.1 mL, 0.76 mmol) at 90 ◦C. After being stirred for 4 h, the mixture was concen-
trated under reduced pressure. The crude product was purified by column chromatography
(EtOAc/hexane = 1:9) to afford pyrrole compound 2a.

(R)-2-(Azidomethyl)-1-(1-phenylethyl)-5-propyl-1H-pyrrole (2a)

Yellow liquid, (80 mg) 85% yield. The 1H NMR (400 MHz, CDCl3) δ 7.32 (ddd, J = 7.6,
5.0, 2.0 Hz, 3H), 7.07–7.02 (m, 2H), 6.17 (d, J = 3.5 Hz, 1H), 5.92 (d, J = 3.5 Hz, 1H), 5.53
(q, J = 7.2 Hz, 1H), 4.17 (d, J = 14.5 Hz, 1H), 3.93 (d, J = 14.4 Hz, 1H), 2.49–2.41 (m, 1H),
2.35–2.25 (m, 1H), 1.90 (d, J = 7.2 Hz, 3H), 1.61–1.50 (m, 2H), 0.88 (t, J = 7.3 Hz, 3H). The 13C
NMR (101 MHz, CDCl3) δ 141.9, 136.1, 128.5, 127.1, 125.9, 124.7, 110.9, 105.6, 52.6, 47.6, 29.6,
22.1, 19.6, 14.0. HRMS-ESI (m/z): [M + H]+ calcd. for C16H21N4, 269.6121, found 269.6128.
Copies of 1H and 13C NMR could be found in Supplementary Materials.

2-(Azidomethyl)-1-benzyl-5-phenyl-1H-pyrrole (2b)

Yellow liquid, (90 mg) 80% yield. The 1H NMR (400 MHz, CDCl3) δ 7.28 (ddd,
J = 10.9, 6.7, 3.5 Hz, 8H), 6.89 (d, J = 7.2 Hz, 2H), 6.33 (d, J = 3.6 Hz, 1H), 6.25 (d, J = 3.6 Hz,
1H), 5.21 (s, 2H), 4.15 (s, 2H). The 13C NMR (101 MHz, CDCl3) δ 138.6, 137.3, 133.0, 128.9,
128.8, 128.5, 127.4, 127.3, 127.0, 125.5, 111.3, 108.4, 47.7, 47.2. HRMS-ESI (m/z): [M + H]+

calcd. for C18H17N4, 289.1358, found 289.1362. Copies of 1H and 13C NMR could be found
in Supplementary Materials.

2-(Azidomethyl)-1-benzyl-5-(2-methoxyphenyl)-1H-pyrrole (2e)

Yellow liquid, (93 mg) 78% yield. The 1H NMR (400 MHz, CDCl3) δ 7.39–7.03 (m, 5H),
7.00–6.78 (m, 4H), 6.34 (d, J = 3.5 Hz, 1H), 6.16 (d, J = 3.5 Hz, 1H), 5.03 (s, 2H), 4.14 (s, 2H),
3.65 (s, 3H). The 13C NMR (101 MHz, CDCl3) δ 157.4, 138.6, 133.6, 132.7, 129.6, 128.4, 127.0,
126.4, 126.0, 122.1, 120.6, 111.0, 110.8, 108.6, 55.3, 48.2. HRMS-ESI (m/z): [M + H]+ calcd.

http://www.imagene.co.kr/
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for C19H19N4O, 319.0446, found 319.0449. Copies of 1H and 13C NMR could be found in
Supplementary Materials.

2-(Azidomethyl)-1-benzyl-5-(4-methoxyphenyl)-1H-pyrrole (2f)

Yellow liquid, (89 mg) 85% yield. The 1H NMR (400 MHz, CDCl3) δ 7.01 (ddd,
J = 6.6, 5.2, 2.7 Hz, 5H), 6.67–6.65 (m, 2H), 6.62–6.59 (m, 2H), 6.09 (d, J = 3.5 Hz, 1H), 5.96 (d,
J = 3.5 Hz, 1H), 4.95 (s, 2H), 3.89 (s, 2H), 3.54 (s, 3H). The 13C NMR (101 MHz, CDCl3) δ
159.1, 138.7, 137.0, 130.3, 128.8, 127.2, 126.4, 125.5, 125.5, 113.9, 111.1, 107.8, 55.3, 47.6, 47.3.
HRMS-ESI (m/z): [M + H]+ calcd. for C19H19N4O, 319.1228, found 319.1230. Copies of 1H
and 13C NMR could be found in Supplementary Materials.

2-(Azidomethyl)-1-benzyl-5-nonyl-1H-pyrrole (2g)

Yellow liquid, (85 mg) 82% yield. The 1H NMR (400 MHz, CDCl3) δ 7.37–7.28 (m, 3H),
6.92 (d, J = 7.0 Hz, 2H), 6.27 (d, J = 3.5 Hz, 1H), 6.01 (d, J = 3.5 Hz, 1H), 5.18 (s, 2H), 4.20
(s, 2H), 2.51 (dd, J = 13.6, 6.0 Hz, 2H), 1.67–1.59 (m, 2H), 1.38–1.29 (m, 12H), 0.94 (t, J =
6.9 Hz, 3H). The 13C NMR (101 MHz, CDCl3) δ 138.3, 136.2, 128.7, 127.2, 125.5, 125.4, 125.0,
110.2, 105.3, 47.2, 46.9, 31.8, 29.3, 28.6, 26.5, 22.5, 13.8. HRMS-ESI (m/z): [M + H]+ calcd.
for C21H31N4, 339.4618, found 339.4620. Copies of 1H and 13C NMR could be found in
Supplementary Materials.

(R)-2-(Azidomethyl)-3-methyl-5-phenyl-1-(1-phenylethyl)-1H-pyrrole (2h)

Yellow liquid, (83 mg) 75% yield. The 1H NMR (400 MHz, CDCl3) δ 7.35–7.24 (m, 8H),
7.04–7.02 (m, 2H), 6.08 (s, 1H), 5.59 (q, J = 7.3 Hz, 1H), 4.23 (d, J = 14.7 Hz, 1H), 3.75 (d, J
= 14.8 Hz, 1H), 2.16 (s, 3H), 1.88 (d, J = 7.2 Hz, 3H). The 13C NMR (101 MHz, CDCl3) δ
142.4, 133.8, 129.4, 128.6, 128.4, 127.4, 127.1, 125.8, 122.6, 121.7, 110.3, 53.2, 45.1, 19.9, 11.3.
HRMS-ESI (m/z): [M + H]+ calcd. for C20H21N4, 317.5973, found 317.5975. Copies of 1H
and 13C NMR could be found in Supplementary Materials.

(R)-2-(Azidomethyl)-5-(((tert-butyldimethylsilyl)oxy)methyl)-3-methyl-1-(1-phenylethyl)-
1H-pyrrole (2i)

Yellow liquid, (91 mg) 72% yield. The 1H NMR (400 MHz, CDCl3) δ 7.34–7.26 (m, 3H),
7.18–7.14 (m, 2H), 5.97 (s, 1H), 5.72 (q, J = 7.2 Hz, 1H), 4.53 (s, 2H), 4.22 (d, J = 14.7 Hz,
1H), 3.81 (d, J = 14.7 Hz, 1H), 2.12 (s, 3H), 1.94 (d, J = 7.2 Hz, 3H), 0.88 (s, 9H), 0.05 (d, J =
7.1 Hz, 6H). The 13C NMR (101 MHz, CDCl3) δ 142.0, 133.0, 128.4, 127.1, 126.2, 122.6, 119.9,
109.7, 57.8, 53.1, 44.6, 25.8, 19.6, 18.2, 11.2, −5.2. HRMS-ESI (m/z): [M + Na]+ calcd. for
C21H32N4NaOSi, 407.8471, found 407.8474. Copies of 1H and 13C NMR could be found in
Supplementary Materials.

(R)-2-(Azidomethyl)-5-(((tert-butyldimethylsilyl)oxy)methyl)-3-(4-methoxyphenyl)-1-(1-
phenylethyl)-1H-pyrrole (2j)

Yellow liquid, (87 mg) 70% yield. The 1H NMR (400 MHz, CDCl3) δ 7.40–7.34 (m, 4H),
7.32–7.29 (m, 1H), 7.22 (dd, J = 5.1, 4.2 Hz, 2H), 6.97 (d, J = 8.8 Hz, 2H), 6.25 (s, 1H), 5.82
(q, J = 7.1 Hz, 1H), 4.55 (s, 2H), 4.34 (d, J = 14.6 Hz, 1H), 4.05 (d, J = 14.6 Hz, 1H), 3.87 (s,
3H), 2.04 (d, J = 7.2 Hz, 3H), 0.91 (s, 9H), 0.08 (d, J = 3.9 Hz, 6H). The 13C NMR (101 MHz,
CDCl3) δ 158.2, 141.6, 133.7, 129.6, 128.6, 128.5, 127.3, 126.4, 126.3, 122.5, 113.9, 109.1, 57.9,
55.3, 53.6, 45.4, 25.9, 19.6, 18.2, −5.2. HRMS-ESI (m/z): [M + H]+ calcd. for C27H37N4O2Si,
477.0417, found 477.0419. Copies of 1H and 13C NMR could be found in Supplementary
Materials.
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(R)-5-(((5-(((tert-Butyldimethylsilyl)oxy)methyl)-3-methyl-1-(1-phenylethyl)-1H-pyrrol-2-
yl)methyl)thio)-1-phenyl-1H-tetrazole (2k)

Yellow liquid, (107 mg) 82% yield. The 1H NMR (400 MHz, CDCl3) δ 7.83–7.80 (m,
2H), 7.56–7.48 (m, 3H), 7.21 (t, J = 7.6 Hz, 2H), 7.11–7.03 (m, 3H), 6.08 (s, 1H), 5.85 (q, J
= 7.1 Hz, 1H), 5.28 (s, 2H), 4.53 (s, 2H), 2.19 (s, 3H), 1.93 (d, J = 7.2 Hz, 3H), 0.88 (s, 9H),
0.06 (d, J = 2.8 Hz, 6H). The 13C NMR (101 MHz, CDCl3) δ 162.1, 141.3, 134.7, 133.6, 129.4,
129.1, 128.2, 126.8, 126.1, 123.6, 121.4, 120.3, 110.5, 58.0, 53.5, 42.6, 25.9, 19.9, 18.3, 11.5, −5.2.
HRMS-ESI (m/z): [M + H]+ calcd. for C28H38N5OSSi, 520.4336, found 520.4340. Copies of
1H and 13C NMR could be found in Supplementary Materials.

5-(((1-Benzyl-5-nonyl-1H-pyrrol-2-yl)methyl)thio)-1-phenyl-1H-tetrazole (2l)

Yellow liquid, (115 mg) 81% yield. The 1H NMR (400 MHz, CDCl3) δ 7.66 (dd,
J = 8.2, 1.5 Hz, 2H), 7.51–7.43 (m, 3H), 7.17 (t, J = 7.4 Hz, 2H), 7.11 (d, J = 7.3 Hz, 1H), 6.67
(d, J = 7.5 Hz, 2H), 6.52 (d, J = 3.5 Hz, 1H), 6.03 (d, J = 3.5 Hz, 1H), 5.44 (s, 2H), 5.32 (s, 2H),
2.44–2.39 (m, 2H), 1.57 (dd, J = 15.0, 7.4 Hz, 2H), 1.30–1.22 (m, 12H), 0.87 (t, J = 6.8 Hz, 3H).
The 13C NMR (101 MHz, CDCl3) δ 162.4, 137.9, 136.5, 134.5, 129.4, 128.9, 128.4, 127.0, 124.9,
123.8, 123.4, 111.9, 105.7, 46.9, 43.6, 31.8, 29.5, 29.4, 29.3, 28.5, 26.4, 22.6, 14.1. HRMS-ESI
(m/z): [M + H]+ calcd. for C28H36N5S, 474.3226, found 474.3228. Copies of 1H and 13C
NMR could be found in Supplementary Materials.

1-Benzyl-2-(((4-methoxybenzyl)thio)methyl)-5-phenyl-1H-pyrrole (2m)

Yellow liquid, (105 mg) 75% yield. The 1H NMR (400 MHz, CDCl3) δ 7.32–7.29 (m,
4H), 7.25–7.15 (m, 6H), 6.86–6.79 (m, 4H), 6.22 (d, J = 3.5 Hz, 1H), 6.17 (d, J = 3.5 Hz, 1H),
5.25 (s, 2H), 3.79 (s, 3H), 3.62 (s, 2H), 3.44 (s, 2H). The 13C NMR (101 MHz, CDCl3) δ 158.5,
138.9, 136.2, 133.4, 130.3, 130.0, 128.8, 128.6, 128.3, 126.9, 125.6, 113.8, 110.0, 108.0, 55.3, 47.4,
34.9, 27.5. HRMS-ESI (m/z): [M + Na]+ calcd. for C26H25NNaOS, 422.5371, found 422.5375.
Copies of 1H and 13C NMR could be found in Supplementary Materials.

(R)-5-(methoxymethyl)-4-methyl-1-(1-phenylethyl)-1H-pyrrole-2-carbaldehyde (4a)

To a stirred solution of secondary alcohol 3 (200 mg, 0.527 mmol) was dissolved in
CH2Cl2 (6 mL) under N2 at 0 ◦C and Dess–Martin periodinane (335 mg, 0.791 mmol) was
added to the reaction mixture and allowed to stir for 2 h. Ether was added to the reaction
mixture and the solid was filtered. The filtrate was washed with saturated NaHCO3
solution, dried over anhydrous Na2SO4, and solvents were removed under vacuum to
obtain a crude product, which was used for the next reaction without further purification.

To a stirred solution of above crude ketone compound was dissolved in MeOH (3 mL)
under N2 at 0 ◦C and ZnCl2 (86 mg, 0.632 mmol) was added to the reaction mixture and
allowed to stir for 2 h. After 2 h, the reaction mixture was diluted with CH2Cl2 (10 mL),
quenched with water, and extracted with CH2Cl2 (2 × 10 mL). The organic layer was dried
over Na2SO4 and concentrated in vacuo to obtain a crude product, which was purified
by silica gel column chromatography (EtOAc/hexane, 1:9) to obtain pyrrole compound
4a (102 mg, 75% yield) as a yellow liquid. The 1H NMR (400 MHz, CDCl3) δ 9.41 (s, 1H),
7.32–7.26 (m, 3H), 7.13 (d, J = 8.1 Hz, 2H), 6.80 (s, 1H), 6.56 (s, 1H), 4.20 (d, J = 12.4 Hz, 1H),
4.07 (d, J = 12.4 Hz, 1H), 3.21 (s, 3H), 2.12 (s, 3H), 1.91 (d, J = 7.1 Hz, 3H). The 13C NMR
(101 MHz, CDCl3) δ 179.1, 141.5, 136.3, 131.4, 128.3, 127.0, 126.1, 125.1, 121.7, 63.5, 57.7, 53.9,
19.4, 11.1. HRMS-ESI (m/z): [M + H]+ calcd. for C16H20NO2, 258.2714, found 258.2718.
Copies of 1H and 13C NMR could be found in Supplementary Materials.

(R)-5-(Chloromethyl)-4-methyl-1-(1-phenylethyl)-1H-pyrrole-2-carbaldehyde (4b)

Yellow liquid, (92 mg) 70% yield. The 1H NMR (400 MHz, CDCl3) δ 9.50 (s, 1H),
7.37–7.29 (m, 3H), 7.16–7.13 (m, 2H), 6.82 (s, 1H), 6.77 (s, 1H), 4.43 (d, J = 12.8 Hz, 1H), 4.27
(d, J = 12.9 Hz, 1H), 2.15 (s, 3H), 2.00 (d, J = 7.2 Hz, 3H). The 13C NMR (101 MHz, CDCl3) δ
179.6, 141.1, 135.3, 131.6, 128.6, 128.4, 127.3, 125.9, 125.3, 53.8, 35.4, 19.4, 10.8. HRMS-ESI
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(m/z): [M + H]+ calcd. for C15H17ClNO, 262.1479, found 262.1483. Copies of 1H and 13C
NMR could be found in Supplementary Materials.

(R)-(5-Formyl-3-methyl-1-(1-phenylethyl)-1H-pyrrol-2-yl)methyl acetate (4c)

Yellow liquid, (98 mg) 78% yield. The 1H NMR (400 MHz, CDCl3) δ 9.47 (s, 1H),
7.32–7.26 (m, 3H), 7.11 (d, J = 8.0 Hz, 2H), 6.81 (s, 1H), 6.65 (s, 1H), 4.96 (d, J = 13.4 Hz,
1H), 4.69 (d, J = 13.4 Hz, 1H), 2.11 (s, 3H), 1.91 (t, J = 3.5 Hz, 6H). The 13C NMR (101 MHz,
CDCl3) δ 179.5, 170.3, 141.0, 134.0, 131.8, 128.4, 127.2, 126.0, 125.4, 55.6, 53.9, 20.6, 19.4, 10.9.
HRMS-ESI (m/z): [M + H]+ calcd. for C17H20NO3, 286.6442, found 286.6446. Copies of 1H
and 13C NMR could be found in Supplementary Materials.

(R)-2-(5-Formyl-3-methyl-1-(1-phenylethyl)-1H-pyrrol-2-yl)acetonitrile (4d)

Yellow liquid, (93 mg) 65% yield. The 1H NMR (400 MHz, CDCl3) δ 9.47 (s, 1H),
7.32–7.27 (m, 3H), 7.12–7.09 (m, 2H), 6.81 (s, 1H), 6.65 (s, 1H), 4.96 (d, J = 13.4 Hz, 1H), 4.69
(d, J = 13.3 Hz, 1H), 2.11 (s, 3H), 1.90 (d, J = 2.2 Hz, 3H). The 13C NMR (101 MHz, CDCl3)
δ 179.4, 141.0, 133.9, 131.8, 128.5, 128.4, 127.2, 126.0, 125.9, 125.3, 55.6, 53.9, 20.6, 19.4, 10.9.
HRMS-ESI (m/z): [M + H]+ calcd. for C16H17N2O, 253.4441, found 253.4446. Copies of 1H
and 13C NMR could be found in Supplementary Materials.

Ethyl 1-phenethylaziridine-2-carboxylate (11)

To a stirred solution of ethyl 2,3-dibromopropanoate (5.0 g, 19.30 mmol, 1.0 equiv)
dissolved in acetonitrile (60 mL), were added potassium carbonate (8.0 g, 57.9 mmol,
3.0 equiv) followed by 2-phenylethanamine (2.9 mL, 23.16 mmol, 1.2 equiv) in dropwise
manner at room temperature and reaction mixture were allowed to stir for 12 h. After
completion, quenched with water (25 mL) and filtered out over filter paper (pore size 8–10
µm). The organic mixture was extracted with Et2O (2 × 30 mL), dried over anhydrous
magnesium sulfate, and concentrated under reduced pressure to obtain a crude mixture of
Ethyl 1-phenethylaziridine-2-carboxylate 11 as a yellow liquid (3.8 g, 89%). The 1H NMR
(400 MHz, CDCl3) δ 7.27 (ddd, J = 7.4, 3.1, 1.3 Hz, 2H), 7.22–7.16 (m, 3H), 4.24–4.11 (m, 2H),
2.93 (dd, J = 15.1, 6.9 Hz, 2H), 2.65–2.49 (m, 2H), 2.14 (dd, J = 3.1, 1.2 Hz, 1H), 1.94 (dd,
J = 6.5, 3.1 Hz, 1H), 1.52 (dd, J = 6.5, 1.1 Hz, 1H), 1.27 (t, J = 7.1 Hz, 3H). The 13C NMR
(101 MHz, CDCl3) δ 170.7, 139.3, 128.7, 128.3, 126.1, 62.3, 61.0, 37.5, 36.0, 34.3, 14.1. HRMS-
ESI (m/z): [M + H]+ calcd. for C13H18NO2, 220.6121, found 220.6128. Copies of 1H and 13C
NMR could be found in Supplementary Materials.

N-Methoxy-N-methyl-1-phenethylaziridine-2-carboxamide (12)

To a stirred solution of ester 11 (3.8 g, 17.35 mmol) and N,O-dimethylhydroxylamine
hydrochloride (2.53 g, 26.0 mmol) in dry THF (50 mL) at 0 ◦C was slowly added i-PrMgCl
(26.0 mL, 2.0 M in THF, 52.05 mmol), and the reaction mixture was stirred for 1 h. The
reaction mixture was quenched with saturated NH4Cl solution and extracted with EtOAc
(3 × 20 mL). The combined organic layers were dried over anhydrous Na2SO4 and con-
centrated in vacuo to obtain the crude product, which was purified by silica gel column
chromatography (EtOAc/hexanes, 1:1) to afford Weinreb amide 12 as a yellow color oil
(3.2 g, 78.8%) yield. The 1H NMR (400 MHz, CDCl3) δ 7.29–7.25 (m, 2H), 7.20 (d, J = 7.2 Hz,
3H), 3.68 (s, 3H), 3.21 (s, 3H), 2.99–2.88 (m, 2H), 2.71 (ddd, J = 11.4, 8.7, 6.6 Hz, 1H), 2.56–2.42
(m, 2H), 2.17 (dd, J = 3.2, 1.3 Hz, 1H), 1.51 (dd, J = 6.5, 1.2 Hz, 1H). The 13C NMR (101 MHz,
CDCl3) δ 170.3, 139.6, 128.7, 128.3, 126.1, 62.7, 61.6, 36.1, 35.3, 34.0, 32.5. HRMS-ESI (m/z):
[M + H]+ calcd. for C13H19N2O2, 235.0336, found 234.0340. Copies of 1H and 13C NMR
could be found in Supplementary Materials.

1-(1-Phenethylaziridin-2-yl)but-3-en-1-ol (13)

To a stirred solution of Weinreb amide 12 (3.2 g, 13.67 mmol) was slowly added
allylMgBr (8.2 mL, 2.0 M in THF, 16.4 mmol) in dry THF (40 mL) at 0 ◦C, and the reaction
mixture was stirred for 1 h. The reaction mixture was quenched with saturated NH4Cl



Molecules 2022, 27, 6869 10 of 13

solution and extracted with EtOAc (2 × 20 mL). The combined organic layers were dried
over anhydrous Na2SO4 and concentrated in vacuo to obtain the crude allyl product, which
was used for the next reaction without further purification.

To a stirred solution of above keto compound (3.2 g, 14.86 mmol) was slowly added
NaBH4 (0.45 g, 11.88 mmol) in MeOH (40 mL) at 0 ◦C, and the reaction mixture was stirred
for 1 h. Then, MeOH was removed under vacuum and extracted with CH2Cl2 (2 × 10 mL).
The organic layer was dried over Na2SO4 and concentrated in vacuo to obtain the crude
allyl alcohol product, which was purified by column chromatography (EtOAc/hexanes,
2:8) to give pure 1-(1-phenethylaziridin-2-yl)but-3-en-1-ol (13) as a yellow liquid (2.6 g,
87%) yield. The 1H NMR (400 MHz, CDCl3) δ 7.33–7.16 (m, 5H), 5.84 (ddt, J = 17.2, 10.2,
7.1 Hz, 1H), 5.16–5.06 (m, 2H), 3.66 (td, J = 6.3, 3.8 Hz, 1H), 2.85 (t, J = 7.4 Hz, 2H), 2.67 (dt, J
= 11.6, 7.3 Hz, 1H), 2.52–2.43 (m, 1H), 2.24 (t, J = 6.7 Hz, 2H), 1.80 (d, J = 3.6 Hz, 1H), 1.49
(dt, J = 7.0, 3.7 Hz, 1H), 1.23 (d, J = 6.4 Hz, 1H). The 13C NMR (101 MHz, CDCl3) δ 139.7,
134.3, 128.7, 128.3, 126.1, 117.4, 67.9, 61.7, 42.2, 39.3, 36.3, 29.3. HRMS-ESI (m/z): [M + H]+

calcd. for C14H20NO, 218.0231, found 218.0234. Copies of 1H and 13C NMR could be found
in Supplementary Materials.

2-(1-((tert-Butyldimethylsilyl)oxy)but-3-en-1-yl)-1-phenethylaziridine (14)

To a stirred solution of allyl alcohol 13 (2.5 g, 11.50 mmol) in dry CH2Cl2 (30 mL) was
added imidazole (1.5 g, 23.0 mmol) and TBSCl (1.9 g, 12.65 mmol), sequentially, at 0 ◦C
under an N2 atmosphere. After 4 h of being stirred at rt, the reaction mixture was quenched
with saturated aqueous NH4Cl (10 mL). The organic layer was separated, and the aqueous
layer was extracted with CH2Cl2 (2 × 20 mL). The organic layer was dried over Na2SO4
and concentrated in vacuo to obtain the crude product, which was purified by column
chromatography (EtOAc/hexanes, 2:8) to give pure 2-(1-((tert-butyldimethylsilyl)oxy)but-
3-en-1-yl)-1-phenethylaziridine 14 as a yellow liquid (2.8 g, 73%) yield. The 1H NMR
(400 MHz, CDCl3) δ 7.30–7.24 (m, 2H), 7.19 (dd, J = 7.1, 5.2 Hz, 3H), 5.91 (ddt, J = 17.1, 10.2,
7.1 Hz, 1H), 5.13–5.04 (m, 2H), 3.20 (td, J = 7.0, 4.4 Hz, 1H), 2.86 (t, J = 8.0 Hz, 2H), 2.55 (dt,
J = 11.5, 7.7 Hz, 1H), 2.48–2.33 (m, 3H), 1.69 (d, J = 3.4 Hz, 1H), 1.45 (ddd, J = 7.6, 6.4, 3.4 Hz,
1H), 1.29 (d, J = 6.3 Hz, 1H), 0.88 (s, 9H), 0.02 (d, J = 2.1 Hz, 6H). The 13C NMR (101 MHz,
CDCl3) δ 139.8, 135.0, 128.6, 128.3, 126.0, 116.9, 74.6, 62.7, 43.6, 40.9, 36.3, 33.9, 25.8, 18.1,
−4.1, −4.6. HRMS-ESI (m/z): [M + H]+ calcd. for C20H34NOSi, 332.1222, found 332.1224.
Copies of 1H and 13C NMR could be found in Supplementary Materials.

Octamethyl-8-(1-phenethylaziridin-2-yl)-4,9-dioxa-3,10-disiladodecan-6-one (15)

To a stirred solution of 2-(1-((tert-butyldimethylsilyl)oxy)but-3-en-1-yl)-1-
phenethylaziridine 14 (2.5 g, 7.5 mmol) and N-Methylmorpholine N-oxide (2.64 g, 22.61
mmol) in acetone: H2O (4:1) (20 mL) at room temperature was slowly added OsO4 (3.2 mL,
0.75 mmol), and the reaction mixture was stirred for 6 h. The reaction mixture was quenched
with saturated NH2SO3 solution and extracted with EtOAc (3 × 20 mL). The combined
organic layers were dried over anhydrous Na2SO4 and concentrated in vacuo to obtain the
crude dihydroxy product, which was used for the next reaction without further purification.

To a stirred solution of dihydroxy alcohol (2.5 g, 6.8 mmol) in dry CH2Cl2 (30 mL)
was added imidazole (0.93 g, 13.67 mmol) and TBSCl (1.13 g, 7.5 mmol), sequentially, at
0 ◦C under an N2 atmosphere. After 2 h of being stirred at rt, the reaction mixture was
quenched with saturated aqueous NH4Cl (10 mL). The organic layer was separated, and
the aqueous layer was extracted with CH2Cl2 (2 × 20 mL). The organic layer was dried
over Na2SO4 and concentrated in vacuo to obtain the crude product, which was used for
the next reaction without further purification.

To a solution of oxalyl chloride (0.67 mL, 7.81 mmol) in CH2Cl2 (20 mL) at −78 ◦C
was added dimethyl sulfoxide (1.1 mL, 15.63 mmol) over 15 min. The resulting mixture
was stirred for another 45 min and then a solution of alcohol (2.5 g, 5.21 mmol) in CH2Cl2
(20 mL) was added dropwise. The resulting white suspension was stirred for 2h before
adding triethylamine (2.18 mL, 15.63 mmol). The reaction mixture was stirred for 30
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min at −78 ◦C and then warmed to 0 ◦C and allowed to stir for 15 min. The reaction
mixture was quenched with water (20 mL) and the aqueous phase was extracted with
CH2Cl2 (2 × 20 mL). The combined organic layers were washed with brine, dried over
anhydrous Na2SO4, and concentrated under reduced pressure to obtain a crude, which
was purified by column chromatography (EtOAc/hexanes, 2:8) to give pure Octamethyl-8-
(1-phenethylaziridin-2-yl)-4,9-dioxa-3,10-disiladodecan-6-one 15 as a yellow liquid (2.1 g,
62%) yield. The 1H NMR (400 MHz, CDCl3) δ 7.27–7.25 (m, 2H), 7.18 (t, J = 7.6 Hz, 3H),
4.17 (s, 2H), 4.00–3.90 (m, 1H), 2.82 (t, J = 6.9 Hz, 2H), 2.65–2.59 (m, 2H), 2.59–2.52 (m, 1H),
2.35–2.28 (m, 1H), 1.66 (d, J = 2.5 Hz, 1H), 1.54 (dd, J = 9.0, 6.4 Hz, 1H), 1.18 (d, J = 6.0 Hz,
1H), 0.92 (s, 9H), 0.87 (s, 9H), 0.10 (s, 6H), 0.08 (s, 6H). The 13C NMR (101 MHz, CDCl3) δ
208.1, 139.9, 128.6, 128.3, 126.0, 70.1, 70.0, 62.9, 43.9, 43.8, 36.3, 31.1, 25.8, 25.8, 18.3, 18.0,
−3.5, −4.3, −4.9, −5.4. HRMS-ESI (m/z): [M + H]+ calcd. for C26H47NO3Si2, 448.4378,
found 448.4382. Copies of 1H and 13C NMR could be found in Supplementary Materials.

(5-(((tert-Butyldimethylsilyl)oxy)methyl)-1-phenethyl-1H-pyrrol-2-yl)methyl acetate (16)

To a stirred solution of Octamethyl-8-(1-phenethylaziridin-2-yl)-4,9-dioxa-3,10-
disiladodecan-6-one 15 (1.5 g, 3.13 mmol) in dry CH2Cl2 (30 mL) was added acetic acid
(0.56 mL, 6.27 mmol) at 0 ◦C under an N2 atmosphere. After 6 h stirred at 0 ◦C, the reaction
mixture was quenched with saturated aqueous NH2CO3 (10 mL). The organic layer was
separated, and the aqueous layer was extracted with CH2Cl2 (2 × 20 mL). The organic
layer was dried over Na2SO4 and concentrated in vacuo to obtain the crude product, which
was purified by column chromatography (EtOAc/hexanes, 2:8) to give pure (5-(((tert-
butyldimethylsilyl)oxy)methyl)-1-phenethyl-1H-pyrrol-2-yl)methyl acetate 16 as a yellow
liquid (1.0 g, 82%) yield. The 1H NMR (400 MHz, CDCl3) δ 7.30 (dd, J = 7.9, 6.4 Hz, 2H),
7.23 (d, J = 7.4 Hz, 1H), 7.14–7.11 (m, 2H), 6.15 (d, J = 3.5 Hz, 1H), 6.00 (d, J = 3.5 Hz, 1H),
4.96 (s, 2H), 4.53 (s, 2H), 4.17 (t, J = 6.5 Hz, 2H), 3.06 (t, J = 6.2 Hz, 2H), 2.06 (s, 3H), 0.89 (s,
9H), 0.05 (s, 6H). The 13C NMR (101 MHz, CDCl3) δ 170.7, 138.6, 133.5, 128.8, 128.6, 127.3,
126.6, 110.4, 108.0, 57.9, 57.6, 45.8, 38.0, 25.9, 21.1, 18.3, −5.2. HRMS-ESI (m/z): [M + Na]+

calcd. for C22H33NNaO3Si, 410.6150, found 410.6158. Copies of 1H and 13C NMR could be
found in Supplementary Materials.

(5-(((tert-Butyldimethylsilyl)oxy)methyl)-1-phenethyl-1H-pyrrol-2-yl)methanol (17)

To a stirred solution of (5-(((tert-butyldimethylsilyl)oxy)methyl)-1-phenethyl-1H-pyrrol-2-
yl)methyl acetate 16 (0.7 g, 1.80 mmol) in MeOH (10 mL) was added potassium carbonate
(0.249 g, 1.80 mmol) at 0 ◦C, and the mixture was stirred for 1 h at rt. Then, MeOH
was removed under vacuum and extracted with CH2Cl2 (2 × 10 mL). The organic layer
was dried over Na2SO4 and concentrated in vacuo to obtain the crude product, which
was purified by column chromatography (EtOAc/hexanes, 4:6) to give pure (5-(((tert-
butyldimethylsilyl)oxy)methyl)-1-phenethyl-1H-pyrrol-2-yl)methanol (17) as a yellow liq-
uid (0.5 g, 80% yield). The 1H NMR (400 MHz, CDCl3) δ 7.32–7.20 (m, 3H), 7.15–7.10
(m, 2H), 6.01 (d, J = 3.5 Hz, 1H), 5.97 (d, J = 3.5 Hz, 1H), 4.55 (s, 2H), 4.42 (s, 2H), 4.24 (t,
J = 6.5 Hz, 2H), 3.10 (t, J = 6.2 Hz, 2H), 0.90 (s, 9H), 0.06 (s, 6H). The 13C NMR (101 MHz,
CDCl3) δ 138.9, 133.1, 132.7, 128.9, 128.5, 126.5, 107.8, 107.7, 57.6, 56.9, 45.7, 38.0, 25.9, 18.3,
−5.2. HRMS-ESI (m/z): [M + H]+ calcd. for C20H32NO2Si, 346.5226, found 346.5231.

5-(((tert-Butyldimethylsilyl)oxy)methyl)-1-phenethyl-1H-pyrrole-2-carbaldehyde (18)

To a stirred solution of alcohol 17 (0.5 g, 1.29 mmol) in dry CH2Cl2 (4 mL) was added
Dess–Martin periodinane (0.820 g, 1.93 mmol) at 0 ◦C, and the mixture was stirred for 1 h
at rt. Then, the reaction mixture was quenched with a 1:1 mixture of saturated solution of
NaHCO3 (10 mL) and extracted with CH2Cl2 (2 × 10 mL). The organic layer was dried
over Na2SO4 and concentrated in vacuo to obtain the crude product, which was purified
by column chromatography (EtOAc/hexanes, 2:8) to give pure aldehyde 18 as a yellow
liquid (330 mg, 74% yield). The 1H NMR (400 MHz, CDCl3) δ 9.55 (s, 1H), 7.27 (dd,
J = 5.2, 2.1 Hz, 3H), 7.16–7.13 (m, 2H), 6.90 (d, J = 4.0 Hz, 1H), 6.11 (d, J = 4.0 Hz, 1H), 4.53
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(t, J = 6.5 Hz, 2H), 4.31 (s, 2H), 3.04 (t, J = 6.2 Hz, 2H), 0.89 (s, 9H), 0.04 (s, 6H). The 13C
NMR (101 MHz, CDCl3) δ 179.2, 142.2, 138.6, 132.0, 129.0, 128.4, 126.5, 124.5, 109.6, 57.0,
47.6, 37.6, 25.8, 18.2, −5.3. HRMS-ESI (m/z): [M + H]+ calcd. for C20H30NO2Si, 344.2264,
found 344.2269. Copies of 1H and 13C NMR could be found in Supplementary Materials.

5-(Hydroxymethyl)-1-phenethyl-1H-pyrrole-2-carbaldehyde (19)

To a stirred solution of 5-(((tert-butyldimethylsilyl)oxy)methyl)-1-phenethyl-1H-
pyrrole-2-carbaldehyde (18) (0.3 g, 0.87 mmol) in dry THF (10 mL) was added TBAF
(0.94 mL, 1.0 M in THF, 0.96 mmol) at 0 ◦C and stirred for 1 h. After completion of the
reaction was quenched with saturated aqueous NH2CO3 (10 mL). The organic layer was
separated, and the aqueous layer was extracted with ethyl acetate (2 × 20 mL). The or-
ganic layer was dried over Na2SO4 and concentrated in vacuo to obtain the crude product,
which was purified by column chromatography (EtOAc/hexanes, 3:7) to give pure 5-
(hydroxymethyl)-1-phenethyl-1H-pyrrole-2-carbaldehyde 19 as a yellow oil (168 mg, 84%
yield). The 1H NMR (400 MHz, CDCl3) δ 9.58 (s, 1H), 7.27–7.21 (m, 3H), 7.10 (d, J = 6.5 Hz,
2H), 6.93 (d, J = 4.0 Hz, 1H), 6.17 (d, J = 4.0 Hz, 1H), 4.55 (t, J = 7.2 Hz, 2H), 4.29 (s, 2H),
3.05 (t, J = 7.2 Hz, 2H). The 13C NMR (101 MHz, CDCl3) δ 179.4, 141.7, 138.5, 132.2, 129.0,
128.6, 126.7, 124.6, 110.0, 56.3, 47.6, 37.7. HRMS-ESI (m/z): [M + H]+ calcd. for C14H16NO2,
230.1178, found 230.1185. Copies of 1H and 13C NMR could be found in Supplementary
Materials.

4. Conclusions

In summary, multi-substituted pyrroles were synthesized from regiospecific aziridine
ring opening and subsequently intramolecular cyclization with a carbonyl group at the
γ-position in the presence of Lewis acid (TMSN3 or ZnCl2) or protic acid (AcOH). This
method is high atom economical in that all reactants are incorporated into the final product
with the removal of water. This new protocol can be applied to the synthesis of various
pyrroles, including natural products.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/molecules27206869/s1; All analytical data of compounds
other than the representative example are reported along the copies of 1H and 13C NMR spectra.
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