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Protein-protein interaction analysis in crude
bacterial lysates using combinational method
of 19F site-specific incorporation and 19F NMR

Dear Editor,

Protein-protein interactions (PPI) are essential for a variety
of cellular functions. Many PPI analyses were conducted
in vitro, using purified proteins. In this report, the unnatural
amino acid tfmF was site-specifically incorporated into sev-
eral different sites of two Phox-Bem1 (PB1) domains from
two mitogen activated protein kinases (MEKK3 and/ or
MEK5) in the E. coli cells. Solution NMR 19F chemical shift
and side chain relaxation analysis demonstrated that
MEKK3-PB1-I57, MEKK3-PB1-F77, and MEK5-PB1-I70
sites were located in the interaction interface of the MEKK3/
MEK5 complex, which was consistent with the crystal
structure of MEKK3-PB1/MEK5-PB1 complex. Furthermore,
crude lysates from E. coli cells with co-expressed tfmF
incorporated MEKK3-PB1 and MEK5-PB1 were applied for
19F NMR analysis. The successful implementation of in situ
PPI analysis using the combinational method of site-specific
tfmF incorporation and 19F NMR demonstrated that this
method could be a valuable general method for conformation
and function studies of soluble multi-domain proteins or
protein complexes in bacterial crude lysate, without proce-
dures of protein purification.

Protein-protein interactions (PPI) play essential roles in
cellular functions, such as DNA transcription, signal trans-
duction, or cytoskeleton formation. Currently, a variety of
techniques, including co-immunoprecipitation, isothermal
titration calorimetry, and surface plasma resonance are fre-
quently applied for PPI studies (Syafrizayanti et al., 2014).
However, these methods can only provide the overall inter-
action pattern or internal motion of purified protein com-
plexes, and have many limitations such as low specificity,
high background or false positives (Syafrizayanti et al.,
2014). Structure determination methods (such as X-ray
crystallography and electron cryo-microscopy) can precisely
illustrate protein interaction interface, while these structural
methods require high concentration of purified proteins.

Recently, it has been reported that the cytoplasmic
environment might have profound effects in regulating
protein–protein and/or protein–ligand interactions that were
hardly observed in vitro (Smith et al., 2014). The crucial

difference between in vivo and in vitro conditions lies in the
high environmental concentration of diverse macro-
molecules, which is approximately 200 mg/mL in the
eukaryotic cytoplasm and more than 400 mg/mL in
prokaryotes (Mika and Poolman, 2011). Traditional in vitro
biochemical studies of proteins were conducted in dilute
solution with low macromolecular concentration (∼10 mg/
mL), which might not reveal protein-protein interaction or its
mechanism in high fidelity.

Solution nuclear magnetic resonance (NMR) is powerful
for PPI analysis and recently it has been applied to analyze
protein conformation changes in living cells (Hansel et al.,
2014). However, the traditional in-cell NMR method was
hindered by low signal sensitivity and complicated reso-
nance assignment of proteins in vivo (Hansel et al., 2014). At
the same time, the solution NMR signals of large size pro-
teins were very weak in intensity, with broad line width, due
to slow global correlation time and rapid nuclei spin relax-
ation rate. Consequently, NMR resonance assignments of
uniformly isotope labeled proteins will be very laborious due
to strong overlaps in peaks with broad line width and low
intensity. Alternatively, site-specific 19F incorporation and 19F
NMR could provide a tool to implement PPI analysis in situ or
in vivo. In the past decades, 19F NMR has been widely used
for protein dynamic conformation changes and functional
studies (Guo et al., 2015; Shi et al., 2011). Different from
traditional multiple-site 19F incorporation through growing
bacteria in media containing the 19F-aromatic residues (Lee
et al., 2000), the 19F-containing unnatural amino acids could
implement site-specific 19F labeling, resulting in the straight-
forward resonance assignment (Hammill et al., 2007; Li
et al., 2010). The trifluoromethyl phenylalanine (tfmF) was
successfully used for analyses of membrane protein’s con-
formation changes, dynamics and functions (Shi et al.,
2012). Additionally, the fast rotational motion of the CF3-
group in tfmF leads to a sharp single peak, which makes the
tfmF-19F NMR method ideal for protein complex studies in
high crowding conditions, such as cell lysate or cellular
environment. Therefore, combinational application of the
tfmF incorporation and 19F NMR for in situ PPI analysis
would be immensely valuable, not only for PPI mechanism
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studies, but also for PPI drug design with high specific and
potent therapeutic principles against many diseases.

Here, the 19F-NMR PPI analysis in the native cellular
environment was exemplified using the Phox and Bem1
(PB1) domains from two mitogen-activated protein kinases
(MAPKs): MEKK3 and MEK5 (Drew et al., 2012). The
MEKK3-PB1 domain (type II group) contains a positively
charged basic cluster in the front end, whereas the MEK5-
PB1 domain (type I group) contains a negatively charged
acidic OPCA motif in the back end. The electrostatic inter-
actions were known to be the major force for heterodimer
formation between the type II MEKK3-PB1 and type I MEK5-
PB1 in a front-to-back manner (Hu et al., 2007). In this
report, the unnatural amino acid 19F-tfmF was incorporated
into several sites of MEKK3-PB1 and MEK5-PB1, respec-
tively. Then, 19F NMR chemical shift and relaxation data
were obtained to analyze the interaction interfaces between
MEKK3-PB1 and MEK5-PB1. The 19F chemical shift per-
turbations of residues in the interfacial region of MEKK3-
PB1/MEK5-PB1 complex in crude bacterial cell lysates
(without protein purification) were observed to be consistent
not only with the 19F chemical shift data of the purified pro-
tein complex, but also with the crystal structure of the
MEKK3-PB1/MEK5-PB1 complex, which strongly indicated
the validity of the proposed general method of 19F-tfmF/19F-
NMR for in situ PPI analysis.

As shown in Fig. 1A, four residue sites (MEKK3-I57,
MEKK3-F77, MEK5-I70 and MEK5-F41) were selected for
site-specific tfmF incorporations. Size-exclusion chromatog-
raphy (SEC) was applied to verify the complex formation
between MEKK3-PB1-I57tfmF and MEK5-PB1-I70tfmF. In
the SEC diagram, the earlier retention time of the MEKK3-
PB1-tfmF/MEK5-PB1-tfmF than the MEKK3-PB1 or MEK5-
PB1 indicated the stable complex formation (Fig. 1B). Single
band in SDS–PAGE of purified MEKK3-PB1-I57tfmF and/or
MEK5-PB1-I70tfmF with Ni2+-NTA affinity chromatography
demonstrated a good purity of these proteins (Fig. 1B, inset).
MEKK3-PB1 and MEK5-PB1 were co-expressed using
plasmid pETDuet-1 for site-specific tfmF-incorporation, and
were co-purified using Ni2+-NTA affinity chromatography
(Fig. 1B, lane 1). Minor migration difference between the two
bands was observed for 19F-MEK5-PB1 (lane 2) or 19F-
MEKK3-PB1 (lane 3) (Fig. 1B).

To reveal motional properties of the tfmF-incorporation
site and details of protein–protein interactions, both 19F lon-
gitudinal (T1) and transverse (T2) relaxation values of pro-
teins with incorporated 19F-tfmF were measured. Here, the
19F T1 and T2 relaxation values of MEKK3-PB1-F77tfmF in
the absence or presence of wild-type MEK5-PB1 were shown
as Fig. 1C–F. Upon addition of MEK5-PB1, the T1 relaxation
value of MEK50-PB1-F77tfmF was observed to increase
(Fig. 1C and 1E), whereas the T2 relaxation value decreased
(Fig. 1D and 1F). The 19F relaxation values of the four
tfmF incorporation sites (MEKK3-PB1-F77tfmf/MEK5-PB1,
MEKK3-PB1-I57tfmF/ MEK5-PB1, MEKK3-PB1/ MEK5-PB1-
I70tfmF, MEKK3-PB1/MEK5-PB1-F41tfmF) were shown in

both Fig. 1 and Table S1 (supporting information). The pro-
nounced decrease in T2 values in the presence of another
domain could be attributed to the decreased global motion
with increased molecular size or restrained internal motions
(Palmer, 1993). Considering the halved global correlation
time for the formation of MEKK3-PB1/MEK5-PB1 complex
(the almost doubled molecular weight), the decreased
relaxation data demonstrated the formation of a stable com-
plex between MEKK3-PB1 and MEK5-PB1.

To investigate the PPI interface between MEKK3-PB1
and MEK5-PB1, in vitro 19F chemical shift of MEKK3-PB1-
I57tfmF and MEKK3-PB1-F77tfmF were acquired in the
absence or presence of the wild-type MEK5-PB1. Similarly,
the 19F chemical shift of MEK5-PB1-I70tfmF and MEK5-
PB1-F41tfmF were collected in the absence or presence of
the wild-type MEKK3-PB1. Pronounced 19F chemical shift
changes in the absence and presence of wild-type MEK5-
PB1 (or MEKK3-PB1) were observed for MEKK3-PB1-
I57tfmF, MEK5-PB1-I70tfmF and MEKK3-PB1-F77tfmF
(Fig. 1G, 1K, 1H, 1L, 1I and 1M). The tertiary structure of the
MEKK3-PB1 (PDB Number: 2C60), MEK5-PB1 and MEKK3-
PB1/MEK5-PB1 complex (PDB Number: 2O2V) in PDB did
not show pronounced structure variations in these sites
after complex formation. The observations of chemical shift
changes indicated that the sites I57 and F77 of MEKK3-
PB1 and I70 of MEK5-PB1 were located in the interaction
interface of the MEKK3-PB1/MEK5-PB1 complex. However,
no obvious chemical shift changes were observed for
MEK5-F41tfmF (Fig. 1J and 1N), which might be away from
the PPI interface (the chemical shift values of 19F site-
specific-labeled residues were presented in Table S1). The
observations of chemical shift changes upon protein inter-
action were consistent with the three-dimensional crystal
structure of the MEKK3-PB1 and MEK5-PB1 complex (PDB
2O2V).

To implement the in situ PPI analysis, the combinational
method of tfmF-incorporation and 19F-NMR was also
applied. In physiological cytosolic conditions, proteins are
known to stay in a highly crowded environment with vast of
non-specific interactions. Therefore, the conventional in vitro
protein–protein interaction mode might not represent the real
situation in the physiological environment. Because the cell
lysate composed of mixture of soluble biomolecules in the
host cells, the PPI analysis in cell lysates could contain the
vast varieties of proteins in the crowded environment,
avoiding perturbations of PPI during the protein purification
procedures. To implement the PPI analysis between
MEKK3-PB1 and MEK5-PB1 in crude lysates, the two pro-
teins were co-expressed in E. coli and the crude cell lysates
were prepared as shown in Fig. 2A. Due to the pronounced
chemical shift changes in purified MEKK3-PB1-I57tfmF and
purified MEK5-PB1-I70tfmF, these two sites were selected
for double site-specific labeling. One-dimension 19F spectra
of the purified sample or crude lysate sample containing
MEKK3-PB1-I57tfmF are shown in Fig. 2B and E. Only one
19F peak was observed for both the purified MEKK3-PB1-
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I57tfmF and the crude lysate sample, whereas the line width
of the 19F-signal from the crude lysate sample was broader,
obviously due to the crowding cellular environment, pres-
ence of non-specific protein interactions or chemical tran-
sient interactions in the crude lysate (Smith et al., 2014;

Latham and Kay, 2013). The 19F NMR spectra of MEK5-
PB1-I70tfmF in the purification buffer and crude lysate are
shown in Fig. 2C and F, with an increased line-width for
MEK5-PB1-I70tfmF in the crude lysate. For the samples of
two tfmF-incorporated proteins, two peaks were observed for
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Figure 1. 19F chemical shift perturbations and relaxation values of site-specific tfmF incorporation in purified MEKK3-PB1 or

MEK5-PB1. (A) Stereo ribbon drawing of the tertiary structure of the MEKK3-PB1 and MEK5-PB1 complex (PDB Number: 2O2V).

The site-specific 19F incorporation sites (MEKK3-I57, MEKK3-F77, MEK5-I70, MEK5-F41) were coloured magenta and cyan in

MEKK3-PB1 and MEK5-PB1 respectively. The figure was prepared using pymol. (B) Size exclusive chromatography of MEKK3-PB1

(blue), MEK5-PB1 (red), MEKK3-PB1/MEK5-PB1 complex (black) with tfmF incorporations. SDS–PAGE of MEKK3-PB1 (lane 3),

MEK5-PB1 (lane 2), and co-purified MEKK3-PB1/MEK5-PB1, all with 19F incorporation (lane 1). Side chain longitudinal T1 (C and E)

and transverse T2 (D and F) relaxation analysis of 19F site-specifically incorporated at the F77 site of MEKK3, in the absence or

presence of MEK5-PB1 domain. One-dimension 19F spectra of tfmF incorporated MEKK3-PB1 domain in the absence (G and I) or

presence (K and M) of the MEK5-PB1 domain. One-dimension 19F spectra of tfmF incorporated MEK5-PB1 domain in the absence (H

and J) or presence (L and N) of the MEKK3-PB1 domain.
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the co-purified sample of MEKK3-PB1-I57tfmF and MEK5-
PB1-I70tfmF. As shown in Fig. 1G, K, H, and L, the 19F
chemical shifts of MEKK3-PB1-I57tfmF and MEK5-PB1-
I70tfmF were shifted downfield upon protein interaction.
According to the 19F chemical shift values (Table S1) with
single site labeling, the right peak in Fig. 2D could be
assigned to MEKK3-PB1-I57tfmF, whereas the left was
assigned to MEK5-PB1-I70tfmF. A significant shift of the 19F
signal of MEKK3-PB1-I57tfmF and MEK5-PB1-I70tfmF were
observed upon the presence of partner proteins of the
complex, or in the presence of specific protein–protein
interactions.

Additionally, different from 19F signals of the co-purified
sample, two wider 19F signals were shown in Fig. 2G as a
result of co-expressed proteins in crude lysate samples. The
19F NMR signals from crude lysates were much broader, due

to molecular crowding or weak transient interactions in the
crude lysate (Smith et al., 2014; Latham and Kay, 2013).
Compared with solution NMR data of purified co-expression
MEKK3-PB1 and MEK5-PB1, the crude lysate data illus-
trated that 19F chemical shift values of residues in crude
lysate were influenced by the ubiquitous nature of weak,
non-specific interactions in cells, which retarded the rota-
tional motion of soluble proteins and the exchange dynam-
ics. The increased line width of 1D 19F NMR spectra in the
crude lysate sample presented the physiological environ-
ment of cell plasma.

Referring to the observed chemical shift perturbations of
MEKK3-PB1-I57tfmF/ MEK5-PB1-I70tfmF in the in vitro PPI
studies (Figs. 1G–N and 2B–D), the observed 19F chemical
shift perturbations of the in situ PPI studies (Fig. 2E–G)
verified the existence of protein interactions between
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Figure 2. One dimensional 19F NMR spectra of MEKK3-PB1 or MEK5-PB1 in crude lysates with double site-specific tfmF

incorporation. Procedure of crude lysate sample preparation (A), One-dimension 19F spectra of purified MEKK3-PB1-I57tfmF (B),

MEK5-PB1-I70tfmF (C), and co-expressed MEKK3-PB1-I57tfmF and MEK5-PB1-I70tfmF complex (D). One-dimension 19F spectra of

MEKK3-PB1-I57tfmF (E), MEK5-PB1-I70tfmF (F), and co-expressed MEKK3-PB1-I57tfmF and MEK5-PB1-I70tfmF complex in

bacteria crude lysate (G).
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MEKK3-PB1 and MEK5-PB1 in the E. coli cytosols, even in
the presence of extensive, non-specific macromolecular
interactions in cell lysate. For the MEKK3-PB1/MEK5-PB1
protein complex, the physicochemical mechanisms govern-
ing macromolecular assembly in the cell must be similar as
those in cell extracts (Luh et al., 2013). At the same time, the
increased line widths of 19F NMR signals of proteins in crude
lysate implied the availability of many non-specific interac-
tions with the target proteins, through some universal
mechanisms like hydrogen bonds, charge-charge interac-
tions, or random collisions in the cellular environment.

Normally, more than one condition could lead to the 19F
chemical shift changes of the tfmF incorporation site: the
localization in the PPI interface, or allosteric conformational
changes after protein-protein interaction. Nevertheless, the
19F-tfmF chemicals shifts could represent the availability of
protein-protein interactions, in cell lysate or other in-cell
mimic conditions. Of course, multiple site incorporations of
tfmF and 19F-NMR will be required to reflect the uniform
changes of the sample conditions, e.g. acidification, viscosity
changes or protein degradation. In this report the 19F-spectra
of MEK5-F41tfmF (Fig. 1J and 1N) were working as the
control to reflect the macro-scale condition changes.

To distinguish the PPI interface or the allosteric confor-
mation changes, further 19F-detected relaxation analysis
should be conducted. For the residue sites in the PPI inter-
face, not only the 19F chemical shift changes were expected,
but also variations of the T1 relaxation (spin-lattice), T2

relaxation (spin-spin diffusion) could be observed. However,
for the allosteric conformation changes, the conformational
exchange (τex) and T2 relaxation exchanges could be
observed.

In summary, combinational method of site-specifically
incorporation of the unnatural amino acid tfmF into proteins
and 19F NMR could be a reliable method for PPI analysis in
cellular cytosols, taking advantage of no natural 19F back-
ground signals from cellular molecules. At the same time, the
tfmF incorporations at two residue sites using the pET-Duet
plasmids in this report provided a general method for in situ
PPI analysis between two tfmF-incorporated proteins.
Therefore, conformational and functional studies of other
soluble proteins (enzymes, receptors), or interaction inter-
faces analysis of two proteins in a complex in crude cell
lysates could be implemented using the combinational
method of site-specific 19F incorporation and 19F NMR.
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