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Abstract: A novel acylhydrazone-based fluorescent sensor NATB was designed and synthesized
for consecutive sensing of Al3+ and H2PO4

−. NATB displayed fluorometric sensing to Al3+ and
could sequentially detect H2PO4

− by fluorescence quenching. The limits of detection for Al3+ and
H2PO4

− were determined to be 0.83 and 1.7 µM, respectively. The binding ratios of NATB to Al3+

and NATB-Al3+ to H2PO4
− were found to be 1:1. The sequential recognition of Al3+ and H2PO4

−

by NATB could be repeated consecutively. In addition, the practicality of NATB was confirmed
with the application of test strips. The sensing mechanisms of Al3+ and H2PO4

− by NATB were
investigated through fluorescence and UV–Visible spectroscopy, Job plot, ESI-MS, 1H NMR titration,
and DFT calculations.

Keywords: aluminum ion; dihydrogen phosphate; acylhydrazone; fluorescent chemosensor; sequential
detection; calculations

1. Introduction

Al3+, the third most abundant metallic element in nature [1,2], is broadly employed
in daily life in packaging materials, pharmaceuticals, food additives, machinery, clinical
medicines, and water purification [3,4]. Owing to its widespread usage, Al3+ could be
readily accumulated in the body, which leads to the development of diverse diseases
such as Parkinson’s and Alzheimer’s disease [5,6]. Dihydrogen phosphate (H2PO4

−) is an
important component related to many intercellular activities, such as signaling mediation,
protein phosphorylation, enzymatic reactions, ion-channel regulation, and so on [7–9].
However, excessive agricultural use of phosphate causes eutrophication or massive algal
growth, leading to a deficiency in oxygen levels [10–12]. For these reasons, there has
been a strong demand for the development of sensing and detection methods for Al3+

and H2PO4
−.

The traditional analytical methods reported for the analysis of cations and anions,
such as ICP-AES, AAS, and electrochemical methods, have been largely restricted due
to their expensive instruments, complicated procedures, and the need for highly trained
operators [13–15]. In contrast, fluorescence methods have shown the advantages of cost-
effectiveness, simplicity, easy operation, and high sensitivity [16–18]. While numerous
fluorescent chemosensors for a single analyte have been reported, fluorescent chemosensors
that allow the sequential sensing of multiple analytes with great selectivity and sensitivity
are still needed [19–21] because they are more cost-effective, recyclable and practical [22–24].
Several fluorescent sensors have been addressed for consecutive sensing of Al3+ and several
anions [25–28] or several cations and H2PO4

− [29–31]. In addition, Kumar et al. reported a
fluorescent sensor for sequential sensing of Al3+ and H2PO4

−/HSO4
− [32]. The practical

importance of sequential sensing may have potential applications such as logic gates and
molecular switches. Nevertheless, a sequential fluorescent sensor that can exclusively
detect Al3+ and H2PO4

− has not been reported to date.
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As Al3+ is a hard cation, chemosensors containing hard base units, such as nitrogen
or oxygen atoms, prefer to coordinate with Al3+ [33–35]. In this regard, acylhydrazone
derivatives, having oxygen and nitrogen atoms, are expected to be a suitable functional
group to design an Al3+ chemosensor [36–38]. Naphthalene moieties have been widely
applied for the design of fluorescent sensors because of their excellent photophysical
properties as a fluorophore [39–41]. Hence, we expected that a compound including both
acylhydrazone and naphthalene may operate as a fluorescence chemosensor for Al3+.

In the current study, we designed an acylhydrazone-based fluorescent sensor, NATB,
which showed green fluorescence emissions with Al3+ and could sequentially detect
H2PO4

− through fluorescence quenching with high sensitivity and selectivity. A sensing
mechanism of NATB to Al3+ and H2PO4

− was illustrated by fluorescence and UV–Vis
spectroscopy, Job plot, ESI-MS, 1H NMR titration, and calculations.

2. Experimental Section
2.1. Materials and Equipment

All solvents and reagents were commercially obtained from TCI (TCI, Nihonbashi-
Honcho, Tokyo, Japan) and Sigma-Aldrich (MilliporeSigma, Burlington, MA, USA). NMR
experiments were conducted using DMSO-d6 as the solvent, and the data were recorded
on a Varian spectrometer (Varian, Palo Alto, CA, USA). Fluorescence and UV–Visible
spectra were measured with Perkin Elmer machines (Perkin Elmer, Waltham, MA, USA).
The quantum yields of NATB and NATB-Al3+ were relatively determined with quinine
(Φ = 0.54 in 1 × 10−1 M H2SO4) as a reference. ESI-MS data were recorded on a Thermo
Finnigan machine (Thermo Finnigan LLC, San Jose, CA, USA).

2.2. Synthesis of N′-[(E)-(3-tert-butyl-2-hydroxyphenyl)methylidene]-3-hydroxynaphthalene-
2-carbohydrazide (NATB)

The intermediate compound, 3-hydroxy-2-naphthohydrazide (2), was synthesized
following a previously reported method [42]. The excess amounts of 3-(tert-butyl)-2-
hydroxybenzaldehyde (1, 1.8 mmol) and 3-hydroxy-2-naphthohydrazide (2, 0.3 mmol)
were mixed in absolute EtOH (10 mL) with a catalytic amount of HCl and stirred at room
temperature for 1 day. A yellow precipitate was filtered, rinsed with cold absolute EtOH,
and dried (77.2 mg, 70.1%); 1H NMR in DMSO-d6: δ 12.42 (s, 1H), 12.24 (s, 1H), 11.19 (s, 1H),
8.63 (s, 1H), 8.45 (s, 1H), 7.93 (d, 1H), 7.77 (d, 1H), 7.53 (t, 1H), 7.38 (t, 1H), 7.35 (s, 1H),
7.32 (d, 1H), 7.30 (d, 1H), 6.91 (t, 1H), 1.43 (s, 9H). 13C NMR in DMSO-d6: δ 163.23 (1C),
156.90 (1C), 153.75 (1C), 151.45 (1C), 136.36 (1C), 135.84 (1C), 130.31 (1C), 129.53 (1C), 128.59
(1C), 128.54 (1C), 128.20 (1C), 126.69 (1C), 125.75 (1C), 123.75 (1C), 119.86 (1C), 118.70 (1C),
117.54 (1C), 110.54 (1C), 34.39 (1C), 29.16 (3C). ESI-MS (m/z): [NATB + H+]+ calcd 363.17,
found 363.04.

2.3. Preparation of Spectroscopic Experiments

An NATB stock (10 mM) was prepared in DMSO. The stock solutions (20 mM) of
varied cations were prepared using their nitrate salts (Al3+, Na+, Cr3+, Fe2+, Ca2+, Cd2+,
Zn2+, Pb2+, Co2+, Cu2+, In3+, Mn2+, Ga3+, Ni2+, Mg2+, Ag+, Hg2+ and K+) or perchlorate
salt (Fe3+). The concentrated solutions (20 mM) of varied anions were prepared using their
tetrabutylammonium salts (H2PO4

−, SCN−, BzO−, N3
−, OAc− and NO2

−), tetraethylam-
monium salts (F−, Cl−, Br−, I− and CN−), sodium salts (S2− and ClO−), or potassium
salts (HPO4

2−, PO4
3−, HSO4

− and P2O7
4−(PPi)). All spectroscopic experiments were

conducted in MeOH.

2.4. Competitive Experiments

For Al3+, 6 µL (10 mM) of an NATB stock in DMSO was mixed into MeOH (2 mL) to
make 30 µM. A total of 4.5 µL of various cations (20 mM) in DMF was diluted in NATB to
make 45 µM. Finally, 4.5 µL (20 mM) of an Al3+ stock in DMF was mixed into each solution
to produce 45 µM, and their fluorescent spectra were measured.



Materials 2021, 14, 6392 3 of 13

For H2PO4
−, 6 µL (10 mM) of an NATB stock in DMSO and 4.5 µL (20 mM) of an

Al3+ stock in DMF were diluted into MeOH (2 mL) to produce 30 µM of NATB-Al3+. We
added 4.5 µL of various anions (20 mM) in H2O to NATB-Al3+ to produce 45 µM. A total
of 4.5 µL (20 mM) of an H2PO4

− stock was diluted into each solution to produce 45 µM.
Their fluorescent spectra were measured.

2.5. Determination of Association Constant (K)

The association constant (K) was calculated using Li’s method [43]. If the ligand (L) and
the analyte (M) form an m-n complex, MmLn, the equilibrium constant of the corresponding
complex, K, can be expressed by the following equation:

[M]m =
1

nK
1

[L]n−1
T

1− α

αn

where,
[M] = the concentration o f analyte

[L}T = the total concentration o f ligand

and α could be described as:
α =

I − Imax

Imin − Imax

where,
I = the f luorescence intensity o f complex

2.6. Calculations

Calculations were achieved with the Gaussian 16 program [44]. Optimal geometries of
NATB and NATB-Al3+ were provided with the DFT method [45,46]. B3LYP was selected
as the hybrid functional basis set. The 6–31G(d,p) basis set was implemented to all atoms
except Al3+ [47,48], and the LANL2DZ basis set was employed for applying ECP to
Al3+ [49–51]. No imaginary frequency was found in the optimized states of NATB or
NATB-Al3+, indicating their local minima. The solvent effect of MeOH was considered
with IEFPCM [52]. Based on the energy-optimized structures of NATB and NATB-Al3+, the
plausible UV–Vis transition states were calculated by the TD-DFT method with 20 lowest
singlet states.

3. Results and Discussion

The synthesis of NATB was conducted as depicted in Scheme 1. The condensation
reaction of 3-(tert-butyl)-2-hydroxybenzaldehyde (1) and 3-hydroxy-2-naphthohydrazide
(2) produced the desired product, N’-[(E)-(3-tert-butyl-2-hydroxyphenyl)methylidene]-3-
hydroxynaphthalene-2-carbohydrazide (NATB), which was verified with 1H NMR, 13C
NMR (Figures S1 and S2), and ESI-MS.
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3.1. Spectroscopic Examination of NATB to Al3+

To confirm the fluorescence selectivity of NATB, the fluorescence emission was stud-
ied with a variety of cations in MeOH (Figure 1). As a result, NATB exhibited notable
fluorescence emission at 526 nm with Al3+, while NATB and NATB with other cations
showed negligible or no fluorescence emission (λex = 358 nm). These outcomes demon-
strated that NATB could be utilized as a fluorescent probe for the selective sensing of Al3+.
On the other hand, NATB was soluble in aqueous media, but it did not show any selectivity
to Al3+. In addition, the fluorescence emission of NATB was examined with various anions
including dihydrogen phosphate. NATB had no selectivity for the anions.
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Figure 1. Fluorescence changes of NATB (30 µM) with a variety of cations (1.5 equiv) in MeOH.
Photograph: the fluorescent images of NATB and NATB-Al3+ (λex: 358 nm).

To check the concentration-dependent properties of NATB to Al3+, fluorescence titra-
tion was carried out (Figure 2). NATB exhibited little fluorescence with a tiny quantum
yield (Φ = 0.008). However, the continuous increase in Al3+ up to 1.5 equiv significantly
enhanced the green fluorescence emission at 526 nm (Φ = 0.162). UV–Vis spectrometry was
also conducted with Al3+ to examine its photophysical characteristics (Figure 3). Upon the
addition of Al3+, the absorption of 310 nm clearly decreased, while a new absorption of
325 nm constantly increased up to 1.5 equiv. An explicit isosbestic point was observed at
315 nm, verifying that the coordination of NATB with Al3+ produced a stable complex.

A 1:1 stoichiometric coordination between NATB and Al3+ was suggested by the Job
plot experiment (Figure S3), which was explicitly supported by ESI-MS analysis (Figure S4).
The positive ion mass displayed a large peak of 596.16 (m/z), which was correlated to
[NATB(-H+) + Al3+ + 2 DMF + NO3

−]+ (calcd. 596.23). The association constant (K) of
NATB-Al3+ was confirmed to be 3.6 × 104 M−1 (Figure S5) based on Li’s method [43]. The
detection limit of NATB toward Al3+ was 0.83 µM, based on 3σ/slope (Figure S6).

The 1H NMR titrations were achieved to investigate the binding mechanism of NATB
toward Al3+ (Figure 4). Upon the addition of Al3+ to NATB, the proton H14 continually
disappeared and the protons H5 and H6 were deshielded. These results indicate that the
deprotonated oxygen on the tert-butylphenol group and the oxygen and nitrogen on the
acylhydrazone group may be coordinated to Al3+ (Scheme 2).
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Scheme 2. Sequential recognition mechanism of Al3+ and H2PO4
− by NATB.

To verify the practicability of NATB as a probe for Al3+, an interference experiment
was conducted (Figure S7). NATB could detect Al3+ with other cations without significant
interferences, except for In3+, Fe3+ and Cu2+. These three cations bound more tightly
to NATB than Al3+. For the practical application of NATB, test kits were prepared by
immersing filter paper strips in the NATB solution. When NATB-coated test kits were
immersed in a range of concentrations of Al3+ solutions, the obvious green fluorescence
emission showed up above 2 mM of Al3+ under UV light (Figure 5a). However, the
fluorescence was not displayed when those strips were applied to the same concentration
of other cations (Figure 5b). These results indicate the potential applications of NATB in
easily recognizing Al3+ without any complicated tools.
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3.2. Calculations

To comprehend the Al3+-sensing property of NATB, DFT calculations were performed
with the Gaussian 16 program (Figure 6). As the Job plot, ESI-MS, and 1H NMR titration
implied a 1:1 stoichiometric coordination of NATB with Al3+, all calculations were con-
ducted with 1:1 stoichiometry. NATB showed a dihedral angle of 0.013◦ (1O, 2C, 3N, and
4C) with a planar structure (Figure 6a). The coordination of NATB with Al3+ distorted its
structure, showing a dihedral angle of 98.875◦ (Figure 6b).

Based on the energy-minimized structures of NATB and NATB-Al3+, TD-DFT calcu-
lations were conducted to inspect the transition energies and molecular orbitals. NATB
featured the main absorption induced from the HOMO→ LUMO (347.28 nm), showing
intra-charge transfer (ICT) transition from the tert-butylphenol to the naphthol (Figure S8).
The major absorption of NATB-Al3+ derived from the HOMO-1 → LUMO transition
(412.27 nm) also showed a similar ICT transition (Figures S9 and S10). The reduction in
the energy gap was consistent with the red-shift of the experimental absorption. These
outcomes led us to conclude that the fluorescence turn-on mechanism of NATB to Al3+

may be a chelation-enhanced fluorescence (CHEF) effect [53]. Based on experimental data
and theoretical calculations, an appropriate binding structure of NATB-Al3+ is proposed
in Scheme 2.
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3.3. Spectroscopic Examination of NATB-Al3+ to H2PO4
−

We studied the fluorescence selectivity of NATB-Al3+ to a range of anions such as
H2PO4

−, Cl−, CN−, OAc−, F−, ClO−, I−, N3
−, BzO−, SCN−, Br−, NO2

−, S2−, HPO4
2−,

PO4
3−, HSO4

−, and PPi in MeOH (Figure 7). Most of the anions did not affect the flu-
orescence emission of NATB-Al3+, while the addition of H2PO4

− toward NATB-Al3+

resulted in significant fluorescence quenching (λex = 358 nm). The result demonstrated that
NATB-Al3+ could be used as a chemosensor for H2PO4

− with fluorescence quenching.
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The fluorescence titration experiments were conducted to verify the fluorescence
quenching ability of H2PO4

− toward NATB-Al3+ (Figure 8). The fluorescence of NATB-
Al3+ consistently diminished with the addition of H2PO4

− up to 1.5 equiv (Φ = 0.005). UV–
Vis spectroscopy showed that the continuous addition of H2PO4

− increased the absorbance
at 310 nm, while those at 270 and 325 nm decreased with the explicit isosbestic points at
253 and 315 nm (Figure 9). The UV–Vis spectrum of H2PO4

− with NATB-Al3+ is analogous
to that of free NATB, implying that the addition of H2PO4

− released Al3+ from the NATB-
Al3+ complex (Figure S11).
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The stoichiometry of H2PO4
− toward NATB-Al3+ was determined by the Job plot

experiment (Figure S12), which exhibited a 1:1 stoichiometry. The mass spectral anal-
ysis displayed a peak of 395.06 (m/z), which demonstrated the regeneration of NATB
([NATB + H+ + MeOH]+; calcd. 395.20) (Figure S13). These outcomes supported the mech-
anism that the addition of H2PO4

− released Al3+ from NATB-Al3+, which resulted in the
loss of fluorescence. Based on Li’s method [43], the association constant (K) for H2PO4

−

with NATB-Al3+ was calculated as 1.2 × 104 M−1 (Figure S14). The detection limit of
NATB-Al3+ toward H2PO4

− was determined as 1.7 µM, based on 3σ/slope (Figure S15).
Importantly, NATB is the first fluorescent sensor for the consecutive sensing of Al3+ and
H2PO4

− (Table S1). On the other hand, NATB showed higher detection limits for Al3+ and
H2PO4

− compared to Kumar’s work [32], but it could solely detect H2PO4
− without the

interference of HSO4
−.

The reversibility in the response of NATB was verified through the alternative ad-
ditions of Al3+ and H2PO4

− (Figure 10). The fluorescence emission of NATB repeated
its enhancing and quenching processes several times without fluorescence efficiency loss.
To verify that NATB-Al3+ is an effective fluorescence probe for H2PO4

−, the interfer-
ence of other anions was tested (Figure S16). The results indicated that the presence of
other anions (1.5 equiv) did not interfere with the fluorescence quenching of NATB-Al3+

toward H2PO4
−.
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4. Conclusions

An acylhydrazone-based chemosensor NATB was developed and its sequential recog-
nition of Al3+ and H2PO4

− was studied. NATB showed a strong fluorescence increase
with Al3+, and its complex NATB-Al3+ sequentially detected H2PO4

− by releasing Al3+

with turn-off fluorescence. Importantly, NATB is the first sequential fluorescent probe for
selective sensing of Al3+ and H2PO4

−. Detection limits of NATB for Al3+ and H2PO4
−

were calculated as 0.83 and 1.7 µM, respectively, based on 3σ/slope. NATB could repeat
sequential recognition of Al3+ and H2PO4

− several times and could be applied to detect
Al3+ in test strips. The sensing mechanism of NATB toward Al3+ and H2PO4

− was demon-
strated with a Job plot, ESI-MS, 1H NMR spectroscopy, and theoretical calculations. The
detection mechanism of NATB toward Al3+ is suggested to be a CHEF effect through
DFT calculations.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ma14216392/s1, Table S1: Examples of chemosensors for successive detection related to
Al3+ or H2PO4

− or both; Figure S1: 1H NMR spectrum of NATB in DMSO-d6; Figure S2: 13C
NMR spectrum of NATB in DMSO-d6; Figure S3: Job plot for the binding of NATB with Al3+

(50 µM) in MeOH. Fluorescence intensity at 526 nm is plotted as a function of the molar ratio of
[Al3+]/([Al3+] + [NATB]); Figure S4: Positive-ion ESI mass spectrum of NATB (100 µM) in MeOH
upon the addition of 1 equiv of Al3+ in DMF; Figure S5: Li’s equation plot (at 526 nm) of NATB
(30 µM) in MeOH, based on fluorescence titration, assuming 1:1 stoichiometry for association between
NATB and Al3+; Figure S6: Calibration curve of NATB as a function of Al3+ concentration in MeOH.
[NATB] = 30 µM and [Al3+] = 0–18 µM (λex = 358 nm); Figure S7: Competitive experiments of NATB
(30 µM) toward Al3+ (45 µM) in the presence of other metal ions (45 µM, λex = 358 nm) in MeOH;
Figure S8: (a) The theoretical excitation energies and the experimental UV–Vis spectrum of NATB.
(b) The major electronic transition energies and molecular orbital contributions of NATB; Figure S9:
(a) The theoretical excitation energies and the experimental UV–Vis spectrum of NATB-Al3+. (b) The
major electronic transition energies and molecular orbital contributions of NATB-Al3+; Figure S10:
The major molecular orbital transitions and excitation energies of NATB and NATB-Al3+; Figure S11:
UV–Vis spectra of NATB and NATB-Al3+ with H2PO4

− in MeOH, respectively; Figure S12: Job
plot for the stoichiometry of NATB-Al3+ with H2PO4

− (30 µM) in MeOH. Fluorescence intensity
at 526 nm is plotted as a function of the molar ratio of [NATB-Al3+]/([NATB-Al3+] + [H2PO4

−]);
Figure S13: Positive-ion ESI mass spectrum of NATB-Al3+ (100 µM) in MeOH upon the addition
of 1 equiv of H2PO4

− in H2O; Figure S14: Li’s equation plot (at 526 nm) of NATB-Al3+ (30 µM)
based on fluorescence titration in MeOH, assuming 1:1 stoichiometry for association between NATB-
Al3+ and H2PO4

−; Figure S15: Calibration curve of NATB-Al3+ in MeOH as a function of H2PO4
−

concentration. [NATB-Al3+] = 30 µM and [H2PO4
−] = 0.0–18.0 µM (λex = 358 nm); Figure S16:

Interference studies of NATB-Al3+ (30 µM) toward H2PO4
− (45 µM) in the presence of other anions

(45 µM, λex = 358 nm) in MeOH.
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