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abstract

PURPOSE Glioblastomas, lethal primary brain tumors, are known for their heterogeneity and invasiveness. A
growing body of literature has been developed demonstrating the clinical relevance of a biomathematical model,
the proliferation-invasion model, of glioblastoma growth. Of interest here is the development of a treatment
response metric, days gained (DG). This metric is based on individual tumor kinetics estimated through
segmented volumes of hyperintense regions on T1-weighted gadolinium-enhanced and T2-weighted magnetic
resonance images. This metric was shown to be prognostic of time to progression. Furthermore, it was shown to
be more prognostic of outcome than standard response metrics. Although promising, the original article did not
account for uncertainty in the calculation of the DG metric, leaving the robustness of this cutoff in question.

METHODSWeharnessed theBayesian framework to consider the impact of two sources of uncertainty: (1) imageacquisition
and (2) interobserver error in image segmentation. We first used synthetic data to characterize what nonerror variants are
influencing the final uncertainty in the DG metric. We then considered the original patient cohort to investigate clinical
patterns of uncertainty and to determine how robust this metric is for predicting time to progression and overall survival.

RESULTS Our results indicate that the key clinical variants are the time between pretreatment images and the
underlying tumor growth kinetics, matching our observations in the clinical cohort. Finally, we demonstrated that
for this cohort, there was a continuous range of cutoffs between 94 and 105 for which the prediction of the time
to progression was over 80% reliable.

CONCLUSION Although additional validation must be performed, this work represents a key step in ascertaining
the clinical utility of this metric.
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INTRODUCTION

Glioblastomas, lethal primary brain tumors, are known
for their locally invasive nature in which the tumor cells
infiltrate far beyond the margins of the observed
magnetic resonance imaging (MRI) abnormality.1 At
the time of this writing, ClinicalTrials.gov lists 676 trials
for interventional therapies of all phases for glioblas-
toma that have either been completed, suspended, or
terminated and another 452 trials that are active in
some form.2 Despite this concerted effort, the standard
of care for newly diagnosed patients with glioblastoma
has remained the same since 2005.3

A key reason for the apparent failure of these hundreds
of clinical trials is the interpatient and intratumor
heterogeneity of this disease. Ultimately, the success
(or failure) of a clinical trial is defined by the difference
in the median survival between the treated cohort
and a current or historical control cohort rather than
individual successes. This is because there is no

known quantitative surrogate for assessing the impact
of treatment in individual patients. MRI, the primary
method of assessing the disease, is only able to show
changes in the microenvironment because of the tu-
mor (or therapy) rather than the tumor cells them-
selves. Pragmatically, this has resulted in no reliable
generalization from MRI signals to tumor cell densities
for use in determining therapeutic efficacy.

Mathematical Models and Untreated Virtual Controls

A growing body of literature has begun demonstrating the
clinical relevance of a patient-specific biomathematical
model of glioblastoma growth.4-8 This simple model, the
proliferation-invasion model, is written as:

∂c
∂t

¼ r$ðDrcÞ þ ρcð1� cÞ

Here, c is the tumor cell density, D is the net rate of
invasion, and ρ is the net rate of proliferation. The
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output of this model is the spatial tumor cell density over
time, which asymptotically approaches a traveling wave.
The shape of the wave depends on the ratio of the two
parameters, D/ρ, whereas the speed of the wave depends
on their product, 2

ffiffiffiffiffiffi
Dρ

p
. A number of groups have pub-

lished methods to estimate these parameters.9-11 Following
Swanson et al,4 all methods abstract the abnormal regions
on MRI to be representative of some tumor cell density
threshold, 80% and 16% for the T1-weighted with gado-
linium (T1Gd) and the T2-weighted sequences, re-
spectively. The Swanson group has demonstrated that
patient-specific estimates of these parameters can be
used in many contexts.5-8,12,13 Of interest to this article is
their use in generating untreated virtual controls in defining
response metrics.

The response metric we focus on here is referred to as days
gained (DG) and has been shown to be prognostic of both
time to progression and overall survival when used at the
first imaging time point after radiation therapy.14,15 It is
calculated by (1) estimating the patient-specific growth
kinetics through the proliferation-invasion model, (2) sim-
ulating the patients' untreated tumor growth, (3) aligning
the predicted growth with the observed pretreatment sizes,
(4) finding the time when the untreated tumor is the size of
the observed tumor after therapy, and (5) subtracting it
from the time corresponding to the post-treatment obser-
vation. This final difference is the DGmetric and represents
how far back therapy pushed the tumor on its growth curve.
This metric has been tested with individualized 3D ana-
tomic simulations15 and in simpler scenarios of spherical
symmetry and linear growth.14 In each case, it was ob-
served that a cutoff could be found that statistically sep-
arated the patients into prognostically different responders
versus nonresponders. However, to begin advocating for
clinical use, more testing needs to be performed in terms of
both the generality and robustness of this metric. This
article addresses robustness, with a particular focus on how
uncertainty in the initial calculations of tumor size fromMRI
affects the uncertainty in the DG metric.

Bayesian Methodology

To connect uncertainties in data with model predictions, we
used the Bayesian framework. Although the ultimate in-
terest is the uncertainty in the DG metric, one must first
quantify how the measurement error first propagates into
uncertainty in the model parameters. This methodology
relies on Bayes theorem:

πðmjdÞ ¼ θðdjmÞpðmÞ
pðdÞ (1)

written using the notation in the book by Tarantola.16 Here,
m represents the model parameters, and d represents the
observed data. The conditional probability π(m|d) is the
posterior probability and can be thought of as the solution of
a calibration problem. p(m) is the prior and represents the

belief in the model parameters before observing the most
recent data. The conditional probability θ(d|m) is the like-
lihood and captures what data one would expect to see if
a particular set of model parameters were truth. p(d)
captures the probability of observing the data, given the
specific modeling structure, but is often just considered
a normalizing constant.

Lê et al11 also used a Bayesian formulation to estimate D
and ρ with two critical differences. First, they considered
the tumor in its anatomic location, whereas we assume it
grows spherically symmetrically. Second, they did not
consider uncertainty in the original segmentation or their
model's initial condition. Although the first difference
means their individual model simulations are much more
complicated, the second difference results in an uncertain
initial time point of the first time point of imaging. This
particular uncertainty greatly complicates the form of our
likelihood.

Deterministic methods for calculating D and ρ rely on tumor
segmentations from two MRI time points, with at least one
time point including both a T1Gd and T2 sequence. For
simplicity, we will assume the first time point has both
a T1Gd and T2 image, and the second time point has only
a T1Gd image. Then, for the current specific scenario of
interest, the model parameters and data are defined as:

m ¼ ðD, ρÞ

d ¼ ðr 1T1Gd ,R1
T1Gd , r

1
T2,R

1
T2, r

2
T1Gd ,R

2
T1Gd ,ΔtÞ

where the r ppp s and Rpp
p s represent the lower and upper

bound of a measurement value, respectively, on the * MRI
sequence and the ** day (first or second), and Δt is the
time between the first and second imaging dates.

The Prior

We consider two different priors in this article: (1) a uniform
prior to allow maximal influence of the data, (2) a bivariate
Gaussian prior fit to existing known parameter estimates
from a large cohort of patients in the Swanson Lab Data-
base (Data Supplement).

The Likelihood

To define the likelihood, we first assume that the T1Gd and
T2MRIs, respectively, reflect the 80% and 16% cell density
thresholds. We then consider two sources of uncertainty:
(1) the ability of the MRI to accurately recapitulate the truth
and (2) the ability of a human for measuring the truth that
the MRI is showing. The first uncertainty results from
various issues, such as images being composed of two-
dimensional slices with nonzero thickness and that MRI
machines will use different acquisition parameters. Al-
though it is difficult to define these uncertainties with rigor,
the framework presented here is easily modifiable to ac-
count for any additional information. Regarding the second
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type of uncertainty, we have a large number of images that
have been measured twice, allowing for some approxi-
mation of this variability. Although there is some evidence
regarding the relative percentage of the 80% and 16%
thresholds,17-19 this is indeed another potential source of
uncertainty not addressed here.

Because of the uncertainty of when the first time point of
observation is relative to the model's output, our likelihood
is substantially more complicated than a traditional
Gaussian. It is composed of multiple bivariate probability
distribution functions of radius, r, and time, t, and takes the
final form:

θ
�
r 1T1Gd ,R

1
T1Gd , r

1
T2,R

1
T2, r

2
T1Gd ,R

2
T1Gd , Δt jD, ρ

�

¼ C
Zt¼T

t¼0

ZR1
T1Gd

r1T1Gd

θ̂ðr , t jD, ρÞdr
ZR1

T2

r1T2

θ̃ðr , t jD, ρÞdr

ZR2
T1Gd

r2T1Gd

θ̂ðr , t jD, ρÞdr dt . (2)

In this equation, C is a normalization constant that must be
calculated for each D and ρ, and the functions θ̂ðr , t jD, ρÞ
and θ̃ðr , t jD, ρÞ capture the probability of the T1Gd or T2
MRI, respectively, showing an imaging abnormality of size r
at simulation time t for a given D and ρ. For each simulation
time t, we assume this probability is a triangle distribution
around the model predicted radius (see the Data Sup-
plement). In other words, the output of this function is the
sum of the probability from each possible initial time point
of observing the range of possible radial measurements all
at once.

The Posterior

The posterior is considered the solution to the calibration
problem and can be written down as being proportional to
the product of the prior and likelihood,

πðmjdÞ} θðdjmÞpðmÞ.

Although the functional form of the posterior is easy to write
down, the complicated likelihood function, which must be
computed to evaluate the posterior at any given point,
makes analytical assessment impossible.

Uncertainty Propagation to DG Response Metric

To propagate the uncertainty from the calibration to an
individual's DG response metric, we must incorporate
additional uncertainty coming from themeasurement of the
post-therapy image (Fig 1).

Thus, the final probability distribution we must calculate is
pðDGjr3T1Gd ,R3

T1Gd , dt2, dÞ. This is evaluated using the
total law of probability with the previously calculated pos-
terior and the probability of the initial time point. Code was

written in MATLAB (MathWorks, Natick, MA). See the Data
Supplement for additional numerical details.

METHODS

Identifying Nonerror Influences on Uncertainty in DG

There are numerous variabilities between any two given
patients that could influence the ultimate uncertainty in
their DG metric. We consider three such factors: (1) the
individual growth kinetics, (2) the size of the tumor when
therapy began, and (3) the length of time between the two
pretreatment imaging time points.

Different growth kinetics. To understand how these factors
may all interact together, we ran four simulations with
different growth kinetics from which we generated synthetic
data representative of different situations related to (1)
and (2). Specifically, we ran simulations with the�
D
�
mm2�

yr
�
, ρ
�
yr -1

�	
pairs of (3,3), (30,30), (30,3), and

(3,30). Note, the first two pairs have the same slope of their
traveling wave, whereas the last two have the same velocity.

Different size at therapy initiation. For each ðD, ρÞ pair, we
made the assumption that a standard course of radiation
therapy lasting for 6 weeks was initiated when the tumor
reached different radial sizes, 1, 2, and 3 cm. Then, to
minimize variables influencing the uncertainty, we assumed
that therapy resulted in all tumors being observed at a size of
1.5 cm 50 days after the last pretreatment image time point.

DifferentΔt. These 12 scenarios, four (D, ρ) pairs with three
different sizes at treatment initiation, were used to generate
synthetic observed data corresponding to different time
periods between the pretreatment time points. We identi-
fied the size just before the start of therapy and then either
10, 25, or 40 days before this simulation date as the first
pretreatment date. The Bayesian methodology described

Days Gained With Uncertainty

Time in Simulation

Ra
di
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 S

ize

Pre-treatment

Post-treatment

Possible UVC

Initial day of
imaging, t0

dt2dt1

H-1(r)

FIG 1. Illustration of components required to calculate the probability
of the days gained metric.
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previously was applied to each of these sets of generated
data, both with a uniform and Gaussian prior, assuming an
interobserver variability of 0.3 mm in measured radius.

Interpreting DG Within a Cohort of Patients

Under Uncertainty

Our Bayesian algorithm was implemented for each patient
in the original cohort from Neal et al14 with both priors to
generate individual predictions of the probability of the
patient's DG score. Images where two measurements were
available provided upper and lower bounds for the mea-
surement uncertainty. Images with only one measurement
were assigned 0.3 mm radius uncertainty.

Patients. The 63 patients analyzed in the previously pub-
lished article14 were again analyzed in this analysis for direct
comparison. Criteria for inclusion were (1) age older than
18 years, (2) glioblastoma multiforme diagnosis, (3) two
pretreatment imaging time points with a minimum of 4 days in
between, and (4) upfront therapy inclusive of radiation therapy.
Survival and time to progression were updated as available.

Quantifying robustness. A total of 1,000 samples were
generated from each patient’s DG probability and collated to
generate 1,000 realizations of this entire cohort's DG values.
For each cohort realization, we iterated through all possible
cutoffs to define responders and evaluated the log-rank
statistic of the corresponding Kaplan-Meier curves corre-
sponding to both the time to progression and overall survival,
storing the P values. We then determined how many times
each cutoff resulted in a significant outcome difference at the
P= .05 level. High counts are correlatedwith robustness of the
cutoff to uncertainty. Results with both priors are considered.

RESULTS

Size of Tumor at Therapy Initiation Seems to Have No

Impact on Uncertainty

In considering the four ðD, ρÞ pairs and all simulated sizes
of tumor at the start of radiation, the resulting posterior and
DG probability density function were independent of the
size of the tumor when therapy began (results not shown).
This is likely because the tumor has reached the linear
portion of its growth curve for all parameters considered.

Uncertainty Decreases in Posterior for Larger Δt

Figure 2 shows the posterior using a uniform prior and the
DG probability density function for all four ðD, ρÞ pairs, with
treatment starting when the tumor was 2 cm in size, but
with Δt = 10 or 40 days. Red dots indicate the true values.
In each case, the posterior uncertainty decreases as the
time between images increases. We note that for small Δt,
the uncertainty demonstrated in the posterior can en-
compass almost all possible velocities.

Degree of Uncertainty Does Depend on Underlying Tumor

Growth Kinetics

Figure 2 also demonstrates that the degree of uncertainty
does depend on the underlying tumor growth kinetics.

Specifically, slower tumors have a larger uncertainty in
velocity, no matter the Δt. In addition, the nodularity, or
steepness of the traveling wave, influences the uncertainty
as the nodular example exhibits a wider distribution.

Apparent Uncertainty in DG Dependent on Underlying

Tumor Growth Kinetics

In Figure 2, one can see that although the probability of the
true DG value increases as Δt increases, the width of the
distribution sometimes increases. This is because higher
velocity growth patterns result in a tighter prediction of DG
values. Thus, when a broad range of fast and slow tumors are
represented equally in the posterior, the DG will be biased
toward the DG values associated with the faster growth. This
bias diminishes as uncertainty in the posterior is reduced.

Posteriors Can Be Greatly Influenced by the

Gaussian Prior

When the uncertainty is high in the likelihood, the Gaussian
prior will have a significant impact on the posterior, as shown
in Figure 3. Although it may seem to reduce the uncertainty,
it may also skew the probability away from the true values. A
more certain likelihood is less influenced by the prior.

Uncertainty in the DG Metric as Realized in the

Patient Cohort

Figure 4 shows a summary of the results from running the
Bayesian methodology on the original cohort of patients
presented in Neal et al14 with both a uniform and Gaussian
prior. Each dot represents a patient with the (x,y) coordinate
pair indicating the maximum likely D and ρ for that patient
under this framework. The relative width of the 90% CI of
the DG probability distribution is indicated by the size of the
dot in Figure 4. Patients were further identified based on
their Δt, indicated by color. As we expect, given Figure 2,
the larger, more uncertain, dots are in the lower left corner
regardless of color. It is also evident that although the
uncertainty is decreased in general from the left to right
plot, the locations of the dots are different. Although the
change is not logarithmically statistically significant (Data
Supplement) at a population level, the individual changes
can be quite drastic.

Quantify Robustness

The insets in Figure 5 illustrate the log-rank P value for
each cutoff within each cohort realization; the P value of 1 is
yellow and 0 is dark blue for the four scenarios of predicting
time to progression and overall survival using either the
uniform or the Gaussian prior. The histogram shows the
number of times the specific DG cutoff resulted in a sta-
tistical difference in outcome between the two cohorts. In
general, the DG metric was better able to serve as
a prognostic indicator for the time to progression because
the counts were higher. In particular, a similar range of DG
values for either the uniform (92 to 105) or the Gaussian
prior (94 to 106) was shown to be prognostic in 80% of the
samples.
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DISCUSSION

Here, we have implemented a Bayesian framework to
assess the uncertainty in a promising biomathematical
model–based response metric, DG. We have ignored
model uncertainty and focused solely on uncertainty
from measurements of MRI abnormalities. By using

synthetic data and considering both a uniform and
Gaussian prior, we were able to characterize nonerror
influencing factors on the uncertainty. Using the patients
in the original cohort presented in Neal et al,14 we verified
these patterns of uncertainty manifested in a clinical
setting.
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FIG 2. Synthetic examples: uncertainty in the posterior probability density function uniformly decreases as the time between the pre-treatment
images increases. Shorter time intervals result in a large degree of uncertainty in the posterior in the velocity of the traveling wave. We also see that the
underlying tumor growth kinetics influence the degree to which the time between the images matters. This has an interesting impact on the resultant
probability of days gained (DG), which is dependent on the underlying tumor growth kinetics. Specifically the slower growing tumors, with a higher
degree of uncertainty in their posterior in both scenarios, seem to have a wider distribution, or greater uncertainty, for larger, but the probability of the
truth increases as the distribution widens. This is due to a bias toward the DG values predicted by the faster tumors given equal weight in the posterior.
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The strength of the Bayesian framework in this context is
that it allows one to consider how the uncertainty, from both
the where and how much, ultimately affects a prediction

and thus its robustness. The often-criticized weakness of
Bayesian methods is the choice of the prior, because it has
significant potential to influence results (Fig 3). In situations
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FIG 3. Influence of the prior. The top and bottom rows correspond to the slow and fast growing tumor respectively, each with 40 days between the pre-
treatment images. The left column shows the posterior when a uniform prior is assumed and is thus equivalent to the likelihood; this is the same as is seen in
Figure 2. The middle column shows the value of the Gaussian prior at the same node points, and the right column shows the posterior when the Gaussian
prior is utilized. When the uncertainty is high in the likelihood, the Gaussian prior can significantly reduce the uncertainty, but also biases it toward where the
prior has high probability. When there is less uncertainty in the prior, such as for the fast-growing tumor, the prior has less influence.
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FIG 4. Illustration of uncertainty in days gained (DG) value for original cohort studied in [15] for both uniform and Gaussian priors. The (x,y) coordinate pair of each
circle indicates the maximum like D and ρ for that patient under the Bayesian framework with the indicated prior. The size of the dot indicates the relative width of
the 90% confidence interval of the DG probability density function, while the color indicates the length of time between the pre-treatment images. As expected from
Figure 2, the slower growing tumors, those in the bottom left corner, do tend to have the larger uncertainty in spite of the time between the pre-treatment images.
This also shows how the Gaussian prior biases the D and ρ selection towards the middle of the parameter space and reduces uncertainty in the DG metric.
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such as those presented here, where there is not a large
amount of data for any given patient, the use of an in-
formative prior reduces the uncertainty but is not
guaranteed to increase the accuracy. As in all cases,
confidence in the prior comes from confidence in how
well the current sample is represented by the samples
used to define the prior. The Gaussian prior used here is
defined using a large, heterogeneous population of
patients with glioblastoma multiforme with previously
estimated tumor growth kinetics. Although it is en-
couraging and notable that the test for robustness (Fig 5)
ultimately yielded the same range of prognostic cutoffs
for both priors, we believe future efforts at refining the
prior on the basis of clinical features will enhance these
results.

This work represents a critical step in translating mathe-
matical models into clinical settings. Although the obvious
next step is to run this same investigation with a larger
cohort, these preliminary results using the DG metric
suggest that clinical trials may be able to use a surrogate
for time to progression in determining therapeutic
success. If true, this would revolutionize research in
glioblastoma because clinical trials would be able to
open and close more quickly. Zooming in, it could also
revolutionize the treatment paradigm for individual pa-
tients by letting them make more informed decisions
with their neuro-oncologists. Uncertainty is always
present. But if the sensitivity of critical predictions can
be quantified, the fear in making decisions can be
minimized.
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FIG 5. Quantification of robustness: 1,000 cohort samples were generated of days gained (DG) values from the individual patient distributions
resulting from either a uniform or Gaussian prior. For each sample cohort, we assessed at each possible cutoff the Pvalue associated with a log-
rank test of differences in both time to progression and overall survival. By summing the number of times each cutoff was found to be statistically
significant at the P = .05 level, we demonstrated there is a good range of values for which the DG cutoff is prognostic for time to progression in 80%
of the samples, 93 to 105 for the uniform prior and 94 to 106 for the Gaussian prior. Doing the same analysis, we saw there was no cutoff that
provided the same robustness in prognosis for overall survival, though there are some cutoffs that are prognostic about half the time.
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