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Abstract

Transcranial direct current stimulation (tDCS) is currently under investigation as a promising

technique for enhancement of athletic performance through modulating cortical excitability.

Through consecutive randomization, 12 experienced bodybuilders were randomly assigned

to two arms receiving either sham or real tDCS over the primary motor cortex (leg area) and

left temporal cortex (T3) for 13 minutes in the first session. After 72 hours, both groups

received the inverse stimulation. After the brain stimulation, cerebral hemodynamic

response (using frontopolar hemoencephalography) was examined upon taking three com-

puter-based cognitive tasks i.e. reasoning, memory and verbal ability using the Cambridge

Brain Science-Cognitive Platform. Subsequently, the bodybuilders performed knee exten-

sion exercise while performance indicators including one-repetition maximum (1RM), mus-

cular endurance (SEI), heart rate (ECG), motivation (VAS), surface electromyography over

quadriceps femoris muscle (sEMG) and perceived exertion (RPE) were evaluated. The real

tDCS vs. sham group showed decreased RPE and HR mean scores by 14.2% and 4.9%,

respectively. Regarding muscular strength, endurance, and electrical activity, the 1RM, SEI,

and sEMG factors improved by 4.4%, 16.9%, and % 5.8, respectively. Meanwhile, com-

pared to sham, real tDCS did not affect the athletes’ motivation. Incidentally, it turned out

that subjects who underwent T3 anodal stimulation outperformed in memory (p = 0.02) and

verbal functions (0.02) as well as their corresponding frontopolar hemodynamic response

[(memory HEG (p = 0.001) and verbal HEG (p = 0.003)]. Our findings suggest that simulta-

neous tDCS-induced excitation over the M1 leg area and left temporal area may potentially

improve the overall athletic performance in experienced bodybuilders (Trial registration:

IRCT20181104041543N1, Registered on 4 Nov. 2018, retrospectively registered).
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Introduction

In competitive sports, three principles including faster, higher, and stronger hold significant

importance in not only professional but also amateur athletes. Over recent years, there has

been an increasing interest in brain stimulation and neuromodulation to cross-link neurosci-

ence and athlete’s performance [1]. One of the brain stimulation methods is transcranial direct

current simulation (tDCS) which results in brain excitability changes through a weak direct

current. In 2013, Davis coined the word ‘neurodoping’ which is representative of using

advanced techniques for mental and physical enhancement of athletes [2]. The compelling

idea of incorporating neuroscience in sport as well as he relationship between industry and sci-

ence has led to the knowledge-based products for improving professional athletes’ perfor-

mance (www.haloneuro.com) [2]. In fact, factors such as motor learning, muscular strength,

fatigue or even processing speed for specific motor skills may gain through non-invasive brain

stimulation methods [3].

tDCS transmits a weak current (1 to 2 mA) through surface electrodes over scalp typically

for the duration 5 to 20 minutes. This electrical current is transferred to brain tissue and affects

the excitability and neuronal activity of the brain. In other words, tDCS changes the action

potential threshold in neurons [4]. Anodal tDCS leads to depolarization in resting membrane

potential and axons of target neurons resulting in an increased neuronal firing rate and cortical

excitability [5]. On the other hand, cathodal tDCS leads to decreased excitability through

hyperpolarization [5]. Studies have indicated that the effect of at least 10 minutes brain stimu-

lation would last an hour after the intervention [5]. It is presumed that a similar plasticity

trend exists in glutamatergic neurons [5]. This tDCS-induced modulation is evident in fMRI

studies where anodal and cathodal stimulation increases and decreases blood oxygen level-

dependent (BOLD) response in targeted areas, respectively [6].

An earlier report indicated the positive effects of tDCS over the right motor cortex of

healthy subjects in increasing isometric endurance of left elbow, decreasing muscle fatigue,

and improving motivation and muscle synergy [7]. Similarl, another study showed the effec-

tiveness of anodal tDCS over the motor cortex for improving muscular endurance, decreasing

fatigue, and enhancing athletes’ performance [8].

Moreover, anodal tCDS over the temporal cortex (TC) has been found to modulate the

activity of autonomic nervous system (ANS) and improve peak power output of trained

cyclists by reducing their perceived exertion (PE) and heart rate (HR) [9]. TC has been associ-

ated with ANS- autonomic dysfunction during or after seizures and may result in cardiac and

pulmonary changes [10]. In another study, tDCS over the left temporal lobe, increased HR var-

iability which was indicative of improving parasympathetic modulation of HR [11]. It should

be noted that higher vagal modulation enhances the autonomic cardiac function where physi-

cal fitness is attributed to cardiac vagal function during exercise [12]. Compared to non-ath-

letes, athletes have higher vagal modulation and their HR increase more slowly in a specific

motor task [12]. In case that tDCS can change brain areas associated with ANS and increase

vagal modulation, it can improve athletes’ performance during training. Vagal modulation

changes can be assessed by HR changes before and after tDCS [9].

With respect to motor functions, an investigation showed that anodal tDCS over M1

improved the cycling performance and increased time to exhaustion; however, no significant

changes were reported for PE and HR factors [13].

In addition to the effectiveness of tDCS for muscular fatigue, a recent research demon-

strated the positive effect of dlPFC stimulation on implicit motor learning [14]. The study

which was done on 27 healthy individuals showed that cathodal stimulation of dlPFC
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compared to sham tDCS improved golf putting performance suggestive of enhanced implicit

motor learning. Nevertheless, the participants’ verbal working memory was impaired.

Previously, modulation of motor cortex through the application of tDCS had been studied

[15] whereby anodal stimulation of the M1, premotor, or prefrontal cortices during a reduc-

tion time task indicated the active role of M1 in implicit motor learning, while the stimulation

of other areas showed no specific effect on the same. In line with this study, another research

examined the effects of tDCS over M1 on motor skill acquisition and its long-term retention.

The findings showed that anodal tDCS group developed a better skill acquisition trend com-

pared to the sham group [16].

Given the importance of motivation in performance and physiological response of the ath-

letes, the efficacy of tDCS on motivational level of athletes has been addressed in some reports

[17, 18].

In one of our research-team’s reports, anodal and cathodal tDCS over the left prefronral

and ipsilateral cerebellar cortices, respectively, in professional pistol shooters could improve

shooting task scores [19]. However, this emerging field requires more research to define the

effectiveness of tDCS on athletes in various sport field as well as the optimized protocols

including stimulation duration, electrode montage and stimulation amplitude for tDCS appli-

cation in sport.

Furthermore, most of the studies done till now have examined a small muscle mass such as

biceps brachialis. Thus, examining a rather big section of muscles can be of greater signifi-

cance. So far, there is no study addressing the effects of tDCS on weight lifting exercises.

Nevertheless, some studies have shown that tDCS cannot enhance motor functions. For

instance, one report indicated that stimulation of the right motor cortex (2mA) did not exert

any significant effect on the neuromuscular fatigue [20]. Another study showed that tDCS did

not improve muscular performance in an isometric exercise. The authors concluded that since

the muscle has already been reaching its maximal strength capacity, the intervention could not

further enhance the muscular strength [21]. Nevertheless, the majority of sports-related studies

into the motor cortex have shown the positive significant effects of tDCS [22].

That said, the present investigation was designed to examine the effects of anodal tDCS

over M1 leg area and TC on muscular power, short-term muscular endurance, subjective

fatigue perception, HR, cognitive functions, frontopolar hemodynamic response, and motiva-

tion towards the lifting task. The study primarily hypothesized that our intervention vs. sham

condition would lead to an enhanced short-term muscular endurance, decreased subjective

fatigue perception, decreased post exercise HR, increased frontopolar hemodynamic response,

and motivation while cognitive functions are sustained or even improved.

Method

Ethical approval and consent to participate

This was a factorial single-armed randomized trial in which subjects were assigned to sham or

true tDCS intervention through simple randomization in 1:1 ratio. Approval for this study was

obtained from the Shiraz University of Medical Sciences (SUMS) (No. 1396-01-74-14298).

Since the Iranian Registry of Clinical Trials (IRCT) registration process is time-consuming, in

some cases the university’s review board allows trial commencement based on the permission

granted by the institution. The first participant’s recruitment was then done based on the ethi-

cal board approval (IR.SUMS.REC.1396.147 granted on 4th April 2017) and the permission

granted by the institutional review board committee at SUMS (1396-01-74-14298). The work

was also registered by IRCT under the code IRCT20181104041543N1 (granted on 23rd Dec

2018) and the registration timing was retrospective.
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Recruitment was done during the period of 4th April 2017-22nd October 2018.

The authors confirm that all ongoing and related trials for this intervention are registered.

Participants

Informed consent: The entire process including its rationale and objective, the participants’

role and safety consideration was explained to each candidate in plain language. The partici-

pants were then asked to sign a written informed consent indicating that their data would

remain confidential and they may resign from the process on their discretion whenever during

the project. The consent was made in two identical copies of which the participants could

retain one.

Sampling method, case selection: Case selection followed a cluster random sampling

method. The bodybuilding sport clubs were alphabetically sorted and randomly approached

within various district of the town. Candidates (experienced bodybuilders) who had at least 2

years of consistent bodybuilding exercise (minimum of three sessions per week lifting work-

outs) were sequentially selected and debriefed about the project to get possibly enrolled.

After random selection of 6 bodybuilding gyms across the city of Shiraz and posting

announcement in the gyms, 12 experienced bodybuilders were randomly chosen from those

who volunteered to participate in the study.

With respect to sample size calculation, we referred to the earlier related reports [13, 19,

23–25] in which the sample size ranged from 8 To 16 The Kelsey and Fleiss sample size calcula-

tion formula [26] was used (power 80 and α = 0.05) whereby the minimum justifiable number

of 20 participants were decided to get enrolled. Based on earlier reports in the field of sport,

the specialized population namely bodybuilders limited the sample size of the study. Those

who enrolled in the study were males aging 18 to 40 with weight between 60 to 120 kg who

were regularly training weightlifting exercise (at least 3 times a week) not on doping drugs for

at least 3 months prior to enrollment. The participants were assured not to have psychological

or neurological disorders or a history of alcohol or drug use. In addition, the volunteers were

instructed to refrain from vigorous activities and the ingestion of beverages containing caffeine

and alcohol or of using tobacco for 24 h prior to each test.

Since subjects’ performance was compared to their own sham-stimulation status, the use of

ordinary food supplements was excluded from our "red-flag" checklist. Meanwhile the use of

medicaments and specific supplements (within three months prior to enrollment) which were

indicated in the official list of the World Anti-doping Agency (2018) was considered as an

exclusion criterion.

The above three-month time window was decided since majority of the doping listed agents

can hardly be traced in regular anti-doping test after such a period.

After all, the study design (within group self-comparison upon sham and true brain stimu-

lation) could potentially minimize the biasing effect.

Experimental design

Through a double-blind, counterbalanced design, a clinical neuroscientist who was blind to

session assignment used a random digit table to sequentially allocate subject to interventions.

Data were obtained over two sessions with the interval of 72 hours (Fig 1A). A researcher who

was blinded to data collection process randomly assigned the participants to sham and real

tDCS arms using consecutive randomization. Subjects were randomly submitted to 2 mA

sham or real tDCS over M1 and TC for 13 minutes in the first session. After 72 hours, the

group who received sham first, received real tDCS and the first real tDCS group received sham

in the second session. Since the participants were under maximum physical pressure during
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Fig 1. Study protocol, leg extension exercise involving quadriceps muscles, and the tDCS montages used for brain stimulation. (A) Participants were randomly

assigned to either sham or real tDCS at 2mA for 13 minutes over the first session. Then, they performed 3 tasks including reasoning, memory and verbal from CBS-

cognitive platform (see Methods section) with the intervals of 3 minutes’ rest. CBS-CP and the HEG data were concurrently recorded while subjects carried out the

tasks. Later, they performed the leg extension exercise and their 1RM were recorded. With the interval of 3 minutes, the participants’ perceived exertion was examined

and then, they performed the leg extension with 30% of their 1RM and their endurance level was recorded. Meanwhile, their heart rate during the exercise was also

recorded. After 72 hours, the real group received sham tDCS whereas sham group received real tDCS for 13 minutes and they performed the rest of the tasks similar to

the first session. (B) The examinees were supposed to choose a weight, bend the legs at a 90-degree angle and after extending the legs, move them back to the primary

position. To calculate the 1RM, the athletes were asked to perform the exercise for at least 6 to 12 times with the maximum weight. For the SEI, they were required to

bear 30% of their 1RM weight and perform the exercise as many times as they could. The sEMG sensors were attached to the midpoint of anterior superior iliac spine

and patella through chest leads with the ground on patella and the sEMG data were recorded during the 1RM exercise. The ECG sensors were attached to the upper

right portion of chest below collarbone and below left breast over lower rib-cage to obtain recording during the endurance exercise. (C) A 2 mA anodal tDCS pad

electrode was placed over the left temporal cortex (T3) and anodal tDCS over the Cz covering C1 and C2 (M1 leg area) for a course of 13 minutes. The size of the

electrodes is depicted in the Fig. The cathode electrodes for M1 and T3 were placed over the right and left shoulders, respectively.

https://doi.org/10.1371/journal.pone.0220363.g001
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each testing session, a proper interval was required between the two sessions. The 72h inter-

mission was therefore considered to avoid the confounding effect of muscular fatigue. More-

over, a day before the study (for both sessions), the participants were contacted via phone and

reminded to get some quality sleep and maintained their routine diet. In addition, they were

asked to avoid coffee, alcohol, and other exclusion criteria on the day of the study. In addition,

the study design (random true or sham stimulation in the first or second session) could reduce

the effect of inter-day variability in performance over the two different sessions. The Visual

Analogue Scale was used to measure the participants” fatigue on the study day to exclude those

with subjectively reported excessive fatigue.

It is shown that the effects of 13 minute 2mA stimulation on cortical excitability would

fade after 150 minutes [27]. Following the brain stimulation, to examine the participants’

cognitive performance, the bodybuilders were required to perform 3 tasks from the com-

puterized Cambridge Brain Sciences-Cognitive Platform (CBS-CP) with the intervals of 3

minutes between each task. Meanwhile, their prefrontal hemodynamic response was evalu-

ated using the hemoencephalography (HEG) setup upon performing the mentioned tasks.

The participants were then asked to warm up and perform the knee extension exercise for at

least 6 to 12 times with the maximum weight that they could bear with the Knee Extension

Machine in order to obtain their 1RM (Fig 1B). This exercise is considered as one of the

basic moves in weightlifting practice targeting the quadriceps femoris muscle. It should be

noted that only the practices in which the legs could bend at a 90-degree angle were

recorded as correct moves.

After 3 minutes rest, in order to assess the participants’ exertion rate upon knee extension

exercise for obtaining 1RM, the bodybuilders were asked to fill the hr questionnaire [28]. Ear-

lier reports have postulated a high correlation between RPE and blood as well as muscle lac-

tates which are biochemical indicators of heart and muscle exertion [28]. Furthermore, to

assess the participants’ motivation in continuing the exercises, a Visual Analogue Scale (VAS)

was used. After that, participants were asked to choose a weight equaling 30% of their 1RM

and perform the knee extension exercise as many times as they could. This time, multiplication

of the weight by the number of successive exercise was considered as the Short-term Endur-

ance Index (SEI). Moreover, the participants’ HR during exercise performance was recorded

as an indicator of autonomic response.

Taken together, the study randomized the subjects into sham and real tDCS then switched

and compared results between stimulations. The difference in variable scores following true-

vs. sham-tDCS (through paired t-test) was attributed to the potential effect of the intervention.

Transcranial direct current stimulation (tDCS)

In this study, a two channel tDCS device (Neurostim-2, Medina Teb) was used to transfer a

2mA electrical current for 13 minutes with ramping up and down of 30 seconds. In one chan-

nel, the anode electrode was placed over the Cz (35 Cm2) overlying C1 and C2 (M1 leg area)

responsible for leg movement and the cathode (16 Cm2) was placed over the right shoulder.

For the second channel, the anode (16 Cm2) was placed over the TC (T3) and the cathode elec-

trode (16 Cm2) was placed over the left shoulder. The electrodes were placed based on the

international 10–20 EEG electrode placement system and the saline-soaked sponges (NaCl 150

mM) were used under the electrodes over the scalp. To induce a sense of stimulation in the

sham session, an electrical current was delivered for 30 seconds and then, the current was

switched off; however, the count-down indicator and the indicator light on the device screen

were on throughout the session. In the real tDCS session, the electrical current was delivered

for 13 minutes.
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According to some studies, the stimulation of motor cortex for 10 minutes does not have a

significant effect on muscular performance. Nitsche et al. [27] showed that the effects of a

tDCS session (2mA, 13min) continued to remain for 150 minutes. In addition, some other

studies into cyclists indicated the effectiveness of stimulation (13min) in enhancing their ath-

letic performance [13]. As a result, we considered a stimulation for 13 minutes as an optimal

stimulation duration already examined. It is worth noting that the length of stimulation was 20

minutes in the majority of studies. We considered a shorter length of stimulation as it could be

more convenient before sport competitions.

With regard to the stimulation sessions, subjects were briefed about the possible fine tin-

gling sensation they might feel during the stimulation. They were also reassured about the

safety profile of the process. During the tDCS session (13 min), the participants were

instructed to sit still comfortably on a chair and do nothing, keeping their eyes open.

At the end of each stimulation sessions, the participants were asked about their feeling

regarding the sham versus real tDCS. Since the participants were stimulated for 30 minutes in

the sham session with 30 second ramp—up, they could not accurately distinguish between the

sensation over the real and sham sessions.

The tDCS montage used for brain stimulation is depicted in Fig 1C.

Instruments, measurements and metrics

The instruments and materials used upon data collection.

Visual Analogue Scale (VAS): used as a continuous single-item fatigue scale ranging from

0 (no fatigue) to 10 (severe fatigue). This scale evaluated the participants’ motivation in per-

forming the tasks and continuing the exercises.

Heart Rate (HR) recording: the HR was recorded by a NeXus-4 (MindMedia, Nether-

lands) Biofeedback setup. The electrocardiography (ECG) sensors were attached to the partici-

pants through chest leads and the HR data were recorded while the participants were working

out the knee extension endurance exercise. The average HR of each two knee extension exer-

cises was calculated for further analysis.

Rated Perceived Exertion (RPE): This is a 6 (no exertion) to 20 (maximal exertion) scale

developed by Borg et al. [28] to assess the body PE during exercise. The RPE was shown to the

participants and they were instructed how to report their PE. The reliability index of this scale

reported by Borg et al. was robust (r = 0.92). Our study employed the validated Persian version

for the same purpose.

One-Repetition Maximum (1RM) scale: muscle strength is the capacity of a muscle to

exert force. 1RM is regarded as one-repetition maximum used to determine maximum

strength calculated through 1RM = w (1þ r
30

), considering r>1 [29], where r is the number of

repetitions performed and w is the amount of weight participants could lift by their knee

extension.

Short-term Endurance Index (SEI): To assess this factor, the participants were asked to

choose 30% of their 1RM and perform as many as the knee extension exercise they can. The

SEI was calculated by multiplication of the amount of weight (30% of their 1RM) by the num-

ber of successive exercise.

The Cambridge Brain Science Cognitive Platform (CBS-CP): Cognitive performance is a

crucial substrate of athletic function in many instances [30, 31]. In order to distinguish the

positive or negative impact of our brain stimulation protocol on cognitive performance of the

participant’s cognitive assessment was pursued. To do so, a media-rich computerized online

platform addressing three higher-order cognitive components of reasoning, memory and ver-

bal ability [32] was used. From each component, a test was chosen to see the effects of tDCS on
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different aspects of cognitive performance. The ‘Rotation, Monkey Ladder and Digit Span’

tasks were chosen from reasoning, memory, and verbal domains, respectively.

Prefrontal hemodynamic response: the assessment was used to identify local intracranial

hemodynamic changes in prefrontal cortex (PFC) using a Hemoencephalography (HEG)

device (a peanut near infra-red HEG kit, BIOCOMP Research Institute, Los Angeles, CA).

Thereby, the optical density in left frontopolar (FP1) area was recorded during completion of

the three aforementioned CBS-CP tasks after either sham or real tDCS intervention.

Surface Electromyography (sEMG): A Nexus Biofeedback setup was used to record sEMG

from the rectus femoris muscle, a factor representing the neuromuscular dynamics. Due to

limitations in the device channels, we had to stimulate only one muscle and record the heart

rate at the same time with other channel of the polygraphy device. The rectus femoris muscle

is one of the most important muscles involved in knee extension. Since the motor cortex of the

leg was stimulated through tDCS, the contraction of this muscle was considered as a sample

resembling the activity and contraction of the rest of muscles within quadriceps. However, the

selection of this muscle does not indicate its superiority over other quadriceps femoris

muscles.

Before placing the electrodes, the site was shaved, disinfected by alcohol, and given time to

dry out completely. Employing Surface EMG for Non-Invasive Assessment of Muscles

(SENIAM) guidelines [33], the sensors were attached to the midpoint of anterior superior iliac

spine and patella through chest leads and the sEMG data were recorded during the 1RM exer-

cise. The sEMG recordings were pre-processed and denoised to eliminate peaked sharp arti-

facts. EMG sampling rate was 1,024 per second. A band pass filter from 100 Hz to 500 Hz was

applied during online recording. Raw EMG data were then recalculated through the root

mean square (RMS) method to transform EMG signals into amplitudes. The resulting ampli-

tudes were then subject to statistical analysis.

In addition to raw signals, Biotrace+ software (V2017A, Mind Media B.V., The Nether-

lands) provided root mean square data (epoch size: 1/8 s, 32 samples per second). Results are

illustrated in Fig 4.

Data analysis

Based on the normality of distribution, parametric and non-parametric statistical tests were

employed. A series of paired sample t-tests were run to compare the differences between sham

and real tDCS with regard to different factors including motivation, HR, RPE, 1RM, SEI,

CBS-CP, and HEG data.

Wilcoxon signed-rank test was used to analyze data lacking normal distribution. The differ-

ences between the sham and real tDCS sessions were evaluated based on the Mean±SEM

(Standard Error of Mean). The p values below 0.05 were considered as statistically significant.

The SPSS statistical package (Version 22.0.0) was used for data analyses.

Results

12 experienced bodybuilders were randomly chosen from those who volunteered to participate

in the study.

The participants’ demographic data [Mean±SEM (standard error of mean)] included: age

in years = 25.6±6; years of training in bodybuilding = 5.7±3.4 and years of formal educa-

tion = 15±3.

One-repetition maximum (1RM): With regard to the 1RM used to evaluate the maximum

weight lifting performance, the real tDCS vs. sham could improve mean muscular strength

score by 4.4% (p = 0.002) (Fig 2).
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Short-term endurance: The findings revealed that compared to sham, real tDCS could sig-

nificantly (p = 0.004) increase the participants’ mean short-term endurance score (SEI) by

16.9% (Fig 2). This indicates the potential impact of true tDCS vs. sham on muscular

endurance.

Rated perceived exertion: The analysis revealed a statistically significant difference

between the participants’ PE in sessions 1 (sham) and 2 (real) tDCS. The real tDCS vs. sham

could decrease RPE mean scores by 14.2% (p = 0.007) (Fig 2).

Heart rate: The results of HR recording over the last 12knee extension exercises showed a

significant difference between real vs. sham tDCS session and the 6 final p values were 0.006,

0.008, 0.03, 0.009, 0.01, and 0.008, respectively, suggesting decreased HR by 4.9% following

brain stimulation (Fig 2).

Motivation

Based on our findings, there was not a statistically significant difference between the partici-

pants’ motivation in sham and real tDCS sessions; however, the mean score increased from 6.1

in sham session to 6.5 in real tDCS session (Fig 2).

Cambridge brain sciences-cognitive platform: The results of paired-sample t-tests on

CBS-CP tasks showed a statically significant difference between the sham and real tDCS ses-

sions in memory (p = 0.02) and verbal (p = 0.02) tasks. However, with respect to the reasoning

task, brain stimulation could not enhance the mean score from sham to real tDCS session

(Fig 3).

Hemoencephalography response

A series of paired-sample t-test were used to compare cerebral blood flow in FP1 in the sham

and real tDCS sessions. Our findings indicated a statistically significant increase in FP1 hemo-

dynamic response upon memory (p = 0.001) and verbal (p = 0.003) cognitive tasks (Fig 3).

Nevertheless, for the reasoning task, no statistically significant difference was noted in HEG

response from session 1 to session 2.

Surface electromyography (sEMG)

Results of the sEMG indicated that anodal M1 and TC stimulation could significantly increase

the sEMG amplitude (p = 0.01). Moreover, as shown in Fig 4, the protocol could increase the

sEMG frequency during the knee extension lift task (Fig 4).

Discussion

Over recent years, brain stimulation has become a trend for athletic performance enhance-

ment; however few studies [2, 13, 14, 34] have systematically investigated the issue so far.

Fig 2. Dot plots representing the participants’ performance for the task outcomes including muscular strength

(1RM), motivation, muscular endurance (SEI), perceived exertion (RPE), and HR. Panel a shows a significant

difference between the 1RM of the athletes in true vs. sham tDCS sessions (p<0.05). The 1RM was calculated through

1RM = w (1þ r
30

), considering r>1 (48), where r is the number of repetitions performed and w is the amount of

weight. Panel b indicates no significant difference for the motivation of bodybuilders in sham vs. real sessions

evaluated through VAS, a continuous single-item fatigue scale ranging from 0 (no fatigue) to 10 (severe fatigue)

(p<0.05). Panel c indicates a significant difference in SEI [multiplication of the amount of weight (30% of their 1RM)

by the number of successive exercise] for the sham vs. real tDCS session (p<0.05). Panel d shows a significant

difference between the RPE in sessions 1 and 2 (p<0.05). Panel e shows a significant difference between HR in the last

12 lifts (the average HR of each two leg extension exercises is plotted in the graph) in sham and real tDCS sessions

(p<0.05). Paired t-test was used with the p value significance level set at 0.05. ns: non-significant.

https://doi.org/10.1371/journal.pone.0220363.g002
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Nevertheless, most tDCS studies on athletic performance have addressed the issue of athletes’

endurance [9, 14], while the impact of brain stimulation on maximal muscular strength of ath-

letes is yet to be further defined. Taking into account the critical role of brain in exercise per-

formance [35], the present study aimed to determine whether a tDCS-induced cortical

excitability of M1 leg area and TC would enhance neural processing and, as a result, improve

maximal muscular power, muscular endurance and fatigue, motivation, HR, prefrontal hemo-

dynamic response, and cognitive functions in experienced bodybuilders.

With respect to the athletic performance, ANS activity is shown to be associated with exer-

cise performance [36] and perceived fatigue [37]. Confirming the association between the TC,

and ANS [9], specifically HR and blood pressure [36], our findings showed that TC stimula-

tion regulates the athletic performance potentially due to a decreased perception of exertion in

relation with the ANS function. Through modulating the ANS, this technique reduced the

bodybuilders’ HR by 4.9% during the 12 final moves of the muscular endurance exercise, pre-

sumably through increasing and decreasing parasympathetic and sympathetic functions,

respectively. Hence, our results proposed the facilitatory effects of tDCS applied over TC asso-

ciated with ANS activity which has previously been shown to improve cardiac autonomic con-

trol during exercise [9, 10, 12, 38].

Indeed, greater vagal modulation is shown to result in regulated cardiovascular autonomic

function, which potentially improves athletic performance [39]. Moreover, athletes are shown

to have higher vagal modulation than non-athletes [39] and consequently, their heart rate

increases more slowly than non-athletes under a specific task [39]. The athletic performance

can be enhanced by stimulating specific brain regions related to the autonomic nervous system

and increasing vagal modulation. As such, vagal modulation can be assessed by comparing

changes in heart rate before and after the tDCS [40]. The vagus nerve fibers are more richly

innervated in the atrium than in the ventricle, where energy for the contractions of the heart is

provided. This may justify the effect of vagal stimulation, which typically slows down the heart,

while the contractibility of cardiac muscles does not reduce much [41]. In fact, a slight reduc-

tion in heart rate during an intense exercise may improve cardiac muscles’ contractibility. In

our study, the heart rate significantly reduced almost at the end of the physical task.

Moreover, our results indicated that 2mA anodal tDCS for 13 minutes significantly boosted

maximal strength and endurance performance of bodybuilders by 4.4% and 16.9%, respec-

tively, compared to sham stimulation. The results of enhanced maximal power (1RM) and

endurance (SEI) could justify the impact of anodal tDCS over M1 to improve muscle strength

[3, 37], muscle synergy, muscular endurance [7, 8], motor performance of the lower limbs

[37], locomotion and balance in patients with Parkinson’s and stroke [42–44]. This has also

been extended to more complex tasks such as static [45] and dynamic balance learning though

induced excitability [46]. Yet, our results contradict the report showing that the maximum

capacity of professional pianists in motor learning is limited [47]. Our findings suggest that

the maximal strength of experienced bodybuilders can be enhanced following brain

stimulation.

Fig 3. Dot plots showing the performance of bodybuilders in CBS-CP tasks i.e. reasoning, memory, and verbal

and the HEG data recorded while taking the tasks over two sessions, 72 hours apart. Panel a shows no significant

difference between the performance of the athletes on a reasoning task in sham vs. real tDCS sessions. Panel b indicates

no significant difference between the HEG responses upon reasoning task in sham and real sessions. Panel c represents

a significant difference in a memory task scores from sham to real tDCS session (p<0.05). Panel d indicates a

significant difference between the HEG responses upon a memory task in sessions 1 and 2 (p<0.05). Panel e shows a

significant difference between the verbal task scores in sham and real tDCS sessions (p<0.05). Panel f shows a

significant difference between the HEG responses upon a verbal task in sham and real sessions (p<0.05). Paired t-test

was used with the p value significance level set at 0.05. ns: non-significant.

https://doi.org/10.1371/journal.pone.0220363.g003
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Anodal tDCS is shown to potentially reduce the release of the inhibitory neurotransmitter

GABA [48]. This has also been postulated through the evidence from magnetic resonance

spectroscopy (MRS) [49, 50] showing that the anodal stimulation inhibits the release of GABA

[48, 51]. In the current study, GABA reduction probably improved the functions of cholinergic

and glutamatergic neurons [52]. As a result, the excitability of motor neurons increases which

may: 1- increase the release of acetylcholine neurotransmission in the synaptic terminal of

neuromuscular system, 2-involve more muscular units,3- increase the mean neuronal firing

rate [7], and 4-increase 1RM.

Formerly, it was shown that despite improving cycling performance and time to exhaus-

tion, anodal tDCS over M1 did not affect PE and HR factors [13]. Nonetheless, our investiga-

tion confirmed positive effects of tDCS on HR and perception of exertion besides enhancing

maximal and endurance exercise performance. Our findings were in agreement with the stud-

ies which demonstrated the positive effects of anodal stimulation of M1 in decreasing muscle

fatigue [3, 7, 8]. Therefore, it may be concluded that simultaneous anodal stimulation of M1

and TC can be an optimized protocol to potentiate the overall performance of athletes consid-

ering important athletic factors of muscular power, endurance, fatigue perception, and HR.

The existing evidence support the fact that the temporal region retains a defining role in the

functional regulation of autonomic nervous system [10]. According to a study, when people

have a good feeling, like when a mother sees her child’s photo, their left insular cortex in acti-

vated [53]. In the current study, in addition to the motor cortex, the temporal cortex was con-

currently stimulated. This has potentially resulted in a reduced perceived exertion (rated

through RPE) and heart rate, supporting the effect of anodal tDCS on autonomic functions.

In our study, the enrolled athletes rated their perceived intensity of a physical exercise using

the RPE. The RPE results are used to determine the maximum exertion in a physical exercise.

Studies have shown that the RPE scale is well correlated with serum as well as muscle lactic

acid, which are biochemical markers for muscle fatigue [28]. Therefore, an open question to

address in future research is to investigate whether reduced RPE is proportionately linked to

altered levels of serum and muscle lactic acid.

Being involved in emotional awareness and recognizing emotional stimuli, TC was stimu-

lated in order to examine its effect on the bodybuilders’ motivation. In agreement with the

finding of the reports showing the positive effects of tDCS over the right motor cortex of

healthy subjects in improving motivation [7], our study similarly found that the motivation

mean score increased. However, statistical analysis did not reveal any significant difference

between sham and real tDCS. This might be preliminarily due to the focus of the tDCS since

we have not placed the anodal stimulation on the specific areas (frontopolar brain regions)

[54] which are potentially linked to the motivational capacity of the participants undergoing

the training exercise. Although the anodal stimulation of T3 may result in positive feelings [9],

it could not significantly improve the bodybuilders’ level of motivation in our study.

With respect to cognitive functions, according to Furley et al. in addition to muscular per-

formance, the cognitive functions such as working memory and reasoning, are among poten-

tially defining factors in athletic performance mainly at professional level. An enhanced focus

and working memory function can reduce executive lapses and improve tactical decisions in

Fig 4. sEMG recording from bodybuilders’ rectus femoris during 1RM exercise. The image represents the ‘raw’

EMG signal of rectus femoris muscle (Blue) and the ‘RMS’ (Root Mean Square) of rectus femoris muscle (Red). Panels

a and b represent the gross pattern for muscle contraction including the sEMG amplitudes were calculated (epoch size:

1/8 s, 32 samples per second) after sham and real tDCS, respectively. The peaks correspond to the lifts performed

during the 1RM exercise. Comparing the panels a and b, the frequency is shown to get increased after real tDCS. Panel

c represents a significant difference in RMS from sham to real tDCS sessions (p<0.05). Paired t-test was used with the

p value significance level set at 0.05. ns: non-significant.

https://doi.org/10.1371/journal.pone.0220363.g004
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sport competitions [55]. The cross-link between cognitive capacity and athletic performance

following transcranial electrical stimulation need to be defined not only to show the safety of

applied stimulation but also the possible benefits on athletic performance.

To assess the cognitive aptitude of examinees in relation to muscular performance follow-

ing cortical electrical stimulation, we chose to employ the Cambridge Brain Science-Cognitive

Platform (CBS-CP). This tool is among the mostly used and validated media-rich computer

platforms with an ongoing normative database comprising over 40000 subject entries world-

wide [32]. Since the peak effect of single session tDCS remains for almost one hour [27].we

faced time-constraint and had to limit cognitive assessments to maximum 3 tasks. As such,

one task from each domain within the CBS-CP (i.e. Memory, verbal and reasoning) was

selected and administered. More comprehensive cognitive assessments would better be

assessed in future research works of similar context where time-constraint is not an issue.

In the current study, the motor cortex stimulation resulted in the enhancement of working

memory, which could also affect long-term memory. Proji et al. [56] showed that anodal tDCS

over the primary motor cortex (M1) would potentiate synaptic plasticity through modulating

NMDA receptors and ultimately result in the enhancement of long-term memory.

One way to measure neuronal activity is to record cortical hemodynamic changes [57]. The

hemodynamic changes in the left frontopolar cortical region (FP1) can be measured using

hemoencephalography (HEG) response. Based on the existing evidence, a higher HEG

response at prefrontal cortical regions corresponds to proper cognitive capacity [57]. In our

study, there was probably a direct relationship between the cognitive function improvement

(memory and verbal) and increased HGE response following anodal tDCS.

Our study was consistent with that of Toomim et al. conducted on people with attention

deficit showing that people with increased HEG response in FP1 scored higher in the TOVA

test (Test Of Variables of Attention) which assesses several cognitive and behavioral domains

including attention, reaction time and impulsivity [58]. In our study, the cognitive test scores

(Digit Span and Monkey Ladder Tests) were significantly improved proportionately with the

gain in HEG response. These two tests are categorized as visuospatial and verbal working

memory testing tools [32]. A key large-scale brain network involved in visuospatial scanning

and working memory is located within the prefrontal cortex where the HGE response signifi-

cantly increased in our investigation [32]. Since in addition to the muscular strength, cognitive

functions are also effective factors in athletic performance, we investigated three different cog-

nitive tasks taking into consideration the research limitations. Our intervention was shown to

improve some cognitive domains and this was reflected in frontopolar hemodynamic changes.

Considering the cognitive functions, anodal tDCS over the M1 leg area and TC was not

only safe in terms of hampering cognitive functions but also effective in improving mean

scores in some domains memory and verbal ability tasks. However, no significant effect was

noted regarding the reasoning task. Outperformance on ‘Digit Span task’ (verbal) could be jus-

tified by repetition in the task associated with superior longitudinal fasciculus and arcuate fas-

ciculus modulated through T3 stimulation. The results on verbal task could be compared with

a study [59] indicating the positive effects of tDCS over M1 in word-retrieval, a verbal task.

However, the results are in contrast to earlier researches which showed that anodal tDCS over

M1 had no significant effect on working memory in healthy individuals [60] and patients with

Parkinson’s disease [61].

We preliminary hypothesized that the safety of this intervention would need to be war-

ranted by no potential impairment in cognitive capacity of the participants who underwent

this process, surprisingly, it was found that not only they did not have any decline in cognitive

function, but in some specific domains it showed to have outperformance in terms of memory

and verbal capacity. This could potentially be justified through stimulated networks which are
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practically implicated in cognitive functions including memory and verbal ability. Moreover,

tDCS induced excitability resulted in increase in prefrontal hemodynamic response upon

memory and verbal cognitive tasks as suggested by previous studies showing an increased

blood-oxygen level due to anodal brain stimulation [6, 62] which is probably caused by cortical

excitability [5].

Moreover, anodal M1/TC stimulation could increase sEMG amplitude (RMS) in line with

the reported effectiveness of anodal motor stimulation on biceps brachii muscle activation and

increase in elbow flexor muscle activity [63]. However, the results cannot be generalized to all

age groups since it is already revealed that tDCS over the motor cortex in old adults exerted no

effects on their elbow flexion muscle strength and sEMG amplitude [64]

Moreover, the Type II fast muscle fibers are often innervated through high-threshold neu-

rons. This type of muscle fibers is often closer to the surface and their contraction variations

can be well traced with the sEMG [8]. As a result, a small change in using motor units can be

traced with the sEMG [65]. In the current study, a significant increase in RMS was observed

following tDCS reflecting empowered motor units during an isotonic task. However, further

studies are required to determine a more accurate mechanism for muscular activities following

tDCS.

The current study was subject to some shortcomings including a relatively small sample

size, lack of further objective assessments techniques to label fatigue such as magnetic reso-

nance spectroscopy of muscles for lactic acid level, lack of further dose-response examinations

in tDCS including varied protocols based on timing and amplitude. In addition, brain map-

ping upon bodybuilders’ task performance through quantitative electroencephalography

(qEEG) would be of great help in future research.

Although this study indicated the efficiency of simultaneous anodal stimulation of M1 leg

area and TC in enhancing the performance of bodybuilders in terms of muscular strength,

endurance, HR, fatigue, prefrontal hemodynamics, sEMG amplitude, and cognitive ability,

further investigations should attempt to define optimized protocols to be used in real practice

of bodybuilders.

Furthermore, due to the important role of cerebellum in movement and muscular coordi-

nation and strength as well as its close relationship with motor cortex, the question about

application of cerebellar tDCS for bodybuilders’ performance can be sought is future research.

With a larger sample size, another issue to tackle is to examine whether there is a correla-

tion between athletic performance in bodybuilders (i.e. 1RM) and cognitive profile. Some cog-

nitive domains including emotion, drive, motivation and attention may potentially be linked

to optimized performance in athletic field [66, 67]. Though, the hypothesis would need to be

systematically addressed in future well-designed research.

Finding from this research is expected to add to the emerging body of evidence toward

incorporating applied neuroscience insights in to sports. Further systematic research on simi-

lar topics need to gain momentum to bring such novel insights in to real life applications.

Conclusion

Taken together, our present report suggests that the integration of anodal M1 leg area and TC

tDCS may assist bodybuilders to improve their overall performance. This study may pave the

path towards designing brain stimulation protocols to enhance strength and subsequently

the muscle mass in bodybuilding which is known as a basic competency in many sports. Addi-

tionally, since sustainable training may hardly affect the autonomic nervous system tone, auxil-

iary methods such as tDCS to assist athletes with decreased fatigue perception could be

worthwhile.
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The present results may appeal to the interest of athletes, coaches and policy makers to help

improve athletic performance.
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of the primary motor cortex improves word-retrieval in older adults. Frontiers in aging neuroscience.

2014; 6:253. https://doi.org/10.3389/fnagi.2014.00253 PMID: 25295004

60. Fregni F, Boggio PS, Nitsche M, Bermpohl F, Antal A, Feredoes E, et al. Anodal transcranial direct cur-

rent stimulation of prefrontal cortex enhances working memory. Experimental brain research. 2005; 166

(1):23–30. https://doi.org/10.1007/s00221-005-2334-6 PMID: 15999258

61. Boggio PS, Ferrucci R, Rigonatti SP, Covre P, Nitsche M, Pascual-Leone A, et al. Effects of transcranial

direct current stimulation on working memory in patients with Parkinson’s disease. Journal of the neuro-

logical sciences. 2006; 249(1):31–8. https://doi.org/10.1016/j.jns.2006.05.062 PMID: 16843494

62. Baudewig J, Nitsche MA, Paulus W, Frahm J. Regional modulation of BOLD MRI responses to human

sensorimotor activation by transcranial direct current stimulation. Magnetic resonance in medicine.

2001; 45(2):196–201. PMID: 11180425

63. Krishnan C, Ranganathan R, Kantak SS, Dhaher YY, Rymer WZ. Anodal transcranial direct current

stimulation alters elbow flexor muscle recruitment strategies. Brain stimulation. 2014; 7(3):443–50.

https://doi.org/10.1016/j.brs.2014.01.057 PMID: 24582369

64. Oki K, Clark LA, Amano S, Clark BC. Effect of Anodal Transcranial Direct Current Stimulation of the

Motor Cortex on Elbow Flexor Muscle Strength in the Very Old. Journal of geriatric physical therapy

(2001). 2017.

65. Zhou P, Rymer WZ. Factors governing the form of the relation between muscle force and the EMG: a

simulation study. Journal of neurophysiology. 2004; 92(5):2878–86. https://doi.org/10.1152/jn.00367.

2004 PMID: 15201310

66. Lewthwaite R, Wulf G. Optimizing motivation and attention for motor performance and learning. Current

Opinion in Psychology. 2017; 16:38–42. https://doi.org/10.1016/j.copsyc.2017.04.005 PMID: 28813352

67. Simons HD, Van Rheenen D, Covington MV. Academic motivation and the student athlete. Journal of

College Student Development. 1999; 40:151–62.

Transcranial direct current stimulation to enhance athletic performance

PLOS ONE | https://doi.org/10.1371/journal.pone.0220363 August 1, 2019 20 / 20

https://doi.org/10.1016/j.cub.2011.01.069
http://www.ncbi.nlm.nih.gov/pubmed/21376596
http://www.ncbi.nlm.nih.gov/pubmed/9712668
https://doi.org/10.1016/j.biopsych.2004.05.017
https://doi.org/10.1016/j.biopsych.2004.05.017
http://www.ncbi.nlm.nih.gov/pubmed/15312809
https://doi.org/10.1016/j.biopsych.2017.11.007
https://doi.org/10.1016/j.biopsych.2017.11.007
http://www.ncbi.nlm.nih.gov/pubmed/29275840
http://www.ncbi.nlm.nih.gov/pubmed/22691397
https://doi.org/10.1371/journal.pone.0127270
http://www.ncbi.nlm.nih.gov/pubmed/25996937
https://doi.org/10.3389/fnagi.2014.00253
http://www.ncbi.nlm.nih.gov/pubmed/25295004
https://doi.org/10.1007/s00221-005-2334-6
http://www.ncbi.nlm.nih.gov/pubmed/15999258
https://doi.org/10.1016/j.jns.2006.05.062
http://www.ncbi.nlm.nih.gov/pubmed/16843494
http://www.ncbi.nlm.nih.gov/pubmed/11180425
https://doi.org/10.1016/j.brs.2014.01.057
http://www.ncbi.nlm.nih.gov/pubmed/24582369
https://doi.org/10.1152/jn.00367.2004
https://doi.org/10.1152/jn.00367.2004
http://www.ncbi.nlm.nih.gov/pubmed/15201310
https://doi.org/10.1016/j.copsyc.2017.04.005
http://www.ncbi.nlm.nih.gov/pubmed/28813352
https://doi.org/10.1371/journal.pone.0220363

