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Insulin resistance is a common finding in chronic kidney disease (CKD) and is manifested by mild fasting hyperglycemia and
abnormal glucose tolerance testing. Circulating levels of glucocorticoids are high. In muscle, changes in the insulin signaling
pathway occur. An increase in the regulatory p85 subunit of Class I phosphatidylinositol 3-Kinase enzyme leads to decreased
activation of the downstream effector protein kinase B (Akt).Mechanisms promotingmuscle proteolysis and atrophy are unleashed.
The link ofAkt to the ubiquitin proteasome pathway, amajor degradation pathway inmuscle, is discussed. Another factor associated
with insulin resistance in CKD is angiotensin II (Ang II) which appears to induce its intracellular effects through inflammatory
cytokines or reactive oxygen species. Skeletal muscle ATP is depleted and the ability of AMP-activated protein kinase (AMPK)
to replenish energy stores is blocked. How this can be reversed is discussed. Interleukin-6 (IL-6) levels are elevated in CKD and
impair insulin signaling at the level of IRS-1. With exercise, IL-6 levels are reduced; glucose uptake and utilization are increased.
For patients with CKD, exercise may improve insulin signaling and build up muscle. Treatment strategies for preventing muscle
atrophy are discussed.

1. Introduction

Insulin resistance describes a physiological condition which
is characterized by reduced tissue responses to the action of
insulin for any given blood concentration of the hormone.
It is a common finding in chronic kidney disease but it
largely goes unrecognized. In nondiabetic patients with end
stage renal disease, this is manifested by mild fasting hyper-
glycemia and abnormal glucose tolerance testing during
an oral or intravenous glucose load. Patients may develop
hyperglycemia or maintain normoglycemia at the expense of
hyperinsulinemia [1, 2]. These changes are often masked by
a decline in the metabolic clearance of insulin that occurs as
the glomerular filtration rate drops below 15 to 20mL/minute.
Between glomerular filtration rates of 20 to 40 mL/minute,
peritubular insulin uptake increases tomaintain renal insulin
clearance [3]. In uremia, degradation of insulin in nonrenal
tissues such as liver and muscle is impaired and the half-life
of insulin is prolonged. It is hypothesized that accumulation
of uremic toxins may inhibit insulin degradation particularly

by the liver. Although the latter is responsible for removal
of approximately 50% of the insulin secreted into the portal
circulation [4], the major site of insulin resistance is in the
peripheral tissues. Because adipose tissue is responsible for
disposal of less than 2% of the glucose load, muscle tissue
is the primary site for insulin resistance. DeFronzo et al.
[1] demonstrated that leg glucose exchange as a measure of
peripheral insulin-mediated glucose uptake was decreased
in patients with end stage renal disease and showed that a
decrease in leg glucose exchange correlated with a decrease
in total body insulin-mediated glucose uptake.

2. The (PI3K)/Akt Pathway

The major pathway by which insulin mediates its metabolic
effects is through the Class I phosphatidylinositol 3-Kinase
(PI3K)/protein kinase B (Akt) pathway. In muscle (see Fig-
ure 1), the pathway begins by insulin (or insulin growth
factor 1 (IGF-1)) binding to their respective receptors (IR) and
activating an internal receptor tyrosine kinase. As a result,
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Figure 1: Insulin or insulin-like growth factor 1 (IGF-1) binds to
its receptor and activates the receptor tyrosine kinase. The receptor
undergoes autophosphorylation and provides a binding site for
the insulin receptor substrate (IRS) proteins. Once bound, these
IRS proteins undergo phosphorylation on tyrosine residues. These
phosphorylated tyrosine residues provide a docking site for the
p85 regulatory subunit of the Class I phosphatidylinositol 3-kinase.
In turn, the p110 catalytic subunit is released, becomes activated
and catalyzes the production of phosphatidylinositol (3, 4, 5)-
triphosphate (PIP

3
) from phosphatidylinositol (3, 4)-biphosphate

(PIP
2
). PIP

3
then activates protein kinase B (Akt). Akt then serves

as a branch point for a variety of downstream signaling pathways.
Insulin and IGF-1 can also stimulate cell growth through the mito-
gen activated protein kinase pathway/extracellular signal related
kinase (MEK/ERK) pathway.

the receptor undergoes autophosphorylation and provides a
binding site for the insulin receptor substrate (IRS) proteins.
In muscle, there are two major isoforms of the IRS proteins,
IRS-1 and IRS-2. Each of these IRS proteins can indepen-
dently bind to the phosphorylated tyrosine residues on the
IR. Once bound, these IRS proteins become substrates for the
IR kinase and undergo phosphorylation on tyrosine residues.
In turn, these phosphorylated tyrosine residues in the IRS
proteins provide a docking site for the Class I PI3K which
is composed of a p85 regulatory and p110 catalytic subunits.
The docking of the p85 regulatory subunit with the phos-
phorylated tyrosine residues of the IRS proteins results in
an active enzyme complex. Subsequently, the PI3K catalyzes
the production of phosphatidylinositol (3, 4, 5)-triphosphate
or PIP

3
which in turn directly activates the serine kinase

Akt or indirectly via 3-phosphoinositide-dependent protein
kinase (PDK). Akt serves as a branch point for a variety of
downstream signaling pathways.

The basis for the impaired responses to insulin has been
obscure until fairly recently.

Cecchin and colleagues examined insulin binding and
the kinase activity of insulin receptors in isolated skeletal
muscles from control and uremic rats [5]. They found no
change in the receptor number, insulin affinity, or tyrosine

kinase activity. Similarly, Tsao and colleagues measured IGF-
1 receptor number, binding affinity, and kinase activity in
isolated muscles from control and chronic kidney disease
(CKD) rats and reported no differences in receptor number,
insulin affinity, or tyrosine kinase activity [6]. The latter
finding is important because both the insulin and IGF-
1 receptors transduce into common signaling pathways.
Consequently, both groups concluded that the inability of
insulin and IGF-1 to ameliorate muscle wasting in CKD was
due to postreceptor defects. In contrast, Ding et al. reported
that CKD was associated with an increase in the number
of IGF-1 receptors in muscle; however, the IGF-1 receptor
kinase activity was lower [7]. All of these groups used in
vitro measurements which may not accurately reflect the
physiological characteristics of the receptors in vivo.

Bailey and colleagues tested muscles of CKD and
respective control rats in the insulin receptor substrate
(IRS)/PI3K/Akt pathway under basal physiologic conditions
and after maximum stimulation of the signaling pathway
through an injection of a supraphysiologic dose of insulin
[8]. The IRS proteins, PI3K and the more distal effectors of
insulin/IGF-1 action, Akt were evaluated. They found func-
tional abnormalities in the IRS/PI3K cascade that reduced
the activation of the downstream effectors Akt. Specifically,
the basal activity level of the IRS-1-associated PI3K as well
as the phosphorylated Akt was low. Interestingly, these
abnormalities were overcome when the signaling pathway
was maximally stimulated with insulin. These in vivo studies
are important because reductions in these signaling events
have been shown to stimulate protein degradation in muscle
[9–11].

Although the p85 regulatory subunit forms a stable high
affinity complex with the p110 catalytic component, the
amounts of these subunits in rat muscle are differentially
regulated by stimuli such as glucocorticoids [12]. Giorgino
et al. reported that the expression of the p85 protein could
be markedly increased in L6 muscle cells by the addition
of dexamethasone [13] while P110 protein content was only
modestly raised. As a result, IRS-1-associated PI3K activ-
ity was reduced. This caused the authors to propose that
competition between the free p85 subunit and the PI3K
enzyme complex at the binding site on IRS-1 caused the
decrease in PI3K activity. IRS-1-associated PI3K activity in
rat muscle has been shown to be reduced by glucocorticoids
[12, 14]. This is important because glucocorticoids have been
shown to be increased in the setting of CKD with or without
metabolic acidosis [15]. Based on these studies, Bailey and
colleagues concluded that glucocorticoids could contribute to
the defects in PI3K activity in CKD rat muscle by increasing
the amount of the PI3K p85 subunit but not the p110 protein
[8].

3. Akt Isoforms

The suppression of IRS-1 PI3-kinase activity has a variety of
ramifications on cellular functions because the downstream
effector of PI3-kinase activity is Akt. Akt is a serine/threonine
kinase and is activated by a variety of growth factors by both
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PI3-Kinase dependent [16] and independent mechanisms
[17, 18]. Akt appears to play a critical role in regulating
skeletal muscle growth and metabolism. There are three
isoforms: Akt-1/PKB𝛼, Akt-2/PKB𝛽, and akt-3/PKB𝛾; each
isoform is encoded by a distinct gene [19]. Akt-1 is expressed
ubiquitously. With Akt-1 deficiency, body size is small. There
is marked impairment in growth, but glucose homeostasis is
normal [20]. Akt-2 is expressed in insulin-responsive tissues
such as liver, adipose tissue, and skeletal muscle. The absence
of Akt-2 results in diabetes with impaired glucose tolerance
and reduced insulin-dependent glucose uptake in adipose
tissue and skeletal muscle while hepatic glucose production
is increased [21]. Akt-3 is primarily expressed in brain and
testes [22], and its deletion results in a reduction in brain
size [22]. These data suggest that Akt-2 is most important
in the regulation of metabolism while Akt-1 controls growth,
but overlapping functions among the various Akt isoforms
have been reported [23]. Constitutively active Akt in mouse
skeletal muscle promotes hypertrophy and prevents atrophy
[24]. Akt is known to suppress apoptosis [25]. Hence, the
defective IRS/PI3 K signaling found in CKD reduces the level
of the PI3 K-generated product, phosphatidylinositol 3, 4,
5-triphosphate (PIP

3
), with a subsequent decrease in Akt

activation.

4. PTEN

PIP
3
can undergo dephosphorylation to form inactive phos-

phatidylinositol 4, 5-biphosphate through the activity of the
phosphatase and tensin homolog deleted from chromosome
10 (PTEN). A rise in this enzyme’s activity has the same effect
on insulin/IGF-1 signaling as a decrease in PI3 K activity [26].
For example, a high fat diet induces insulin resistance, and
PTEN activity has been shown to be increased [27] while
mice with specific muscle deletion of PTEN demonstrate
improved glucose homeostasis [28]. Hu and colleagues [29]
studied how changes in PTEN expression participate in the
regulation of muscle proteolysis pathways.The authors found
that PTEN expression was decreased in acutely diabetic mice
whereas it was increased in mice with chronic diabetes. A
decrease in PTEN yields an increase in PIP

3
and an increase

in Akt activity. The authors offered several explanations for
these findings. They noted that in normal subjects, short-
term fasting could suppress PI3K/Akt signaling as proteolytic
pathways were stimulated to provide gluconeogenic amino
acids. In addition, PTEN is decreased in fasting to counteract
the increase in muscle protein breakdown.

In chronic diabetes or insulin resistant states, gluconeo-
genesis is enhanced from substrates derived from protein
breakdown in muscle. A decrease in IRS-1-associated PI3K
activity as well as an increase in PTENwould act in concert to
lower PIP

3
. Subsequently, muscle protein breakdown would

be accelerated. This process of muscle breakdown will be
further discussed in subsequent sections.

5. Akt Regulation of FOXO1/3

One of the downstream targets of Akt is the Forkhead box O
or FOXO family of transcription factors include FOXO1 and
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Figure 2: A downstream target of protein Kinase B (Akt) is the
Forkhead box O or FOXO transcription factors. Phosphorylation
of the FOXOs by Akt deactivates them and prevents them from
translocating to the nucleus. Dephosphorylated FOXOs translocate
to the nucleus where they increase the expression of a variety
of genes that suppress skeletal muscle hypertrophy and result in
muscle atrophy. They also induce ubiquitin ligases such as muscle
ring finger-1 (MuRF1) and atrogin-1 that promote skeletal muscle
proteolysis.

FOXO3 among others [30]. They are important regulators of
metabolic processes. The FOXOs influence the transcription
of genes involved in metabolism [31, 32], the cell cycle [33],
and apoptosis [34]. The transcriptional activities of FOXO
proteins are governed by posttranslationalmodifications such
as phosphorylation and acetylation. Phosphorylation of the
FOXOs by Akt deactivates them by preventing them from
translocating to the nucleus and increasing the expression of
a variety of genes that may suppress skeletal muscle hyper-
trophy [35]. FOXO proteins also induce ubiquitin ligases and
promote proteolysis in skeletal muscle [36, 37] (see Figure 2).

6. Skeletal Muscle Types, FOXO and PGC1-𝛼

Although skeletal muscle appears uniform histologically, it
consists of myofibers that are heterogeneous with respect to
size, metabolism, and contractile function. These myofibers
are classified into different types based on their expression
of specific myosin heavy chains. These include type I, type
IIa, type IId/x, and type IIb fibers. Type I or slow-twitch
fibers are associated with type I myosin, contract slowly, are
rich in mitochondria and tend to be resistant to fatigue. In
contrast, type II or fast-twitch fibers, contract quickly, depend
primarily on glycolysis and rapidly fatigue. Exercise training
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induces fiber-type changes from type IIb to type IId/x to type
II𝛼 and type I as the myofibers are transformed and oxidative
metabolism is increased.There is a dramatic increase inmito-
chondrial content as the result of the expression of genes that
increase mitochondrial biogenesis. Muscle oxidative capac-
ity and metabolic efficiency are enhanced. The transcrip-
tional coactivator peroxisome-proliferator-activated receptor
gamma coactivator-1𝛼 (PGC1-𝛼) enhances mitochondrial
biogenesis and oxidative metabolism by playing a key role in
regulating mitochondrial gene expression. This is interesting
because Kamei and colleagues [38] established transgenic
mice over expressing human FOXO1. The skeletal muscle of
these FOXO1 mice weighed less and gene expression for type
I (red muscle) fiber was reduced. Histological examination
of the skeletal muscle of these mice demonstrated fewer type
I fibers and smaller type I and type II fibers, leading the
authors to conclude that FOXO1 is a negative regulator of
skeletal muscle mass and type 1 muscle fiber-related genes.
As the FOXO1 protein can interact with PGC-1𝛼, the authors
speculated that FOXO1 might inhibit PGC-1𝛼 function by
binding to it. Lin and colleagues [39] had previously shown
that PGC-1𝛼 is expressed preferentially in muscle enriched
in type 1 fibers. When PGC-1𝛼 was expressed at physio-
logical levels in transgenic mice, a fiber type conversion
was seen. Putative type II muscles from PGC-1𝛼 transgenic
mice expressed proteins characteristic of type I fibers and
demonstrated a much greater resistance to fatigue. PGC-1𝛼
and PGC-1𝛽 isoforms had been thought to play a role in
muscle fiber type determination as well as insulin resistance.
However, Zechner and colleagues studied mice with total
PGC-1 deficiency in skeletal muscle [40]. These mice had a
dramatic reduction in exercise capacity as characterized by
diminution in muscle oxidative capacity with rapid depletion
of muscle glycogen stores. They also noted that there were
derangements in mitochondrial structure; however, these
authors found that the proportions of oxidative muscle fiber
types (I, II𝛼) were not reduced nor were there alterations
in insulin sensitivity and glucose tolerance. The differences
noted may be related to the age or functional status of the
mice when studied. Nevertheless, PGC-1𝛼 plays a key role in
modulating the mitochondrial network and one factor that
regulates muscle fiber type determination [40]. There is also
significant evidence to suggest a link between skeletal muscle
mitochondrial dysfunction and the development of insulin
resistance [41–43].This is particularly important in regards to
the accelerated protein degradation associated with catabolic
states such as chronic kidney disease and poorly controlled
diabetes.

Other signaling pathways that regulate the shift in skele-
tal muscle fiber type have been identified and include
Ras-ERK1/2 [44], calcineurin [45], and Ca2+/calmodulin-
dependent protein kinase IV [46]. It is beyond the scope
of this review to talk about the Ras-ERK1/2 pathway. Cal-
cineurin, a calcium-dependent protein phosphatase, has two
relevant substrates that it dephosphorylates, the nuclear
factor of activated T cells (NFAT) and myocytes enhancer
factor 2 (MEF2). NFAT andMEF2work in concert to increase
the transcription of prototypical type I oxidative muscle fiber

genes that include PGC-1𝛼 [47]. Dephosphorylation of NFAT
proteins enables their translocation from the cytoplasm to
the nucleus where they bind to myocytes enhancer factors
and increase their transcriptional activity [48].There are four
distinct genes that have been identified that encode closely
related NFAT proteins (NFAT1-NFAT4).

They are thought to play distinctive roles in fiber type
determination. NFAT1 is putatively involved in the upregula-
tion of MyHC I gene expression during the fast to slow fiber
type shift in rodent skeletal muscle cells [44]. In rats made
diabetic with streptozotocin, PGC-1𝛼 protein and mRNA are
decreased in skeletal muscle [49]. This correlates with a sup-
pression of calcineurin activity. In addition, MEF2 andNFAT
activity are substantially reduced as seen by the decrease in
mRNA for their downstream target genes, myogenic regula-
tory factor 4 (MRF4), andmodulatory calcineurin interacting
protein 1.4 (MCIP1.4). Moreover, levels of MRF4, MCIP1.4,
and PGC-1𝛼 are also decreased in muscles frommice lacking
calcineurin CnA𝛼−/− and CnA𝛽−/−. These findings suggest
that decreased calcineurin signaling rather than changes in
other calcium- or cAMP-sensitive pathways are responsible
for decreased PGC-1𝛼 expression in skeletal muscle during
diabetes [49]. It is probable that other conditions such as
CKD, which are associated with loss of muscle mass, employ
a similar mechanism.

7. Glucocorticoids, Metabolic Acidosis, and
Muscle Cachexia

Cachexia and loss of muscle mass is a common occurrence
in patients with CKD, but muscle atrophy or loss does not
develop because of a lack of intake of sufficient protein
and calories. Instead, protein catabolism results from a
series of maladaptive responses to a series of complications
which are seen with advanced disease, namely, metabolic
acidosis, insulin resistance, elevated levels of angiotensin II,
increased production of glucocorticoids, and inflammation
[50–53].May and colleagues found that insulin stimulation of
protein synthesis was suppressed while protein degradation
was increased in skeletal muscle from rats with CKD [54].
This was attributed in part to a glucocorticoid dependant
mechanism [55]. The other factor was metabolic acidosis.
Urinary corticosterone levels increased in proportion to the
degree of metabolic acidosis and only the acidotic rats had
increased rates of protein degradation.When the acidosis was
corrected with the addition of sufficient alkali in the form
of sodium bicarbonate, rates of protein degradation were no
different from those of in control rats. Interestingly, urinary
corticosterone levels remained elevated. This is important
because Mak [56] showed that correction of metabolic
acidosis in CKD rats only partially corrects insulin resistance.
In patients with CKD not yet on dialysis, insulin resistance
improves with the addition of sodium bicarbonate to correct
the metabolic acidosis [57]. Moreover, insulin sensitivity was
studied in 8 patients on chronic hemodialysis before and
after two weeks of oral sodium bicarbonate therapy to correct
the metabolic acidosis [58]. Using the hyperinsulinemic
euglycemic clamp technique, insulin sensitivity and secretion
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increased following sodium bicarbonate therapy. Sodium
chloride had no effect, suggesting that it was the addition of
the alkali and not the sodium that was crucial in ameliorating
the insulin resistance. Garibotto and colleagues [59] found
an interesting inverse correlation between serum cortisol and
bicarbonate levels in CKDpatients. Lower serum bicarbonate
levels were associated with higher serum cortisol levels.
Moreover, higher rates of protein degradation correlated
directly with serum cortisol levels and inversely with serum
bicarbonate levels.

8. The Ubiquitin-Proteasome System and
Muscle Atrophy

In eukaryotic cells, at least five proteolytic systems are
responsible for protein degradation in cells. These include
autophagy, the cysteine-dependent aspartate specific pro-
teases known as caspases [60], cathepsins [61], calcium
dependent calpains [62], and the ubiquitin proteasome sys-
tem (UPS) [63]. Findings from cell line, animal and human
based research consistently suggest that the UPS plays a
pivotal role inmuscle protein catabolism.TheUPS is an ATP-
dependent proteolytic system that involves the degradation
of specific proteins that are targeted for degradation by the
addition of ubiquitin (Ub) molecules. This process is accom-
plished through the coordinated activity of three enzymes.
Initially, free Ub is bound to the Ub-activating enzyme E1 in
an ATP-dependent process. Ubiquitin is subsequently shut-
tled from the Ub-activating enzyme to the Ub-conjugating
enzyme with the formation of a thioester bond between Ub
and a cysteine residue of the E2 enzyme. Subsequently, the
Ub monomer is conjugated to the target protein through a
peptide bond between the 𝜀-amino group of a lysine residue
in the target protein and the carboxy-terminal glycine residue
in Ub via the action of a Ub-ligase enzyme. For proteins
degraded by the proteasome, this process is repeated until
at least four Ub monomers are covalently attached via lysine
residue 48 of Ub to the target protein. Once these Ub
monomers are attached to the protein, the target protein
can be recognized and degraded by the 26S proteasome for
degradation (see Figure 3).

Only one Ub-activating enzyme, which has been identi-
fied in sufficiently high abundance in eukaryotic cells, han-
dles the divergent demands placed on it by theUBS. Although
there are several dozen known Ub-conjugating enzymes,
there are hundreds of Ub-ligases which are responsible for
target specificity [64].

Once the target protein is successfully ubiquitinated and
recognized by the 26S proteasome, it is unfolded and fed
into the proteasome in an ATP-dependent process. The
26S proteasome consists of a 20S catalytic unit and a 19S
regulatory cap. Within the barrel-shaped 20 S catalytic unit,
multiple alpha subunits provide structural support while
multiple beta subunits exhibit chymotrypsin-like, trypsin-
like or caspase-like activities that coordinately digest the pro-
tein into short oligonucleotides [65]. Exopeptidases complete
the degradation of the original protein to amino acids.

Under conditions of atrophy, two muscle-specific Ub-
ligases, atrogin-1 (known also as muscle atrophy F-box
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Figure 3: A protein designated for catabolism is bound to a series of
ubiquitin (Ub) molecules in a process requiring ATP. Initially, free
Ub is bound to the Ub-activating enzyme E1 in an ATP dependent
process. Ub is subsequently shuttled from the Ub-activating enzyme
E1 to Ub-conjugating enzyme E2 through the formation of a
thioester bond between Ub and a cysteine residue of the E2 enzyme.
The Ubmonomer is then conjugated to the target protein through a
peptide bond between the 𝜀-amino group of a lysine residue in the
target protein and the carboxy-terminal glycine residue inUb via the
action of a Ub-ligase enzyme E3. At least 4 Ub monomers must be
attached to the protein before the target protein can be recognized
and degraded by the 26S proteasome. In the degradation process,
peptides are formed and the ubiquitin is released where it can be
recycled again.

protein or MAFbx) and muscle ring finger-1 (MuRF1), as
well as ubiquitin and a select group of proteasome subunits
are upregulated. These conditions include burn injury [66],
uremia [67], diabetes [67], denervation [68], sepsis [69], and
dexamethasone administration [70].

As noted previously, targets of Akt are the FOXO family
of transcription factors that participate in the regulation of a
variety of metabolic processes including protein degradation
in skeletal muscle. Phosphorylation of FOXO1 and FOXO3
by Akt prevents them from translocating to the nucleus
and keeps them inactive. When activated (i.e., dephospho-
rylated), nuclear FOXOs directly increase the expression of a
variety of genes including atrogin-1 andMuRF1 E3 ligases that
have been shown to be tightly linked to the muscle atrophy
process. Transgenic mice that over express FOXO1 have an
atrophic phenotype characterized by loss of skeletal muscle
mass, impaired glycemic control, and downregulation of
type I muscle fibers [71]. Mice lacking either MAFbx/atrogin
1 or MuRF1 were resistant to the effects of denervation-
induced muscle atrophy compared to littermate controls
[68]. This underscores the important role that FOXO1/3,
MAFbx/atrogin-1, and MuRF1 play in the UPS-mediated
muscle protein degradation.

Despite the major role that the UBS plays in muscle atro-
phy, the sequence of eventsmay bemore complicated because
the UBS alone does not appear to break down the complexes
of proteins contained in actomyosin or myofibrils [72, 73].
This was suggested by Solomon and Goldberg [74] who
incubated actomyosin with reconstituted components of the
UBS. Under those in vitro conditions, the UBS degraded
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monomeric actin or myosin but not actinomycin complexes.
They concluded that the disassociation of actomyocin com-
plexes is the rate limiting step in muscle protein breakdown
and that additional proteases must be present to release
the constituent proteins of actinomysin. Apoptotic proteases
have been identified that can cleave actin in vitro so it is
logical to assume that they could be involved in muscle
protein breakdown [75, 76]. Du and colleagues [77] examined
caspase-3 as a possible candidate for this initial step. They
incubated muscle cell and tissue lysates of actomyosin in
the presence of caspase-3 and found a characteristic 14-kDa
actin fragment was generated. Moreover, the products of
caspase-3 action were then rapidly degraded by the UBS.
Inhibiting caspase-3 activity not only blocked the breakdown
of actomyosin complexes but attenuated protein degradation
as well. Although other systems such as the calpains were
thought to be involved in accelerating muscle proteolysis,
inhibiting calcium-dependent proteases had little effect on
protein degradation of myofibrillar protein in rats with
chronic uremia. Thus, insulin resistance, which is present in
many catabolic conditions such as CKD, activates apoptotic
pathways that lead to muscle protein breakdown as a conse-
quence of impaired PI3-K activity.

More recently, Cohen and colleagues [78] studied skeletal
muscle from mice undergoing disuse atrophy following den-
ervation to determine the sequence by which the MuRF1 E3
ligase induces muscle atrophy. They studied the E3 ligase
with and without its RING-finger motif. The latter domain is
essential for ubiquitin conjugation so that an E3 ligase lacking
this motif can bind to a protein designated for degrada-
tion, but the protein cannot be ubiquitinylated. The authors
uncovered that expression of the RING-fingered MuRF1 is
markedly induced under conditions of denervation atrophy.
In mice either lacking MuRF1 or expressing the modified
MuRF1, muscle wasting is attenuated. Moreover, muscle
protein breakdown occurs in an orderly sequence with loss
of myosin-binding protein C, myosin light chains 1 and 2
from themyofibril before anymeasurable decrease in myosin
heavy chain occurs. The authors concluded that thick fil-
ament disassembly was solely dependent on the ubiquitin-
proteasome pathway whereas degradation of the thin fila-
ment components did not require MuRF1. Although skeletal
muscle loss from disuse atrophy differs from the muscle loss
associated with chronic uremia, this study does suggest that
in either case that muscle protein degradation occurs in an
orderly fashion and underscores the importance of the E3
ligase in promoting protein degradation.

9. Angiotensin II and Insulin Resistance

Another factor associated with insulin resistance in chronic
kidney disease is angiotensin II (Ang II). It is well known that
there is activation of the renal renin-angiotensin system in
CKD and this activation has deleterious effects on the heart,
kidney, and vasculature. Infusion of Ang II in rats promotes
loss of body weight. There is a reduction in food intake
and a decrease in skeletal muscle weight. Circulating IGF-1
is markedly reduced [79, 80]. Rates of protein degradation
are increased and there is activation of FOXO transcription

factors, caspase 3, and the UPS. Interestingly, these changes
are independent of any presser effect as mature skeletal
muscle expresses little or no Ang II receptors and argues
that Ang II affects muscle protein degradation indirectly
through inflammatory cytokines like interleukin 6 (IL-6)
[81], tumor necrosis factor-𝛼 (TNF-𝛼) [82], serum amyloid A
[81], glucocorticoids [83], and reactive oxygen species [84].
Nevertheless, when Ang II is infused in mice, 12% of total
bodymass and 26%of gastrocnemiusmusclemass is lost in as
little as 4 days [85]. These effects can be successfully reversed
in muscle by the administration of 5-aminoimidazole-4-
carboxamide ribonucleoside (AICAR) which reliably acti-
vates AMP-activated protein kinase (AMPK).

10. AMP-Activated Protein Kinase

AMPK is a serine-threonine kinase that plays a key role in
the regulation of lipid metabolism in response to metabolic
stress and energy demand [86]. It is activated by AMP and
it is regulated by phosphorylation. For many years, it was
regarded with curiosity as it appeared to be activated under
conditions of stress, but more recently it has been shown to
be responsible for the phosphorylation of numerous proteins
involved with cellular functions that respond to exercise
and the actions of type-2 diabetes drugs [87]. As a result, a
lot of interest has been generated because of the possibility
that AMPK might mediate many of the health benefits of
exercise in mitigating conditions related to insulin resistance
including sedentary lifestyles, obesity, and aging [86]. AMPK
maintains intracellular energy balance by sensing an increase
in the ratio of AMP :ATP and coordinates cellular metabolic
activity to provide energy in response to demand.

AMPK is a 𝛼𝛽𝛾 heterotrimer consisting of 7 subunits:
𝛼1, 𝛼2, 𝛽1, 𝛽2, 𝛾1, 𝛾2, and 𝛾3 [88]. The 𝛼 subunit contains
the kinase catalytic core and is associated with the 𝛽 subunit
that functions as an anchoring subunit for 𝛼 and 𝛾 while the
𝛾 subunit allows for AMP or ATP binding. When AMPK
is activated, skeletal muscle fatty acid oxidation is increased
through the phosphorylation of acetyl-CoA carboxylase and
the subsequent reduction of malonyl-CoA and increase flux
of long-chain fatty acyl CoA into the mitochondria [89]. In
obesity, skeletal muscle fatty acid oxidation is suppressed [90]
while skeletal muscle AMPK activity is reduced [91].

Protein phosphatase 2C 𝛼 (PP2C 𝛼), a serine/threonine
protein phosphatase, is known to dephosphorylate and inac-
tivate AMPK. Tabony and colleagues [85] found that the
inhibitory effects of Ang II on AMPK activity were medi-
ated by the upregulation of PP2C𝛼. Moreover, downstream
targets of AMPK signaling, including proliferator-activated
receptor-𝛾 coactivator-1𝛼 (PGC-1𝛼) and acetyl-coenzyme
A carboxylase were reduced by Ang II. AICAR com-
pletely reversed the inhibitory effect of PGC-1𝛼 expression.
As expected, acetyl-CoA carboxylase phosphorylation was
decreased by Ang II, principally through a reduction in the
enzyme protein, but this was not reversed by AICAR. While
having no effect on acetyl-CoA carboxylase activity, AICAR
did restore total acetyl-CoA carboxylase to basal levels.Thus,
Ang II causes marked ATP depletion in skeletal muscle and
blocks AMPK activation through a mechanism that involves
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oxidation is blocked and muscle ATP depletion occurs.

increased expression of the protein phosphatase PP2C𝛼.
By blocking AMPK activation, Ang II blocks activation of
PGC-1𝛼 and reduces acetyl-CoA phosphorylation. Fatty acid
synthesis is turned off. When acetyl-CoA is phosphorylated,
it is inactive and no longer able to catalyze the synthesis of
malonyl-coenzymeA,which blocks carnitine palmitoyltrans-
ferase 1. When uninhibited, carnitine palmitoyltransferase
1 facilitates mobilization of fatty acids to the mitochondria
where they can be 𝛽-oxidized for acute ATP production in
times of metabolic stress [92, 93] (see Figure 4).

11. Muscle Expression of Cytokines

As an endocrine organ, skeletal muscle expresses cytokines,
also known as myokines that affect energy metabolism.
These include (TNF-𝛼), a pro-inflammatory cytokine that
is secreted by macrophages, adipocytes and skeletal muscle
[94], and interleukin-6 (IL-6) which is produced by adi-
pocytes, immune cells, and contracting muscle [95]. IL-6
appears to play a dual role in skeletal muscle by mediating
impaired insulin action in obesity and facilitating increased
fuel metabolism during exercise. Elevated IL-6 levels have
been reported in both adipose tissue and obesity in states
of obesity and insulin resistance [96, 97]. Simultaneously,
expression of IL-6 and its receptor increase with exercise.
As a result, glucose uptake and utilization are enhanced by
increasing GLUT4 translocation to the plasma membrane
through the activation of serine/threonine protein kinase 11
(LKB1)/AMP-activated protein kinase/protein kinase B sub-
strate of 160 kDa (AS160) pathway [96]. Note that Akt
(protein kinase B) also phosphorylates AS 160 which results
in GLUT4 translocation to the plasma membrane. Thus

insulin and IL-6 can work synergistically acutely in enhanc-
ing glucose uptake into the cell. However, chronic exposure
to IL-6 impairs insulin signaling at the level of IRS-1 by
threemechanisms that involve activation of proinflammatory
kinases, accumulation of suppressor of cytokine signaling 3
(SOCS3), and an increase in protein-tyrosine phosphatase
1B activity (PTP1B). The former involves phosphorylation of
IRS-1 at Serine 307, in a JNK-dependent manner which is
similar to that described in other insulin resistant states such
as hyperinsulinemia [98] and TNF-𝛼 treatment [99]. When
unregulated, SOCS3 can bind to the insulin receptor on a
key residue for the recognition of IRS-1 and inhibit tyrosine
phosphorylation [100, 101]. PTP1B dephosphorylates tyrosine
residues on the insulin receptor and prevents its activation.
TNF-𝛼 works similarly [102, 103]. TNF-𝛼 receptors 1 and
2 (TNFR1 and TNFR2) are located in most tissues and are
upregulated with obesity [104].

Plasma TNF-𝛼 levels generally do not change with a
single bout of exercise [105]. Weight reduction through
exercise training and dietary restrictions decreases plasma
TNF-𝛼 [105]. Dietary restriction alone can decrease TNF-𝛼
along with other inflammatory markers. This suggests that a
decrease in body fat stores plays an important role in reducing
inflammation [106]. Plasma TNF-𝛼 levels are increased with
a high fat diet and can be decreased by switching to a
low-fat/high-carbohydrate diet [106]. Plasma IL-6 levels are
closely linked to activity. In individuals with type 2 diabetes,
increases in plasma levels of IL-6 are larger than in non-
diabetic individuals [105]. With exercise training, plasma
IL-6 levels decrease after exercise and muscle IL-6 receptor
content is increased with exercise training. Like TNF-𝛼, IL-6
plasma levels change significantly with dietary manipulation.
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A high fat diet leads to weight gain and increased IL-6
expression and inflammation which can be reversed by a
low-fat/high-carbohydrate diet [106]. For patients who have
chronic kidney disease, anemia is very common. Depending
on the severity, it may preclude them from participating in
a regular exercise program. Nevertheless, Kopple [107] and
colleagues studied hemodialysis patients during 18 weeks of
resistance and endurance training and found an increase in
IGF-1 protein as well as a reduction in the 14-kDa actin
fragment associated with UPS muscle protein degradation.
As expected, IL-6 plasma levels dropped with endurance or
resistance exercises while TNF-𝛼 levels remained constant.
These data suggested that accelerated muscle proteolysis
commonly seen in these patients could be suppressed with
exercise.

The type of exercise may be important in blunting
the CKD-induced abnormalities in IGF-1 signaling. Chen
et al. and Sun et al. [108, 109] studied resistance exercise
(muscle overloading) in rats with CKD and found that
IGF-1 as well as the downstream mediators of the IGF-1
signaling pathway, IRS-1/PI3K/p-Akt, were increased. Wang
and colleagues [110] evaluated whether different types of
exercise could counteract CKD-induced muscle wasting.
They studied CKD mice undergoing two models of exercise,
muscle overloading and treadmill running, and found that
the responses were different depending upon the type of
exercise. Using the plantaris muscle, the authors found that
in normal mice that muscle weights increased significantly
with muscle overloading or treadmill running as compared
to unexercisedmice. In contrast, CKDmice, plantaris muscle
weights were 67% greater than in unexercised CKD mice
whereas plantaris muscle weights of CKD mice undergoing
treadmill running did not differ from pair-fed, unexercised
CKD mice. Both types of exercise blunted CKD-induced
acceleration of protein degradation. There was increased
phosphorylation of Akt and FOXO1 and suppressed acti-
vation of caspase-3 and the ubiquitin-proteasome system,
where the two types of exercise differed was in the degree of
muscle synthesis. In mice with overloading, the decrease in
muscle protein synthesis was reversed whereas there was only
a slight improvement in protein synthesis inmice undergoing
treadmill running which was largely attributed to a decrease
in protein degradation. Thus, muscle overloading can blunt
the development of muscle atrophy by suppressing protein
degradation, stimulating protein synthesis, and activating
progenitor cells. All of these functions can be linked to
increased phosphorylation of Akt [111].

Besides loss of muscle protein through the UBS system,
impaired activation and proliferation of muscle progenitor or
satellite cells can result in loss of muscle protein. These cells
participate in the repair of muscle in response to injury and
maintainmuscle protein stores. In CKD, satellite cell function
is impaired in response to hormonal and metabolic changes
that promote muscle wasting [112]. Whether or not these
changes can be blocked by a single treatment strategy has
been under intense investigation. Recently, there have been
reports that inhibition of myostatin signaling interferes with
muscle protein losses and improves intracellular insulin/IGF-
1 signaling.

Myostatin is predominately expressed in skeletal muscle
and is a member of the TGF-𝛽 family of secreted proteins.
The precursor of myostatin is promyostatin and consists of a
propeptide that binds noncovalently to myostatin to form an
inactive complex.Through proteolysis, action of free radicals
or a decrease in pH, myostatin is activated and binds to
its receptor, activin bound to the extracellular domain of
a type II receptor (ActRIIB), which is present on muscle
membranes [113]. In turn, activin receptor serine kinases,
ALK4 or ALK5 phosphorylates intracellular proteins called
Smads 2/3 and changes in gene transcription occur resulting
in muscle wasting and cachexia (see Figure 5).

The role thatmyostatin plays in regulating skeletal muscle
mass and function is clear from deletion or knockout studies
of the myostatin gene in mice which result with phenotypes
with a dramatic increase in the size and number of muscle
fibers [114]. A human with loss-of-function mutation who
had enormous muscles has also been reported [115]. Thus,
myostatin deficiency results in muscle hypertrophy and
improved physical performance.

In disease states, myostatin protein and the activity of
the myostatin/activin signaling pathway are upregulated and
results in muscle wasting. Myostatin is increased in renal
failure [116] and other cachexia-related disease states [117,
118]. Serum levels of Activin A, which also binds to the
myostatin receptor, rise in the setting of renal failure. Both
myostatin and activin A negatively influence muscle size.
When mice are given myostatin or activin A, a 30% decrease
in muscle mass has been recorded [119, 120].

Treatment strategies for inhibiting myostatin utiliz-
ing antibodies and a peptibody, a genetically engineered
myostatin-neutralizing peptide fused to Fc, have been under
investigation. Zhang and colleagues [121] found that muscle
atrophy was prevented in a mouse model of CKD through
an increase in the rate of protein synthesis and a decrease
in protein degradation. In addition, circulating levels of
inflammatory cytokines including IL-6 were suppressed.
Moreover, Il-6 combined with acute phase protein suppresses
intracellular IGF-1 signaling and results in a decrease in the
level of p-Akt. The authors further showed that treatment of
cultured muscle cells with either TNF-𝛼 or IL-6 produced
more myostatin. In CKD patients, circulating levels of TNF-
𝛼 are high and act to increase myostatin production. In turn,
IL-6 production is increased which reduces p-Akt in muscle
and activates the UPS and caspase-3. Muscle atrophy follows.

12. Summary

In summary, insulin resistance describes a physiological
condition which is characterized by reduced tissue responses
to the action of insulin for any given blood concentration
of the hormone. It is a common finding in chronic kidney
disease and in nondiabetic patients. It is manifested by
mild fasting hyperglycemia and abnormal glucose tolerance
testing during an oral or intravenous glucose load. These
changes are often masked by a decline in the metabolic
clearance of insulin as the glomerular filtration rate drops
below 15 to 20mL/minute. Muscle tissue accounts as the
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primary site for insulin resistance. The major pathway by
which insulin mediates its metabolic effects is through the
Class I phosphatidylinositol 3-kinase (PI3K)/Akt pathway.
The basis for the impaired responses to insulin is related to
the reduced activation of the downstream effector Akt caused
by an increase in the amount of the PI3K regulatory p85
subunit. This is brought about through increased circulatory
levels of glucocorticoids. Akt plays a critical role in regulating
skeletal muscle growth andmetabolism by promotingmuscle
hypertrophy, preventing atrophy, and suppressing apoptosis.
The product of PI3K, PIP

3
, can undergo dephosphorylation

through the activity of a specific phosphatase known as
PTEN. This enzyme’s activity is important in a number of
ways. Under fasting conditions, the PI3K/Akt signaling path-
way is suppressed and the formation of gluconeogenic amino
acids is stimulated. PTEN is decreased in fasting in order
to counteract the increase in muscle protein breakdown. In
chronic diabetes as well as insulin resistance, PI3K activity
is decreased while PTEN activity is increased, accelerating
muscle protein breakdown.

Akt plays a key role in muscle metabolism by targeting
the Forkhead box O or FOXO family of transcription factors
for phosphorylation. As a consequence, the FOXOs are
deactivated and prevented from translocating to the nucleus
and activating a variety of genes that suppress skeletal muscle

hypertrophy. The induction of ubiquitin ligases and muscle
proteolysis, particularly of type 1 oxidative muscle fibers, is
also suppressed. The FOXOs may negatively regulate skeletal
muscle mass and type 1 muscle fiber-related genes through
interaction and inhibition of the PGC-1𝛼. PGC-1𝛼 plays
a key role in modulating the mitochondrial network and
one factor that regulates muscle fiber type determination.
This is important in catabolic states such as CKD and
poorly controlled diabetes. Other signaling pathways that
regulate the shift in skeletal muscle fiber type have also been
identified and include the calcineurin, calcium-dependent
protein phosphatase. Through dephosphorylation NFAT and
MEF2, transcription of prototypical muscle fiber genes that
include PGC-1𝛼 is enhanced.

Pathways identified with muscle protein degradation in
chronic kidney disease include activation of the ubiquitin-
proteasome system. Proteins identified through a group of
enzymes called E3 ubiquitin ligases (Atrogin 1 and MuRF 1)
for protein degradation are bound by ubiquitin and taken to
the proteasomewhere they are degraded.As noted, the targets
of Akt are the FOXO family of transcription factors. When
phosphorylated they are inactive. When dephosphorylated,
the FOXOs directly increase the expression of a variety of
genes including atrogin 1 andMurF 1 which have been shown
to be tightly linked to the muscle atrophy process.
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Another factor associated with insulin resistance in
chronic kidney disease is Ang II where there is activation of
the renal renin-angiotensin system. Infusion of Ang II causes
an increase in rates of muscle protein degradation, activation
of FOXO transcription factors and the UPS. As there are no
Ang II receptors inmuscle, it is thought that the effects of Ang
II in muscle are indirect through inflammatory cytokines or
reactive oxygen species. In the setting of Ang II, (PP2C 𝛼)
is upregulated and dephosphorylates and inactivates AMPK
as skeletal muscle ATP is depleted. Downstream targets of
AMPK signaling such as PGC-1𝛼 and acetyl-coenzyme A
carboxylase are also reduced. AICAR completely reverses the
inhibitory effect on PGC-1𝛼 and restores total acetyl-CoA
carboxylase to basal levels.

Skeletal muscle expresses cytokines that affect energy
metabolism and include TNF-𝛼 and Il-6. The latter plays
a dual role in skeletal muscle. It mediates impaired insulin
action in obesity while facilitating increased glucose uptake
and its utilization during exercise through a mechanism
involving GLUT4. Interestingly, chronic exposure to
interleukin-6 impairs insulin signaling at the level of IRS-1.
TNF-𝛼works similarly and its receptors, which are located in
most tissues, are upregulated with obesity. Weight reduction
reduces levels of both TNF-𝛼 and IL-6 while exercise reduces
IL-6. For patients with CKD, the type of exercise may be
important in blocking abnormalities in IGF-1 signaling. This
has important ramifications whereby buildup of muscle may
positively impact functional status.

Myostatin and activin A, which binds to the myostatin
receptor, have been linked to muscle atrophy and are upreg-
ulated in renal failure. Treatment strategies for inhibiting
myostatin utilizing antibodies and a peptibody have shown
promise in preventing muscle atrophy in a mouse model of
CKD.

Abbreviations

ACC: Activated acetyl-coenzyme A
carboxylase

ActRIIB: Activin A bound to the extra cellular
domain of a type II receptor

AICAR: 5-Aminoimidazole-4-carboxamide
ribonucleoside AICAR

Akt: Protein kinase B
ALK 4: Activin receptor-like kinase 4 or

Activin A Receptor, type 1B
AMPK: AMP-activated protein kinase
Ang II: Angiotensin II
atrogin-1: Muscle atrophy F-box protein or

MAFbx
CKD: Chronic kidney disease
GLUT4: Glucose transporter type 4
IGF: Insulin growth factor
IL-6: Interleukin-6
IR: Insulin receptor
IRS: Insulin receptor substrate
MCIP1.4: Modulatory calcineurin interacting

protein 1.4

MEF2: Myocytes enhancer factor 2
MEK/ERK: Mitogen activated protein kinase

pathway/extracellular signal related
kinase pathway.

MRF4: Myogenic regulatory factor 4
MuRF1: Muscle ring finger-1
NFAT: Nuclear factor of activated T cells
PGC1-𝛼: Transcriptional coactivator

peroxisome-proliferator-activated
receptor gamma coactivator-1𝛼

PIP2: Phosphatidylinositol (3,
4)-biphosphate

PIP3: Phosphatidylinositol (3, 4,
5)-triphosphate

PI3K: Class I phosphatidylinositol 3-Kinase
PP2C𝛼: Protein phosphatase 2C𝛼
PTEN: Phosphatase and tensin homolog

deleted from chromosome 10
PTP1B: Protein-tyrosine phosphatase 1B

activity
SOCS3: Suppressor of cytokine signaling 3
TNF-𝛼: Tumor necrosis factor-𝛼
TNFR1 and TNFR2: TNF-𝛼 receptors 1 and 2
Ub: Ubiquitin
UPS: Ubiquitin proteasome system.
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