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Abstract: Pituitary adenoma (PA) is prevalent in the general population. Due to its severe
complications and aggressive infiltration into the surrounding brain structure, the effective
management of PA is required. Till now, no drug has been approved for treating non-functional
PA, and the removal of cancerous cells from the pituitary is still under experimental investigation.
Due to its superior specificity and safety profile, immunotherapy stands as one of the most promising
strategies for dealing with PA refractory to the standard treatment, and various studies have been
carried out to discover immune-related gene markers as target candidates. However, the lists of
gene markers identified among different studies are reported to be highly inconsistent because of the
greatly limited number of samples analyzed in each study. It is thus essential to substantially enlarge
the sample size and comprehensively assess the robustness of the identified immune-related gene
markers. Herein, a novel strategy of direct data integration (DDI) was proposed to combine available
PA microarray datasets, which significantly enlarged the sample size. First, the robustness of the
gene markers identified by DDI strategy was found to be substantially enhanced compared with that
of previous studies. Then, the DDI of all reported PA-related microarray datasets were conducted
to achieve a comprehensive identification of PA gene markers, and 66 immune-related genes were
discovered as target candidates for PA immunotherapy. Finally, based on the analysis of human
protein–protein interaction network, some promising target candidates (GAL, LMO4, STAT3, PD-L1,
TGFB and TGFBR3) were proposed for PA immunotherapy. The strategy proposed together with the
immune-related markers identified in this study provided a useful guidance for the development of
novel immunotherapy for PA.
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1. Introduction

Pituitary adenoma (PA) accounts for approximately 8–15% of intracranial tumors [1–3] and its
prevalence is estimated to be ~14–22% by autopsy and radiological studies [4–6]. Due to its aggressive
infiltration into the surrounding brain structure and its severe complications (such as Cushing’s
disease, hyperprolactinemia, and acromegaly), the effective managements of PA are still required [7–9],
which involves trans-sphenoidal surgery, radiotherapy, and medicine [10]. Trans-sphenoidal surgery
is reported as sometimes contraindicated or ineffective [11], and the application of radiotherapies is
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greatly limited by its subsequent hypopituitarism [11]. So far, medical therapy has been expected
and emerged to provide the treatment of enhanced efficacy, safety and tolerance [11–13], and several
drugs have already been approved by U.S. FDA (Food and Drug Administration) for treating certain
complications of PA [14–16]. For example, cabergoline, octreotide, and pasireotide have FDA approval
for the management of hyperprolactinemia, acromegaly, and Cushing’s disease, respectively [17–20].
Apart from the drugs aiming at PA complication, temozolomide is found to penetrate well into central
nervous system, and therefore has been tested in clinical trial (Phase II) for treating PAs [21–24].

However, those approved therapeutics primarily focus on managing the complication of PA
rather than PA itself [17,18], which are incapable of removing the tumor cells and are ineffective in
turning the pituitary back to its normal state [25]. The therapeutics designed for the direct treatment of
PA are primarily chemotherapy [21], kinase inhibitor [26–29], and monoclonal antibody [30–32].
Till now, chemotherapy and kinase inhibitors have emerged as the most promising candidates
with temozolomide and lapatinib in clinical developments [21,26,33], but they suffer from severe
myelotoxicity, mental disturbances or cardiac dysrhythmia that can substantially affect the approval
processes of these clinical candidates [34–36]. So far, no effective drug has been developed for treating
non-functional pituitary tumors, and the removal of cancerous cells directly from the pituitary is still
under experimental investigation [37–39]. It is thus crucial to discover a new strategy for PA treatment.
With the advent of immunotherapy [40,41], the management of PA base for this new strategy has
become the focus of current research [1,30]. In other words, due to its high specificity and good safety
profiles [42], immunotherapy stands as one of the most promising alternatives for treating PAs that are
resistant or refractory to the standard treatments [43–46].

Although no immunotherapy of PA has been approved yet, various studies have been carried out
to discover immune-related genes or target candidates. Particularly, as an immunomodulatory peptide,
protein galanin (GAL) is substantially suppressed in the tissue of PA patients compared with those
in healthy pituitaries [47]. Increased levels (both mRNA and protein) of programmed death-ligand 1
(PD-L1, the immunosuppressive protein) are observed in tumor tissue of PA patients [43], which can
induce immune evasion by desensitizing the recognition and elimination of cancer cells via CD8+

lymphocytes [48]. Transforming growth factor-beta (TGFB) was discovered as one of the chief immune
suppressive mediators of prolactin (PRL) secretions and PA proliferation [49,50]. Apart from the
above studies, a variety of transcriptomics analyses (demonstrated in Table 1) have been conducted
to identify the differentially expressed genes (DEGs) between PA patients and normal ones [51–54].
Due to their Omics-based nature, these analyses can accelerate more effectively the discovery of target
candidates compared with previous studies. However, because of the limited number of both the
patients and controls in each analysis (~4–16 samples for patients and ~0–9 for healthy individuals
shown in Table 1), the lists of DEGs identified from different analyses are reported to be highly
inconsistent [55,56], which asks for substantial enhancements of the robustness of the identified PA
biomarkers [57,58]. Moreover, no Omics study has been conducted to reveal immune-related genes and
mechanisms underlying PA’s development, which is essential for the discovery of promising targets
for PA immunotherapy [59]. Thus, it is urgently needed to systematically identify the immune-related
DEGs based on the comprehensive analysis of the PA-based Omics datasets with significantly enlarged
sample size (for both PA patients and healthy individuals) [60].

Table 1. Pituitary adenomas related microarray datasets collected for analysis in this study.

GEO ID Samples PA:NP a Description of the Collected Datasets for
Studying on

Microarray
Platform

Reference of the
Studied Datasets

GSE2175 4:1 GeneChip arrays of 1 healthy and 4 pituitary
adenoma samples HG-U133A [61]

GSE22812 13:0 Genomic hybridization arrays of 13 pituitary
adenoma samples GE Healthcare [53]

GSE26966 14:9 GeneChip arrays of 9 healthy and 14 pituitary
adenoma samples HG-U133_Plus_2 [62]
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Table 1. Cont.

GEO ID Samples PA:NP a Description of the Collected Datasets for
Studying on

Microarray
Platform

Reference of the
Studied Datasets

GSE36314 4:3 Genome arrays of 3 healthy and 4 pituitary
adenoma samples HG_U95Av2 [63]

GSE4237 10:0 Affymetrix oligo arrays of 10 pituitary
adenoma samples HG-U133_Plus_2 [52]

GSE46311 16:0 Affymetrix Human Gene arrays of 16 pituitary
adenoma samples HuGene-1_0-st [51]

GSE51618 7:3 Agilent arrays of 3 healthy and 7 pituitary
adenoma samples Agilent-hgug4112a [64]

a PAs: pituitary adenomas; NP: normal pituitary.

In this study, a strategy of direct data integration (DDI) was proposed to combine available PA
microarray datasets for significantly enlarging the sample size. To test the impact of the DDI strategy on
the classification ability and the robustness of identified DEGs, its performance and disease relevance
were first evaluated by comparing with previously published datasets. Then, all currently available
PA-related microarray datasets were directly integrated to achieve comprehensive identification of
DEGs between PA patients and healthy individuals. Finally, the immune-related genes were annotated
from DEGs, which could be further studied as target candidates for PA immunotherapy. The strategy
proposed together with the immune-related DEGs identified in this study provided a useful guidance
for future immunotherapy.

2. Results and Discussion

2.1. The Level of PA-Relevance of the DEGs Identified by Different Analytical Strategies

Several studies have been conducted to identify the DEG capable of distinguishing PA patients
from healthy people [51–53]. Due to their limited number of disease and healthy samples, the DEGs
identified in different studies are reported to be highly inconsistent [55], which requires substantial
enhancement in the robustness of the identified DEGs [57,58]. Thus, it is necessary to evaluate the
impact of sample size on the robustness and disease relevance of the identified DEGs. In this study,
three analytical strategies were proposed based on the construction of three datasets. As illustrated
in Figure 1, the datasets included: (A) GSE51618, (B) GSE26966, (C) DDI of five datasets GSE22812,
GSE26966, GSE4237, GSE46311, and GSE51618. Clearly, the sample size of dataset C (60 cases and
12 controls) is significantly larger than that of the remaining two (seven cases and three controls for
dataset A; 14 cases and six controls for dataset B). By using this DDI strategy, it is now feasible to discuss
the effectiveness of this strategy on enhancing the robustness of identified DEGs and systematically
assess the impact of sample size on the resulting DEGs.

As the first assessment, the level of PA relevance was reviewed and discussed for three different
analytical strategies. Three lists of DEGs were identified using three different strategies by the linear
models and empirical Bayes (LMEB, fold change > 1.5 and adjusted p-value < 0.05). Top-ranked DEGs
(top five for upregulated and another top five for downregulated) and their relevance to PAs were
reviewed by comprehensive literature review. As shown in Supplementary Table S1, 3, 4, and 7 of the
top 10 DEGs (identified by datasets A, B, and C, respectively) had been reported to be relevant to PAs.
Moreover, 32, 56, and 43 KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways were enriched
using DEGs identified from datasets A, B, and C, respectively. The top 10 ranked pathways and their
relevance to PA were comprehensively reviewed. As shown in Supplementary Table S2, 3, 4, and 7 of
the top 10 ranked pathways (identified by datasets A, B, and C, respectively) had been reported to
be closely relevant to PAs. Furthermore, top 10 GO (gene ontology) molecular functions (MFs) and
biological processes (BPs) and their relevance to PA were comprehensively reviewed. As shown in
Supplementary Tables S3 and S4, 5, 5, and 7 of the top 10 ranked BPs and 4, 4, and 6 of the top 10
ranked MFs (identified by datasets A, B, and C, respectively) had been reported to be relevant to PAs.
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Overall, these findings indicated that all three strategies used in this study showed a certain level of
PA relevance in their identified DEGs. The DDI strategy presented a higher percentage of PA-relevant
DEGs, pathways, and GO terms, which indicated the enhanced disease relevance of this strategy
comparing to that of the single dataset-based one.Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW  4 of 19 
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LMEB: Linear models and empirical Bayes; ACC: accuracy; MCC: Matthews correlation coefficient; 
AUC: area under the curve. 
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strategy (0.84) was discovered to be higher than that of the other two (0.35 and 0.50, respectively). 
  

Figure 1. A schematic representation of the direct data integration (DDI) strategy adopted in this study.
Four datasets (A: GSE51618, B: GSE26966, C: Data Integrating 5 Datasets and D: Direct Integration
of All 7 Datasets) were labeled by blue, green, orange and yellow color, respectively. LMEB: Linear
models and empirical Bayes; ACC: accuracy; MCC: Matthews correlation coefficient; AUC: area under
the curve.

2.2. Evaluating the Classification Abilities of the DEGs Identified by Different Analytical Strategies

Classification models are frequently constructed in current transcriptomics studies for predicting
samples of various disease status [65,66] or assessing the reliability of identified gene markers [67,68].
The capacity of the constructed classification model was evaluated by various metrics including
accuracy (ACC), sensitivity (SEN), specificity (SPE), Matthews correlation coefficient (MCC), receiver
operating characteristics (ROC), and area under ROC curve (AUC value) [69–71]. As shown in Table 2,
there was great variation in each assessment metric among the analytical strategies. Particularly, ACCs,
SENs, SPEs, and MCCs were in the ranges of ~0.67–0.92, ~0.50–0.88, ~0.75–1.00, and ~0.35–0.84 among
strategies, respectively. The metrics ACC and MCC were frequently used in current Omics study to
evaluate correctness [72] and stability [73] of the constructed models. As demonstrated in Table 2,
the ACC of DDI strategy (0.92) was substantially higher than that of the single dataset-based strategies
(both are 0.67). Similar to ACC, MCC of DDI strategy (0.84) was discovered to be higher than that of
the other two (0.35 and 0.50, respectively).
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Table 2. Prediction ability of three classifiers. These classifiers were build using GSE51618, GSE26966
and the combination of GSE22812, GSE26966, GSE4237, GSE46311, and GSE51618. Prediction ability
was assessed by the integration of GSE36314 and GSE2175 as the independent validation dataset.

Datasets TP a FN a TN a FP a ACC b SEN b SPE b MCC b AUC c

A: GSE51618 4 4 4 0 0.67 0.50 1.00 0.50 0.75
B: GSE26966 5 3 3 1 0.67 0.63 0.75 0.35 0.72

C: DDI Strategy 7 1 4 0 0.92 0.88 1.00 0.84 0.97
a TP: true positive; TN: true negative; FP: false positive; FN: false negative. b ACC: accuracy; SEN: sensitivity; SPE:
specificity; MCC: Matthews correlation coefficient. c AUC: area under the curve.

Apart from ACC and MCC, the ROC and AUC were two other popular metrics widely used to
assess ability for classification, which were acknowledged to achieve comprehensive performance
evaluations. As shown in Figure 2, the ROC curves and AUC values of three strategies were compared.
Grey diagonals represented an invalid model with the corresponding AUC value equaled 0.5. As shown
in Figure 2, the AUC value of the DDI strategy (0.97) was substantially higher than that of the others
(0.75 and 0.72, respectively), which were similar to the results assessed by ROC curves. In conclusion,
this finding indicated that classification correctness (assessed by ACC, ROC, and AUC) and prediction
stability (evaluated by MCC) of DDI strategy were found consistently better compared with those
strategies based on single dataset.
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Figure 2. Classification capacity (assessed by AUC (area under the curve)) and robustness (evaluated
by Overlap value) of three classifiers. Classifiers were build using (A) GSE51618, (B) GSE26966, and (C)
combination of GSE22812, GSE26966, GSE4237, GSE46311, and GSE51618. Statistical comparative
analyses of the overlap values among the strategies based on these three datasets were also provided
(D). The + presents the median of all overlap values, and *** presents the p value < 0.001.
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2.3. Comparative Analysis on the Robustness of the DEGs Identified by Different Analytical Strategies

Apart from prediction capacity simultaneously assessed by classification correctness and
prediction stability, the robustness of identified DEGs was widely accepted as an additional key
metric with its underlying theory distinct from that of prediction ability [69,74]. So far, overlap value
had been recognized as the quantitative measure of the robustness of identified DEGs [75]. The higher
overlap values represented the more robust DEGs identified by a given strategy. Herein, one sub-dataset
was first generated by randomly selecting 2/3 of both cases and controls in the studied dataset, and ten
iterations of the same procedure generated ten sub-datasets. For each sub-dataset, a list of DEGs were
then identified by LMEB method (fold change > 1.5 and adjusted p-value < 0.05), and the value of
overlap between any two sub-datasets was calculated using their corresponding lists of DEGs. In total,
there were 45 (C2

10) overlap values denoting all possible combinations between any two sub-datasets.
Finally, overlap values of three different analytical strategies were compared. As shown in the upper
section of Table 3, the total numbers of DEGs identified by ten sub-datasets together with the median
values of overlap were provided. It was obvious that the total numbers of identified DEGs among ten
sub-datasets varied significantly (from 370 to 1310). The median overlap of DDI strategy (0.69) was
found larger than that of the other strategies (0.64 and 0.42, respectively).

Table 3. The robustness of the identified markers assessed by 10 random sampling datasets.

Dataset A: GSE51618 B: GSE26966 C: DDI Strategy

Overlap Median across 10 Samplings 0.42 0.64 0.69

No. of DEGs Identified by the nth
Sampling Dataset (n=)

1 230 244 175
2 149 312 147
3 179 332 140
4 319 262 134
5 284 328 132
6 633 349 282
7 361 278 171
8 283 295 172
9 377 243 223

10 585 295 192

No. of DEGs Identified 1310 370 410

No. (Percent) of DEGs Co-discovered
by N Sampling Datasets

10 56 (0.04) 52 (0.14) 71 (0.17)
≥9 73 (0.06) 63 (0.17) 90 (0.22)
≥8 87 (0.07) 75 (0.20) 107 (0.26)
≥7 103 (0.08) 87 (0.24) 119 (0.29)
≥6 129 (0.10) 104 (0.28) 133 (0.32)

Compared with the median value of overlap, the statistical difference of 45 overlap values between
different analytical strategies was more meaningful to reveal their level of robustness. Therefore,
the comprehensive statistical comparison of robustness among strategies was conducted and illustrated
in Figure 2D. Overlap values of three strategies were colored in blue, green and orange. Apart from
the enhanced median value of overlap by DDI strategy, all overlap values of DDI strategy were found
significantly higher (p-value < 0.05) than that of the other two. Particularly, as illustrated in Figure 2D,
the statistical differences between DDI strategy and others (p-value) were all lower than 1.00 × 10−3

(1.89 × 10−24 between A and C; 5.56 × 10−5 between B and C). Moreover, the majority of the overlap
values of DDI strategy were larger than 0.6, while that of the other strategies were lower than 0.6.
This finding indicated that the DDI strategy performed better than others in the robustness of the
identified DEGs. Additionally, Table 3 (lower section) provided the numbers and percentages of DEGs
simultaneously discovered by N (N ≥ 6, ≥7, ≥8, ≥9, =10) sub-datasets. It was very clearly that the
robustness of the DEGs identified by DDI strategy was much better than other two strategies in terms
of both the number and percentage of co-identified DEGs. Particularly, about one third of the DEGs of
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DDI strategy were identified by over five sub-datasets, which was substantially higher than that of
other two (28% and 10%, respectively). 17% of the DEGs of DDI strategy could be identified by all
sub-datasets, which was still significantly higher than that of other two (14% and 4%, respectively).

2.4. Annotating the Immune-Related DEGs and Candidate Target Discovery for PA Immunotherapy

The discussion above testified the effectiveness of the adopted feature selection algorithm and
revealed the superior robustness and classification ability of the proposed DDI strategy compared
with that based on the single dataset. To maximumly enhance the prediction power of constructed
model, the most comprehensive set of PA-related microarray data were collected (Table 1) and
integrated to form data D (Figure 1). To the best of our knowledge, the dataset D was the largest
one among current PA-related transcriptomic analyses. Using LMEB method (fold change > 1.5 and
adjusted p-value < 0.05), a total of 370 DEGs were discovered. As shown in Table 4, the top-ranked
DEGs (top-20 for up-regulation & another top-20 for down-regulation) were provided, and the
identified DEGs that could not be found by the other two strategies were highlighted in bold font.
These top-ranked DEGs and their relevance to PAs were reviewed by comprehensive literature
review, and a variety of DEGs were identified as relevant to PAs by experiments. For example,
the mRNA expression of TSHB was found to be absent in most PA patients [76]. Different from normal
pituitary, the GAL was reported to be rarely expressed in somatotroph adenoma and prolactinoma [77].
The expression of GAL was substantially suppressed in the tissue of PA patients compared with that
in healthy pituitary [47]. The CEL was identified to regulate the hormone secretion in adenomatous
pituitary cells [78]. The high expression of PRL and under-expression of RPS29 were observed in
pituitary adenomas [79]. The c-Fos overexpression was found to be much less common in pituitary
tumors and did not necessarily correlate with the ability of tumor to become invasive [80]. Pathway
analysis facilitated the discovery of PMAIP1 as important in the tumorigenesis and progression of
PAs [81]. The serum AGR2 level was significantly higher in the serum of PA patients than the patients
with other sellar lesions, which suggests AGR2 a potential marker for PAs’ diagnosis [82]. By annotating
those 370 DEGs using GO terms, 66 (17.8%) DEGs were discovered as closely immune-related. Table 5
provided a full list of the immune-related DEGs together with their fold changes and p-values. Due to
their close relationship with human immune system and the differential expression between PA
patients and healthy individuals, they are potential target candidates for PA immunotherapy.

Table 4. Top 20 up- and downregulated DEGs identified by combining all seven datasets in Table 1.
These DEGs that could not be identified by both GSE62966 and GSE51618 dataset were highlighted in
bold font.

No. Entrez Symbol LogFC p-Value GES62966 GSE51618

1 5443 POMC −3.85 2.79 × 10−18 −8.00 −7.09
2 7252 TSHB −3.26 6.65 × 10−16 −5.96 −8.07
3 51,083 GAL −2.69 4.22 × 10−21 −5.10 −8.03
4 1056 CEL −2.22 9.21× 10−10 −5.73 −2.23
5 3240 HP −2.21 1.06 × 10−9 −4.10 -
6 3397 ID1 −2.08 3.85 × 10−16 −3.10 −3.84
7 5446 PON3 −2.00 2.01 × 10−7 −3.46 -
8 5617 PRL −1.93 6.41 × 10−3 −7.33 -
9 1410 CRYAB −1.88 1.31 × 10−12 −2.57 -

10 4885 NPTX2 −1.87 8.75 × 10−9 −4.18 -
11 6161 RPL32 −1.83 1.05 × 10−2 - -
12 4821 NKX2-2 −1.82 3.36 × 10−7 −6.26 −0.83
13 2697 GJA1 −1.64 5.94 × 10−8 −3.73 -
14 5105 PCK1 −1.61 1.74 × 10−5 −6.43 −2.38
15 6235 RPS29 −1.54 1.18 × 10−2 - -
16 12 SERPINA3 −1.48 4.62 × 10−4 −4.15 -
17 2353 FOS −1.45 2.85 × 10−7 −3.80 -
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Table 4. Cont.

No. Entrez Symbol LogFC p-Value GES62966 GSE51618

18 5366 PMAIP1 −1.44 4.11 × 10−7 −3.85 −2.39
19 6146 RPL22 −1.42 2.91 × 10−2 - -
20 10,551 AGR2 −1.41 5.24 × 10−5 −2.47 −3.75
21 22,999 RIMS1 0.78 3.05 × 10−2 - -
22 8573 CASK 0.78 5.10 × 10−6 0.85 1.48
23 5795 PTPRJ 0.78 1.01 × 10−2 - -
24 1272 CNTN1 0.80 7.88 × 10−5 1.70 -
25 22,858 ICK 0.81 1.53 × 10−2 - -
26 23,390 ZDHHC17 0.81 4.94 × 10−3 - -
27 51,755 CDK12 0.81 3.45 × 10−2 - -
28 4684 NCAM1 0.81 5.74 × 10−3 0.74 -
29 4863 NPAT 0.81 1.07 × 10−2 - -
30 57,125 PLXDC1 0.82 6.76 × 10−4 0.76 -
31 9472 AKAP6 0.83 1.75 × 10−3 0.86 -
32 23,101 MCF2L2 0.83 2.02 × 10−2 - -
33 868 CBLB 0.84 3.45 × 10−2 - -
34 8490 RGS5 0.84 3.25 × 10−4 1.41 -
35 1006 CDH8 0.85 2.18 × 10−3 2.94 -
36 55,752 SEPT11 0.87 1.13 × 10−2 - -
37 5149 PDE6H 0.89 1.67 × 10−2 1.36 -
38 1641 DCX 0.91 6.76 × 10−4 3.14 -
39 29,899 GPSM2 0.91 1.73 × 10−2 1.04 -
40 23,305 ACSL6 0.91 3.51 × 10−3 0.90 -

Table 5. Immune-related DEGs identified in this study with fold change, p-value, and their representative
biological processes and molecular functions.

Entrez ID Gene Symbol LogFC p-Value Representative GO Biological Processes and
Molecular Functions

51,083 GAL −2.69 4.22 × 10−21 negative regulation of immune system process; regulation of
immune process

3240 HP −2.21 1.06 × 10−9 immune system process

2353 FOS −1.45 2.85 × 10−7 positive regulation of immune system process; regulation of
immune response

5366 PMAIP1 −1.44 4.11 × 10−7 immune effector process; immune system process

6146 RPL22 −1.42 2.91 × 10−2 immune system development; immune system process

7060 THBS4 −1.33 7.19 × 10−6 positive regulation of immune system process; regulation of
immune process

10,410 IFITM3 −1.28 8.39 × 10−6 innate immune response; immune effector process; immune
system process

2488 FSHB −1.28 5.95 × 10−3 regulation of immune system process

133 ADM −1.28 4.34 × 10−7 humoral immune response; immune response; immune
system process

2719 GPC3 −1.22 3.09 × 10−9 immune system development; immune system process

7852 CXCR4 −1.22 3.24 × 10−9 immune system process

347 APOD −1.21 2.78 × 10−5 negative regulation of immune system process; regulation of
immune process

9353 SLIT2 −1.21 6.81 × 10−10 negative regulation of immune system process; regulation of
immune process

8324 FZD7 −1.21 1.74 × 10−8 immune system development; immune system process

2197 FAU −1.19 1.35 × 10−2 humoral immune response; innate immune response in mucosa

4783 NFIL3 −1.14 8.44 × 10−5 immune response; immune system process

6218 RPS17 −1.13 2.70 × 10−2 immune system process
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Table 5. Cont.

Entrez ID Gene Symbol LogFC p-Value Representative GO Biological Processes and
Molecular Functions

5950 RBP4 −1.08 1.79 × 10−2 positive regulation of production of molecular mediator of
immune response

5919 RARRES2 −1.06 4.34 × 10−7 positive regulation of immune system process; regulation of
immune process

3669 ISG20 −1.03 8.23 × 10−8 innate immune response; immune effector process; immune
system process

3059 HCLS1 −1.02 6.70 × 10−5 positive regulation of immune system process; regulation of
immune process

6279 S100A8 −1.01 1.99 × 10−3 innate immune response; immune response; immune
system process

710 SERPING1 −1.00 6.70 × 10−6 adaptive immune response; b cell mediated immunity; humoral
immune response

716 C1S −1.00 5.90 × 10−4 adaptive/innate immune response; Leukocyte
mediated immunity

7056 THBD −1.00 2.52 × 10−6 immune system process

715 C1R −0.98 3.31 × 10−6 adaptive/innate immune response; positive regulation of
immune system process

1672 DEFB1 −0.92 1.44 × 10−4 humoral immune response; innate immune response in mucosa

2669 GEM −0.89 2.22 × 10−4 immune response; immune system process

1958 EGR1 −0.86 2.45 × 10−3 innate immune response; immune response; immune
system development

6662 SOX9 −0.86 3.43 × 10−4 negative regulation of immune system process; regulation of
immune process

3426 CFI −0.84 6.05 × 10−10 adaptive immune response; leukocyte/lymphocyte
mediated immunity

7412 VCAM1 −0.84 6.87 × 10−7 innate immune response; positive regulation of immune
system process

1366 CLDN7 −0.84 4.27 × 10−3 regulation of immune effector process; regulation of immune
system process

3726 JUNB −0.84 2.43 × 10−5 immune system development; immune system process

9796 PHYHIP −0.82 2.78 × 10−3 regulation of immune effector process; regulation of immune
system process

7049 TGFBR3 −0.81 3.58 × 10−3 immune response; immune system development; immune
system process

3958 LGALS3 −0.80 4.63 × 10−2 innate immune response; negative regulation of immune
effector process

3485 IGFBP2 −0.78 1.23 × 10−3 positive regulation of immune system process; regulation of
immune process

1051 CEBPB −0.75 2.38 × 10−3 negative regulation of immune system process; regulation of
immune process

302 ANXA2 −0.72 1.55 × 10−2 immune system development; immune system process

5806 PTX3 −0.72 2.46 × 10−3 innate immune response; immune effector process; immune
system process

3320 HSP90AA1 −0.71 1.90 × 10−2 positive regulation of immune system process; activation of
immune response

7704 ZBTB16 −0.69 3.81 × 10−2 negative/positive regulation of immune system process

8543 LMO4 −0.69 1.35 × 10−2 immune system development; immune system process

6223 RPS19 −0.69 1.25 × 10−2 regulation of innate immune response; immune
system development

4057 LTF −0.68 3.41 × 10−2 humoral immune response; innate immune response in mucosa

100,133,941 CD24 −0.65 5.68 × 10−3 positive regulation of immune system process; immune
system process

684 BST2 −0.64 8.65 × 10−3 humoral/innate immune response; negative regulation of
immune response

23,543 RBFOX2 0.59 5.42 × 10−3 regulation of immune system process
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Table 5. Cont.

Entrez ID Gene Symbol LogFC p-Value Representative GO Biological Processes and
Molecular Functions

5747 PTK2 0.59 1.12 × 10−2 activation of immune response; positive regulation of
immune response

2047 EPHB1 0.60 8.01 × 10−3 immune system process; immunological synapse formation

27,242 TNFRSF21 0.60 4.66 × 10−3 adaptive/humoral immune response; negative regulation of
immune process

8754 ADAM9 0.61 1.68 × 10−2 immune system process

3175 ONECUT1 0.64 1.36 × 10−3 immune system development; immune system process

54,861 SNRK 0.64 1.61 × 10−2 immune system development; immune system process

801 CALM1 0.64 6.76 × 10−4 immune response regulating cell surface receptor
signaling pathway

51,752 ERAP1 0.65 2.84 × 10−2 regulation of innate immune response; regulation of immune
system process

7456 WIPF1 0.65 1.59 × 10−3 activation of immune response; immune system process

4982 TNFRSF11B 0.66 3.67 × 10−2 immune response; immune system process

6362 CCL18 0.67 3.72 × 10−2 innate immune response; immune response; immune
system process

30,849 PIK3R4 0.67 2.02 × 10−2 activation/positive regulation of innate immune response

5594 MAPK1 0.71 2.18 × 10−3 regulation of immune system process; immune
system development

8563 THOC5 0.71 7.07 × 10−3 immune system development; immune system process

8473 OGT 0.72 1.16 × 10−2 positive regulation of immune system process

5795 PTPRJ 0.78 1.01 × 10−2 negative/positive regulation of immune system process

4684 NCAM1 0.81 5.74 × 10−3 innate immune response; immune response; immune
system process

The human protein–protein interaction (PPI) network analyses (Figure 3) further revealed
relations among the identified DEGs and immune-related ones (highlighted in blue). Among the
identified target candidates for PA immunotherapy, MAPK1, FOS and HSP90AA1 were the top
three immuno-candidates with the highest connectivity (network degree) to other human proteins.
Moreover, galanin (GAL) was identified as greatly downregulated DEGs in the pituitary glands of PA
patients. Due to it immunomodulatory property in PA, the GAL could be expected as a promising
target candidate for PA immunotherapy, and this finding was in accordance to previous work [47].
The dysregulation of LMO4 was identified in this study, which induced STAT3 activation in brain [83]
and subsequently regulated the expression of programmed death-ligand 1 (PD-L1) [84]. Since the
upregulated expression of immunosuppressive protein PD-L1 was observed in the pituitary gland of
PA patients [43], the inhibition of LMO4/STAT3/PD-L1 signaling could block the immune evasion by
recovering the recognition and elimination of cancer cells via CD8+ lymphocytes [48]. Furthermore,
the transforming growth factor-beta (TGFB) was reported to be one of the chief immune suppressive
mediators of PRL secretion and PA proliferation [49,50]. Its receptor, TGFBR3, was also discovered in
this study as a DEG, which could be another target candidate for developing novel PA immunotherapy.
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3. Materials and Methods

3.1. Construction of Analytical Datasets and Discovery of Differentially Expressed Genes

Pituitary glands were wildly recognized as the major locus of PA’s dysfunction [63]. In this study,
a variety of microarray studies based on the tissues of pituitary gland were thus collected through
searching “pituitary adenoma”, “pituitary tumor”, “pituitary neoplasm”, “pituitary macroadenoma”,
“pituitary carcinoma”, and “pituitary cancer” in the Gene Expression Omnibus (GEO) [85]. As a result,
seven independent microarray studies were collected. As shown in Table 1, each dataset comprises
a cohort of PA patients and/or another cohort of healthy controls. Among these studies, a limited
number of both diseased and healthy samples were reported (~4–16 samples for the PA patients
and ~0–9 samples for healthy people). In this study, four analytical datasets were constructed
for (1) evaluating the effectiveness of the adopted feature selection algorithm, (2) conducting
a performance comparison between the DDI strategy and the strategy of a single dataset, and (3)
constructing the final model for identifying the immune-related molecule underlying PA’s development.
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In particular, the four analytical datasets included (as illustrated in Figure 1 and Table 1): (A) GSE51618,
(B) GSE26966, (C) DDI of five datasets, and (D) DDI of seven datasets. Datasets (A–C) were used for
validating feature selection method and comparing the performances of DDI strategy and the strategy
of single dataset, and dataset D was applied to identify the target candidates for the immunotherapy
of PA.

The direct data integration (DDI) strategy combining multiple datasets was carried out in the
R environment (available online: http://www.r-project.org). The raw data (the CEL file) was first
read, log transformed, and normalized, and all parameters were set as default. Then, outliers in each
dataset were checked and removed, and all probe sets were mapped to their corresponding genes by
Bioconductor [86]. Average expression value was retained if one gene was mapped to multiple probes.
To remove the batch effect among datasets, Z score transformation [87–89] (provided in Equation (1))
was used to adjust the gene expression levels in each dataset.

Z score =
xi − x

δ
(1)

where xi refers to the raw intensity of each gene, x indicates the average intensity of all genes within
single experiment and δ represents the standard deviation (SD) of all expression intensities in one
array. After this process, the mean Z score for each array became zero with SD equaling one. The DDI
strategy was applied to construct the dataset C (integrating GSE22812, GSE26966, GSE4237, GSE46311,
and GSE51618) and D (integrating GSE2175, GSE22812, GSE26966, GSE36314, GSE4237, GSE46311,
and GSE51618). As a result, the dataset C contained 60 PA patients and 12 healthy people, and dataset
D contained 68 PA patients and 16 healthy individuals (Figure 1). The differentially expressed genes
(DEGs) between the PA patients and healthy individuals were identified using the linear models and
empirical Bayes (LMEB) [90] by the R package limma [91]. Herein, the genes with fold change > 1.5
and adjusted p-value < 0.05 were identified as the differentially expressed genes between case and
control samples (Figure 1).

3.2. Validation of the Constructed Prediction Models Based on Different Analytical Datasets

A systematic validation and comparison of the prediction models constructed based on three
analytical datasets (A–C) was conducted by evaluating the relevance level to PAs of the identified
DEGs and by assessing the robustness of marker discovery and the classification ability of the
constructed models.

3.2.1. The Level of Relevance of the Identified DEGs to Pituitary Adenoma

For complex disorders like PA, the identified DEGs are expected to contain a substantial percentage
of PA-related genes [92], and a certain number of irrelevant genes may be inevitably selected due to
measurement variability. Herein, a comprehensive literature review was performed to investigate the
PA relevance of the top-ranked DEGs. Moreover, the pathway enrichment analyses on the identified
DEGs were also conducted to identify the significantly overrepresented KEGG pathways using
hypergeometric tests (adjusted p-value < 0.05) [93]. According to another comprehensive literature
review on the top-ranked pathways playing key roles in PA, the level of PA relevance of the pathways
enriched by three different strategies were compared. Finally, the gene ontology (GO) enrichment
analyses using biological process (BP) and molecular function (MF) by the identified DEGs were
conducted to identify the significantly overrepresented GO terms using hypergeometric tests (adjusted
p-value < 0.05) [93]. The level of PA relevance of the top-ranked GO terms was also reviewed, analyzed,
and compared among three different strategies.

http://www.r-project.org
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3.2.2. The Classification Capacity of the Identified DEGs Assessed by the Independent Validation Dataset

The classification abilities of the DEGs identified by three different strategies (Dataset A, B and
C shown in Figure 1) were assessed and compared by predicting PA outcomes of the independent
validation dataset containing eight PA patients and four healthy controls. To statistically maximize
both the prediction power of the constructed models and the validation effectiveness, the independent
validation dataset was constructed by two datasets with the smallest amount of case and control
samples: GSE2175 (four cases and one control) and GSE36314 (four cases and three controls).
The classification models were constructed by the classifier of support vector machine (SVM) [94].
A variety of popular assessment metrics were adopted, which included true positive (TP), true negative
(TN), false positive (FP), false negative (FN), accuracy (ACC), sensitivity (SEN), specificity (SPE),
Matthews correlation coefficient (MCC), receiver operating characteristics (ROC) curve, and the area
under ROC curve (AUC). All these metrics were frequently used in current Omics researches [95–98].

3.2.3. The Robustness of the Identified DEGs among Different Sampling Groups

The robustness of the identified DEGs among different samplings groups was widely accepted
to be another metric for assessing the constructed prediction models [69]. Particularly, overlap value
between two sampling groups was applied to quantify the robustness of the identified DEGs [75].
In this study, a sub-dataset was first generated by randomly selecting 2/3 samples of the original
dataset, and ten iterations of this selection procedure resulted in ten sub-datasets. For each sub-dataset,
a list of DEGs were identified by LMEB (fold change > 1.5 and adjusted p-value < 0.05), and the
overlap value between any two sub-datasets was calculated using their corresponding lists of DEGs
identified. In total, there were 45 (C2

10) overlap values denoting all possible combinations between any
two sub-datasets. Finally, the overlap values of three different strategies were compared to assess their
robustness of the identified DEGs.

3.3. Annotating the Immune-Related DEGs and Candidate Target Discovery for PA Immunotherapy

Due to the substantially enhanced robustness and classification capacity of the DDI strategy
discovered in this study, the DDI of all seven datasets (Table 1) was conducted to achieve the most
comprehensive discovery of DEG between patients and healthy individuals. The method applied for
data integration and batch effects removal was shown in the first section of Materials and Methods
section. The samples integrated in constructing the final prediction model included 68 PA patients
and 16 healthy individuals. To the best of our knowledge, this newly integrated dataset is the largest
one among the current PA-related transcriptomic analyses. Based on the comprehensive dataset D
integrated above (Figure 1), DEGs were further identified using the LMEB method (fold change > 1.5
and adjusted p-value < 0.05). Then, GO terms were used to annotate and identify immune-related
DEGs. Moreover, the human protein–protein interaction (PPI) network analysis was introduced to
explore the connection among identified DEGs [99]. In particular, the STRING database [100] was
adopted to the construct human PPI network, and only PPI data of high confidence levels (>0.7) were
applied in this study. The identified DEGs together with the STRING human PPI network were input
into Cytoscape [101] for visualization, and only the identified DEGs were displayed (round circles).
The immune-related DEGs annotated by GO terms were colored by light blue.

4. Conclusions

In this study, the direct data integration strategy was proposed, and its classification ability and
robustness were assessed in this study. Compared with the traditional strategy based on a single
dataset, the DDI strategy was found to greatly enhance the robustness of identified DEGs, which may
be attributed to the significant enlargement of the sample size. Based on the comprehensive analysis of
the available PA-related transcriptomics data, 370 DEGs were identified, and 66 immune-related DEGs
were annotated and proposed as target candidates for PA immunotherapy. Using the PPI network
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analysis and literature review, several promising candidate targets (GAL, LMO4, STAT3, PD-L1, TGFB
and TGFBR3) were further proposed for PA immunotherapy.

Supplementary Materials: The following are available online at http://www.mdpi.com/1422-0067/20/1/151/
s1.
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