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Abstract

Background: The recent success of immunotherapy in treating tumors has attracted increasing interest in research
related to the adaptive immune system in the tumor microenvironment. Recent advances in next-generation
sequencing technology enabled the sequencing of whole T-cell receptors (TCRs) and B-cell receptors
(BCRs)/immunoglobulins (Igs) in the tumor microenvironment. Since BCRs/Igs in tumor tissues have high affinities for
tumor-specific antigens, the patterns of their amino acid sequences and other sequence-independent features such
as the number of somatic hypermutations (SHMs) may differ between the normal and tumor microenvironments.
However, given the high diversity of BCRs/Igs and the rarity of recurrent sequences among individuals, it is far more
difficult to capture such differences in BCR/Ig sequences than in TCR sequences. The aim of this study was to explore
the possibility of discriminating BCRs/Igs in tumor and in normal tissues, by capturing these differences using
supervised machine learning methods applied to RNA sequences of BCRs/Igs.

Results: RNA sequences of BCRs/Igs were obtained from matched normal and tumor specimens from 90 gastric
cancer patients. BCR/Ig-features obtained in Rep-Seq were used to classify individual BCR/Ig sequences into normal or
tumor classes. Different machine learning models using various features were constructed as well as gradient
boosting machine (GBM) classifier combining these models. The results demonstrated that BCR/Ig sequences
between normal and tumor microenvironments exhibit their differences. Next, by using a GBM trained to classify
individual BCR/Ig sequences, we tried to classify sets of BCR/Ig sequences into normal or tumor classes. As a result, an
area under the curve (AUC) value of 0.826 was achieved, suggesting that BCR/Ig repertoires have distinct
sequence-level features in normal and tumor tissues.

Conclusions: To the best of our knowledge, this is the first study to show that BCR/Ig sequences derived from tumor
and normal tissues have globally distinct patterns, and that these tissues can be effectively differentiated using BCR/Ig
repertoires.
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Introduction

Recent insights into cancer immunity have provided
new possible treatment strategies against tumors based
on immunotherapy. Since tumor cells contain certain
proteins known as tumor-specific antigens (TSAs), which
have unique sequences due to somatic mutations and
are expressed almost exclusively in tumor environment,
evaluation of antigen receptors against TSAs expressed
in tumor-infiltrating lymphocytes is important for elu-
cidating cancer immunity. There are two main types of
immunity conferred by lymphocytes: cellular immunity,
which is largely attributed to the action of T-cell receptors
(TCRs), and humoral immunity, which is attributed to the
action of immunoglobulins secreted by B-cells.

Recently, advances in next-generation sequencing tech-
nology have provided the opportunity to sequence TCRs
and B-cell receptors (BCRs) or immunoglobulins (Igs)
on an unprecedented scale [1, 2]. However, previous
studies analyzing the global patterns of antigen receptor
sequences have mostly focused on TCRs [3-7], result-
ing in the identification of specific features of the amino
acid motifs in TCRs. In contrast, characterizing humoral
immunity is more complex than characterizing cellular
immunity, because BCRs/Igs show higher sequence diver-
sity than TCRs due to somatic hypermutations. Therefore,
analyses of BCRs/Igs have mostly focused on only a small
number of known antigens or epitopes [8]. Moreover,
the conventional approach used for TCR analysis based
on analyzing sequence motifs or identical sequences can-
not be applied to BCRs/Igs in tumors, because there are
very few BCR/Ig sequences shared by different individu-
als in cancer microenvironments, unlike infection, vaccine
administration, and autoimmunity [9-12].

Nevertheless, given the importance of humoral immu-
nity in cancer, global sequence analysis of BCRs/Igs in
tumors is essential to understand tumor immunity [13].

We hypothesized that because of TSAs, BCR/Ig
sequences in the tumor environment may exhibit charac-
teristics which differ from those in normal tissue environ-
ment.

In this study, we tackled this problem by construct-
ing classifiers of BCRs/Igs obtained from the immune
repertoire sequencing (Rep-Seq) data of 89-paired tissue
specimens obtained from patients with gastric cancer, one
of the most common malignancies worldwide and partic-
ularly in Asian countries. These classifiers were based on
supervised machine learning techniques that differenti-
ated between individual BCR/Ig sequences in normal and
tumor environments. V/J-frame pattern, CDR-lengths,
the number of SHMs, and physicochemical properties of
amino acid sequences of CDRs were used as the key fea-
tures of BCR/Ig sequences for the differentiation. This
approach allowed us to identify distinct characteristics of
BCRs/Igs in tumor tissues.
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We also classified normal and tumor tissues based on
the set of BCR/Ig sequences considering a hypothetical
diagnostic situation. Classification of BCR/Ig sequence
sets in the context of autoimmune-diseases was con-
ducted previously [14]. Therefore, we compared the clas-
sification performance of our classifier with that used in
the previous research. This analysis demonstrated that our
classifier outperformed the other method when applied to
our dataset.

We expect that this approach will advance the field
of cancer research and improve immunotherapy toward
better personalized medicine in cancer treatment.

Methods

Clinical samples

Ninety frozen gastric cancer specimens surgically resected
from patients between 2009 and 2016 at the University of
Tokyo Hospital were analyzed in this study after receiving
written, informed consent. This study was approved by
the institutional review boards of the University of Tokyo
and Tokyo Medical and Dental University.

Rep-Seq data of BCRs/Igs

Total RNA was extracted from approximately 10 sequen-
tial frozen sections (10 pm thick) of gastric cancer tissues
using the RNeasy Mini kit (Qiagen, Hilden, Germany).
Quantity and quality assessments of the extracted total
RNAs were made using the Agilent Bioanalyzer (Agilent
Technologies, Foster City, CA, USA). Multiplex poly-
merase chain reaction (PCR) primers targeting BCR/Ig
genes (iRepertoire, Inc., AL, USA) were used to amplify
BCR/Ig repertoires in each of tumor and normal tissue
samples according to the manufacturer’s protocol. Each
repertoire library was then sequenced on an Illumina
MiSeq instrument (Illumina, San Diego, CA, USA) with
2x 300 bp paired-end sequencing according to the man-
ufacturer’s protocol. The results of paired-end nucleotide
sequencing were obtained from two FASTQ files, one read
from the 5’ end to the 3’ end and the other from the 3’ end
to the 5" end.

Pre-processing of BCR/Ig sequences

An overview of the workflow for the analysis is provided
in Fig. 1. The workflow consists of 1) aligning BCR/Ig
sequences, 2) defining clonotypes, and 3) extracting dom-
inant BCR/Ig clones.

Alignment of BCR/Ig sequences

A heavy chain of BCR/Ig is composed of variable(V),
diversity (D), and joining (]) gene segments. To align
paired-end nucleotide sequences of BCRs/Igs and esti-
mate the appropriate assignment of V, D, and ] gene
segments, we used MiXCR, a tool for the universal
framework processing of large immunome data from raw
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Fig. 1 Pipeline for obtaining the BCRs/Igs data used as the query for the classification machine from normal or tumor tissue

sequences for quantitating clonotypes [15]. Since D frame
is very short and surrounded by random nucleotides, the
accuracy of D frame assignment is generally very low com-
pared to that of V/J frame assignment. Thus, we did not
apply D frame assignment to further analysis.

Defining clonotypes

Although the BCR sequence of each B-cell is essentially
different, a group of B-cells called a clone has the same
ancestral origin, and similar BCR sequences. Clonal lin-
eage of BCRs/Igs was estimated using MiXCR. The fol-
lowing clustering criteria were applied as described by
Uduman et al. [16]:

e The same combination of V/J frames
e The same length of CDR3
e A maximum of three nucleotide mismatches in CDR3

BCRs/Igs that satisfy the above criteria were defined as
belonging to the same clonal family.

Extraction of dominant BCR/Ig clones
After constructing clonal families, BCR/Ig clones were
selected for training the classification machine. Each clone
included BCRs/Igs derived from tumor tissues as well as
normal tissues. BCR/Ig clones for training were extracted
using the following steps: 1) clones with at least 50 reads
were extracted to reduce the effect of sequence errors. 2)
A clone with 90% or more tumor-derived BCR/Ig content
was defined as a tumor-specific clone. The same thresh-
old was applied to define normal clones. 3) Three BCR/Ig
sequences were sampled randomly from each extracted
clone to eliminate the influence of biased clonal size.
Detailed information about the BCR/Ig data is provided
in Additional file 1 (Table S1).

Classification using V/J frame assignment
Classification using V/J frame patterns was conducted
using a Bayes classifier. When training the classifier, like-

lihood of combinations of V/J frames for a given type of
tissue (normal or tumor) were calculated as follows

1 n
P(V,JIN) = =3  Pi(V,]IN)
i=1

1 n
P(VJIT) = =3 PV, JIT)

i=1

where n denotes the number of patients in the training
data, and P;(V,J|N) and P;(V,]J|T) denote the relative
frequencies of ith patient for normal and tumor, respec-
tively. Posterior probabilities of normal or tumor given
V/J frames in the test data were calculated using Bayes’
theorem.

Since this classification machine contains no hyper-
parameter, the performance of the machine is simply
measured by conducting leave-one-out cross-validation
(LOOCV).

Classification using lengths of CDRs

Classification using lengths of CDRs was conducted in
a similar way to the one using V/J] frame assignment.
Likelihood of combinations of lengths of CDR1, CDR2,
CDR3 for a given type of tissue (normal or tumor) were
calculated as follows

1 n
P(Ly, Ly, L3IN) = = > Pi(L1, Ly, L3|N)
n i=1

1 n
P(Ly, Ly, L3|T) = = ) " Pi(L1, Ly, L3|T)
" i=1

where L1, L, and L3 denote the length of CDR1, CDR2 and
CDR3, respectively, n denotes the number of patients in
the training data, and P;(L1, Ly, L3|N) and P;(L1, Ly, L3|T)
denote the relative frequencies of ith patient for normal
and tumor, respectively. Posterior probabilities of normal
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or tumor given lengths of CDRs in the test data were
calculated using Bayes’ theorem.

Classification using the number of SHMs

Classification using SHMs was conducted using a support
vector classifier with linear kernel, and input features are
the number of SHM in framework region (FR) and that in
CDR.

Classification using amino acid feature vectors

Three kinds of machine learning models were used to
classify based on the amino acid sequences of BCRs/Igs:
convolutional neural networks (CNN), support vector
machine (SVM), and random forest (RF). To take the
physicochemical properties of BCRs/Igs into account, we
created a feature vector based on Kidera factors, which
transforms each amino acid into a 10-dimensional vec-
tor. It was originally derived from multivariate analysis of
188 physicochemical properties in each of the 20 amino
acids [17].

Since CDRs in BCRs/Igs are mainly involved in anti-
gen binding, only CDRs are used in this classification.
Additionally, their individual lengths were trimmed or
padded so that all the feature length be the same. The
target lengths of CDRs were determined by their median
lengths: 8, 8, and 17 for CDR1, CDR2, and CDR3 respec-
tively. The following methodology was applied to fix the
sequence length:

e Ifthe original length was the same as the target
length, the sequence was not modified.

o If the original length was larger than the target
length, the center of the sequence was trimmed.

e [fthe original length was smaller than the target
length, a pseudo amino acid with a zero feature
vector was inserted into the center of the sequence.

The above process created 33(= 8 + 8 + 17)-by-10 matrix
for each BCR/Ig. The resulting dimension of the feature
vector was 330.

Convolutional neural network

The CNN classifier includes a stack of several Conv-Leaky
ReLU-MaxPool units, which are followed by fully con-
nected hidden layers with Leaky ReLU activation. The last
layer is a fully connected layer with the softmax function
for normal and tumor classes. All Leaky ReLU activa-
tions were used with leak rate of 0.2. The optimization
was done by Adam optimizer with minibatch size set
to 100.

Hyperparameters were optimized using a random
search strategy [18]. The search range of each hyperpa-
rameter is described in Table 1. CNN was implemented
using the Python API of TensorFlow [19].

Page 4 of 11

Support vector machine

We used SVM using the radial basis function (RBF) kernel
implemented in scikit-learn . There were two hyperpa-
rameters in our SVM classifiers; C and y . C trades off
any misclassification of training examples against the sim-
plicity of the decision surface [20], and y defines the
extent of the influence of a single training example. These
hyperparameters were tuned using a grid search strategy.
The search range of C and y were [ 10°, 10!, 102, 10%] and
[1072,1073,107%, 107>, ], respectively.

Random forest

RF implemented in scikit-learn was used [20]. The max-
imum depth of a tree was tuned as a hyperparameter of
the RF model, and its possible values were \/f, log, f, and
f, where f is the number of features (=330) of an input
BCR/Ig.

Model selection of machine learning

To optimize the hyperparameters of the classification
machines with small number of samples, double cross-
validation called nested cross validation was conducted
[21]. The purposes of inner and outer cross validation
are to determine the hyperparameters and to measure
the generalization performance of the determined model,
respectively. In our analysis, the inner loop was two-fold
cross validation and the outer loop was LOOCV. When
holding out validation data in each cross-validation,
BCRs/Igs were split at the patient level instead of individ-
ual sequence level.

Effect of fixing the length of CDRs

Because the fixed CDR length could cause bias in the clas-
sification, effect of CDR length on the performance of our
classifier was determined.

To check the effect of trimming and padding the CDR
sequences, we calculated the classification performances
of each length of CDR3. Because CDR3 has much larger
diversity in terms of length and amino acid composition
than CDR1 and CDR2, we assumed the effect of trimming
and padding would be the largest in CDR3.

Table 1 Range of hyperparameter searched in the CNN classifier

Name of hyperparameter Lower limit Upper limit
Initial learning rate le-7 Te-3
Dropout rate 04 1.0

# of convolutional layers 1 2

# of convolutional kernels 80 300

The width of convolution kernels 2 3

The width of pooling filters 2 3

# of fully connected layers 1 3

# of units in a fully connected layer 100 300
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Classification using gradient boosting ensemble model
Linear gradient boosting machine implemented in
XGBoost was applied to create ensemble classifiers using
the four types of features. All hyperparameters were set to
default values of Python API of XGBoost.

Motif analysis

Sequence motifs in CDR1, CDR2, and CDR3 were con-
structed by applying WebLogo3 [22] to the following 4
groups.

1. BCRs/Igs correctly predicted as Normal
tissue-derived with high confidence (P(N) > 0.9)

2. BCRs/Igs correctly predicted as Tumor-derived with
high confidence (P(T) > 0.9)

3. BCRs/Igs misclassified as Tumor-derived with high
confidence (P(T) > 0.9)

4. BCRs/Igs misclassified as Normal-derived with high
confidence (P(N) > 0.9)

Only sequences with average length of each region (8,
8 and 17 for CDR1, CDR2, and CDR3 respectively) were
used.

Both ends of the CDR3 sequence (1%t — 3'4 amino acids
from the N-terminus and 1% — 4™ amino acids from the
C-terminus), which is highly conserved, were removed to
highlight the motifs in the other variable region.

Permutation test

To assess whether or not single BCR/Ig-classifier out-
performs random classification, permutation analysis
was conducted. The sequence-labels of the BCRs/Igs
within each patient were shuffled randomly. A hundred-
thousand permutations were performed, and average
AUC was calculated over patients in each permutation.

Tissue-level classification
Sets of BCR/Ig sequences were classified into normal or
tumor classes.

We used all of the Rep-Seq data of BCRs/Igs when
evaluating the classifier in order to simulate actual diag-
nostic situations, although only tumor/normal-specific
clonal families were used when constructing classifiers for
individual BCRs/Igs.

Tissue classifier was constructed based on a trained
GBM for individual BCR/Ig sequences. Since GBM esti-
mates the probability of individual BCR/Ig deriving from
tumor tissue, we used the average probability of the GBM-
based classifier for individual BCR/Ig in a set as the
tissue-level classification score, which was formulated as
follows

1
Prissue (T A):=— Z Pseq(T|A)
|A| AcA
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where A denotes a vector of outputs of four classi-
fiers using different features for an individual BCR/Ig
sequence, and A denotes the set of all BCRs/Igs from
the same tissue. The classification performance was deter-
mined by using a ROC curve on 180 samples from the 90
patients. To classify a target sample from a patient, indi-
vidual BCR/Ig classifier trained with patients except for
the target patient was used. In addition to the average
score, tissue-level classification performance was deter-
mined by using median or mode of probabilities for
comparison.

Training Ostmeyer’s model

Ostmeyer’s model was trained against our dataset from
scratch, and evaluated using LOOCV over 90 patients.
Training parameters were set to default values except for
the number of replicas, which controls the number of
simultaneous runs of Adam optimization. Because the
main memory in our server was not enough to set the
value to 100000 as in the original Ostmeyer’s model, we set
the value to 1000, which is a limitation of the comparison.

Statistical test
Classification performance (AUC) between classifiers was
evaluated using the Wilcoxon signed-rank test for statis-
tical comparisons. These statistical tests were performed
using SciPy Python library [23]. p < 0.05 was considered
significant for all statistical tests. A Bonferroni correction
was applied for multiple comparison testing.

To test whether AUCs of different ROC curves differ sig-
nificantly, the AUCs were compared using R (V.3.4.4) and
the pROC package [24].

Results

classification of individual BCRs/Igs

First, we investigated whether it is possible to discriminate
individual BCR/Ig sequences in normal tissue from those
of the tumor tissue.

Table S1 (Additional file 1) shows the read and clone
statistics for each sample we analyzed. We evaluated the
extent of CDR3 sequence sharing among patients, and
2.1% £ 3.5 (mean+SD) of CDR3 amino acid sequence
in normal tissues, and 1.6% =+ 6.6 in tumor tissues were
shown to be shared, which is consistent with previous
studies [12, 25].

Since normal tissues can contain some clones from
tumor tissues and vice versa, such contamination in train-
ing data could adversely affect the classification perfor-
mance. Thus, we constructed training data using only
tissue type-specific clones for each patient. Clones for 89
patients (1 patient excluded as no tumor-specific clones
were identified) were used for the individual BCR/Ig clas-
sification. In order to remove the bias of clone sizes, 3
BCR/Ig sequences were extracted from each clone, and
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as a result, approximately 600,000 BCR/Ig sequences were
used as training data in each leave-one-out model. The
performance of the classification was measured by AUC-
score calculated in each held-out patient in a LOOCV
scheme.

We constructed classifiers using BCR features which
could contribute to the difference between normal and
tumor microenvironment and compared the classifica-
tion performance among features. The features selected
were amino acid sequences of CDRs, lengths of CDRs,
V/]-frames, and the number of SHMs. Workflow of the
classification using such features is illustrated in Fig. 2.

First, multiple classifiers were constructed using amino
acid sequences, and their performance was compared.
Three representative supervised learning algorithms were
compared: Convolutional Neural Networks (CNN) , Sup-
port Vector Machine (SVM), and Random Forest (RF).
To take the physicochemical properties of BCRs/Igs into
account, amino acid sequences were encoded into matri-
ces using Kidera factor and used as features. Hyperparam-
eters of these classifiers were tuned using two-fold cross
validation. As shown in Fig. 3a, CNN significantly out-
performed the other two methods. Therefore, CNN using
amino acid sequences was adopted in the rest of the study.

In the above experiment, CDR3 length was fixed by
trimming or padding amino acid sequences to retain both
end of the sequences since there is no straightforward
way to deal with variable-length input in CNN, SVM,
and REF. To verify our approach, classification performance
among different trimming/padding strategies was com-
pared. As shown in Fig. 3b, no significant difference was
observed between the classification performances of CNN
using center-trimmed/padded and ends-trimmed/padded
strategies. Figure 3d shows the performance of CNN using
each of the various amino acid lengths (8 to 26) of CDR3.
Although significant difference was observed (p = 0.02,
Skillings-Mack test [26]), performances were better than
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random in all lengths. These results suggest that our trim-
ming/padding strategy does not degrade the performance
of CNN.

Our results indicate that BCR/Ig-sequences from nor-
mal and tumor environment have some distinct patterns
in their amino acid sequences. However, differences in
amino acid sequences in normal and tumor environment
detected by CNN could be captured by other sequence-
independent information, which can be calculated more
easily. For example, most of the signals detected by the
model may reflect the fact that tumor-derived clones
tend to have undergone affinity maturation, while normal
tissue-derived clones do not have such tendency. There-
fore, classification experiments were conducted using the
three sequence-independent features, CDR-length, usage
of V/J frames and the number of SHMs, that might also
exhibit distinct patterns in normal and cancer tissues.

In order to explore the possibility to improve the clas-
sification performance by ensemble, and to evaluate the
contribution of each model to the performance, ensem-
ble models were also constructed using multiple features
including amino acid sequences by combining all the out-
put probabilities against the sequence from the models
described above. Gradient Boosting Machine (GBM) with
linear model was used for the ensemble classifier.

Figure 3c shows the performances of different mod-
els using different sequence-independent features, as well
as the ensemble model. All models performed signifi-
cantly better than random (p-value < 10, permutation
test), which means that all sequence-independent features
we selected have distinct characteristics in normal and
tumor microenvironment. Among the four non-ensemble
models using sequence-independent features, those using
the physicochemical properties of amino acid sequences
and number of SHMs showed comparable performances,
outperforming the other two models. Although ensem-
ble models outperformed them, the difference was not

Training data Various Repertoire Features Supervised Machine Learning )
Normal-labelled seqs o Vilimme B Train  normal or Test data
¢ J-frame Classifier Tumor
Ensemble all predictions | Individual BCR/Ig ol P
i Train with XGBoost f ) o
* #o0f SHMsin FR Linear Normal or Predict VRIS Tumor ?
e # of SHMs in CDR Classifier Tumor > XGBoost —)
-—) Classifier
Tumor-labelled seqs * CDR1-length . Tissue 5
——— + CDR2-length Bayes | Train Normal or 1 Train : 3 ?:;:2?', or
B Classifier Tumor 4 -
(v "o ] Normal or Tumor
- — Amino acid sequences CNN Train  normal or
J of CDRs SYMicH
RF Tumor y

Fig. 2 Workflow of individual BCR/Ig classification and tissue classification between normal/tumor environment using various

sequence-independent features
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Fig. 3 Letter-value plots are showing distribution of the area under the Receiver Operating Characteristic curve (AUROC) calculated on 89 held-out
patient. The figures are illustrating the comparison of (a) different models using amino acid sequences, (b) different trimming/padding strategies, (c)
models using various sequence-independent features as well as ensemble model combining them, and (d) CNN against different length of CDR3.

remarkable. Coefficients of the GBM linear model shown
in Fig. 3e indicated that output probability of CNN model
is the most useful feature for the classification. Nonethe-
less, the performance of ensemble models that combine
all models for each sequence-independent feature was
similar to that of CNN, and 89 AUCs of CNN were corre-
lated to those of other classifiers (Additional file 2: Figure
S1). These results suggest that CNN can deal with the
richest information and produce the most reliable proba-
bilities, and that most of the patterns it recognizes might
be correlated to other sequence-independent features.
Since input of CNN is the encoded physicochemi-
cal properties in amino acid sequences, and the clas-
sifiers is nonlinear, there is no straightforward way to
extract biologically interpretable information from the
model. Instead, sequence motifs in CDRs captured by the
classifier were investigated, which is easy-to-understand.
Sequence motifs on BCRs/Igs that were correctly clas-
sified or misclassified with high confidence in CDRI,
CDR2, and CDR3 are shown in Fig. 4. Unfortunately,

no prominent motif patterns were found between the
BCRs/Igs of normal and tumor tissues. Although there
might be some differences between correctly classified
motifs and misclassified ones, the biological importance is
unclear.

The distributions of tumor probabilities in nor-
mal/tumor samples were investigated over all patients
(Additional file 3: Figure S2).

Tissue-level classification

Another main goal of this work was to precisely estimate
tissue type, normal or tumor, using BCR/Ig sequences
obtained from a tissue sample, under a hypothetical
diagnostic scenario in which we can only access to a
set of BCR/Ig sequences obtained from either of the
tissue.

The tissue classifier was constructed using descriptive
statistics values of the tumor probabilities of the already-
trained GBM for individual BCRs/Igs. Figure 5a-c show
the ROC-curves using average, median, and mode of



Konishi et al. BMC Bioinformatics (2019) 20:267

Page 8 of 11

Derived from Normal

Predicted as Normal

Derived from Tumor

Predicted as Normal

10
Weblogo 360

Predicted as Tumor

Weblogo 360

Weblogo 360

Predicted as Tumor

Weblogo 360

Fig. 4 Sequence motifs constructed for all CDRs. Each motif is made using sequences that have average length of each region. We note that the

y-axes of CDR3 is different from those of CDR1, CDR2

the probabilities emitted by each single sequence-level
classification models, respectively. Among the models
based on the same sequence-level classifiers, the mod-
els employing average probabilities always outperformed
the other two. Therefore, we adopted average probabili-
ties as the descriptive statistics value for the tissue-level
classification model in the rest of the study.

Tissue-level classification was also conducted by adding
clonal entropy information to the ensemble model
However, the comparison of such models shown in Fig. 5d
suggested that it would not improve the classification
performance.

In addition, our tissue-level classifier was compared to
the previously introduced machine-learning method for
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disease classification based on BCR/Ig sequences [14].
Their model employs k-mer snippet on CDR3 sequences
as a feature, and tissue-level classifications are carried
out by constructing logistic regression model for a sin-
gle snippet and by taking the maximum to aggregate the
probabilities. Although this method was originally devel-
oped for classifying autoimmune diseases such as multiple
sclerosis, it is applicable to cancer diagnosis. As shown
in Fig. 5e, our model significantly outperformed the Ost-
meyer’s model in our cancer dataset (p = 3 x 107°).

Discussion

In this paper, we hypothesized that BCR/Igs reper-
toire in tumor microenvironment have distinct features
from those in normal microenvironment, and thus they
can be distinguished using machine learning techniques
from repertoire sequence data. Classifiers using vari-
ous sequence-independent features were developed and
compared the performances to investigate what features
contribute to the difference of the repertoire.

In the first experiment, individual BCRs/Igs were clas-
sified using amino acid sequences of CDRs, lengths of
CDRs, V/J-frames and the number of SHMs. We found
that all the features contributed to the classification per-
formance with different degrees. This result indicates that
sequence-independent features of normal/tumor tissues
have shared propensity across patients. We also found that
the number of SHMs in tumor tissue is fewer than that
in normal tissue and it is one of the most significant dis-
criminative features. There are some possibilities which
explain the observation. It might be because relatively
short time has passed since immune system recognize
the tumor antigens compared to other antigens in gastric
tissues. Another possibility is that there is a mechanism
that suppresses affinity maturation in tumor microenvi-
ronment. Although some of the mechanism are already
known [27, 28], the contribution in tumor immunity is yet
to be investigated.

We also found that the CNN model using encoded
amino acid sequences in BCRs/Igs contributed the most
in the GBM ensemble model. High correlation value
between the AUC values of the ensemble classifier with-
out CNN model and that with CNN model suggests
that CNN model captures most of the discriminative
information captured by the other sequence-independent
features. Although the performance gain over the clas-
sifier without CNN model was very small, the CNN
model might be worthy of further investigation since there
is still room for improvement. For example, our cur-
rent CNN models cannot handle variable CDR lengths.
Removing center of CDRs might lose important informa-
tion for the discrimination. Incorporating more sophis-
ticated machine learning models that can handle the
variable length inputs such as Recurrent Neural Network

Page 9 of 11

might capture the information not capture by the other
sequence-independent features and improve the classifi-
cation performance.

In the second experiment, the tissue-level classifica-
tion model was developed and compared the perfor-
mance with Ostmeyer’s model, a logistic regression model
using 6-mer snippets of CDR3 amino acid sequences in
multiple-instance learning settings. Our model signifi-
cantly outperformed Ostmeyer’s model. One of the advan-
tages of our method is that it partially retains information
about the position of amino acids in BCR/Ig sequences.
Another advantage is that our model deals with global
statistics of sequence-independent features, such as the
number of SHMs and V/J-frame patterns. On the other
hand, Ostmeyer’s model utilizes short sequence motifs
in CDR3 sequences, irrespective of its relative position,
and classification is performed based on only the most
discriminative motif. The significant difference in the
classification performance suggests that global sequence-
independent features rather than individual amino acid
sequences of BCRs/Igs contribute the difference between
normal and tumor microenvironment, which could differ
from other immune-related diseases such as autoimmune
diseases. In autoimmune diseases, small number of com-
mon antigens and antibodies to the antigens contribute
to the pathogenesis, which could result in the convergent
amino acid sequence motifs in BCRs/Igs. On the other
hand, in cancer microenvironment, antigens could be
highly diverse both within each cancer tissue and across
different cancer tissues. Such differences of immune land-
scapes can also explain why remarkable sequences motifs
specific to normal/tumor microenvironments were not
found.

The tissue-level classification in the second experiment
achieved an AUC value of 0.826, which indicates that our
model can be utilized in clinical applications. For exam-
ple, cancer could be diagnosed even if the tissues do
not contain cancer cells, so long as they contain tumor-
infiltrated B cells or plasma cells. Indeed, single biopsies
of gastric cancer tissues fail to show malignancy in 20%
to 30% of cancer cases [29, 30]. Therefore, our approach
could help correctly identify some of the false negatives
in gastric biopsies and diagnose gastric cancers correctly
by examining the BCR/Ig repertoires of B-cells adjacent to
cancer cells, although further experimental validation will
be required for clinical application of this concept.

Conclusions

Using a machine learning approach, we have shown
that the BCR/Ig repertoire in gastric cancer tissues
has distinct sequence characteristics compared to those
of normal gastric tissues. BCR/Ig-features obtained in
Rep-Seq showed their distinctiveness between normal
and tumor environment in single sequence resolution
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and also showed high diagnostic capacity. Although we
focused specifically on BCRs/Igs in gastric cancer, the
same approach could be applied to evaluating TCRs and
BCRs/Igs in other types of cancers or immune-related
diseases, such as autoimmune diseases and infections,
including those examined by past research [3-5, 7, 14].
Our analysis will open the door for new areas of tumor
immunology and may lead to the development of novel
diagnostic tools for cancer using repertoire sequencing.
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