
June 2018 | Volume 9 | Article 13401

Methods
published: 27 June 2018

doi: 10.3389/fimmu.2018.01340

Frontiers in Immunology | www.frontiersin.org

Edited by: 
Carrie L. Lucas,  

Yale University, United States

Reviewed by: 
Yu Zhang,  

National Institutes of Health  
(NIH), United States  

Francisco Javier Espinosa-Rosales,  
Instituto Nacional de  

Pediatria, Mexico  
Maja Tarailo-Graovac,  

University of Calgary, Canada

*Correspondence:
Yuval Itan 

yuval.itan@mssm.edu

†These authors have contributed 
equally to this work.

Specialty section: 
This article was submitted to  
Primary Immunodeficiencies,  

a section of the journal  
Frontiers in Immunology

Received: 16 February 2018
Accepted: 29 May 2018

Published: 27 June 2018

Citation: 
Requena D, Maffucci P, Bigio B, 

Shang L, Abhyankar A, Boisson B, 
Stenson PD, Cooper DN, 
Cunningham-Rundles C, 

Casanova J-L, Abel L and Itan Y 
(2018) CDG: An Online Server for 

Detecting Biologically Closest 
Disease-Causing Genes and its 

Application to Primary 
Immunodeficiency. 

Front. Immunol. 9:1340. 
doi: 10.3389/fimmu.2018.01340

CdG: An online server for detecting 
Biologically Closest disease-Causing 
Genes and its Application to Primary 
Immunodeficiency
David Requena1†, Patrick Maffucci1,2,3†, Benedetta Bigio1, Lei Shang1,  
Avinash Abhyankar 4, Bertrand Boisson1,5,6, Peter D. Stenson7, David N. Cooper7,  
Charlotte Cunningham-Rundles 2,3, Jean-Laurent Casanova1,5,6,7,8,9, Laurent Abel1,5,6 and 
Yuval Itan10,11*

1 St. Giles Laboratory of Human Genetics of Infectious Diseases (Rockefeller Branch), The Rockefeller University, New York, 
NY, United States, 2 Graduate School, Icahn School of Medicine at Mount Sinai, New York, NY, United States, 3 Department 
of Medicine, Division of Clinical Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, United States, 4 New 
York Genome Center, New York, NY, United States, 5 Laboratory of Human Genetics of Infectious Diseases (Necker Branch), 
INSERM U1163, Paris, France, 6 Paris Descartes University, Imagine Institute, Paris, France, 7 Institute of Medical Genetics, 
School of Medicine, Cardiff University, Cardiff, United Kingdom, 8 Howard Hughes Medical Institute, New York, NY, United 
States, 9 Pediatric Immunology-Hematology Unit, Necker Hospital for Sick Children, Paris, France, 10 The Charles Bronfman 
Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States, 11 Department of 
Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, United States

High-throughput genomic technologies yield about 20,000 variants in the protein-coding 
exome of each individual. A commonly used approach to select candidate disease-caus-
ing variants is to test whether the associated gene has been previously reported to be 
disease-causing. In the absence of known disease-causing genes, it can be challenging 
to associate candidate genes with specific genetic diseases. To facilitate the discovery of 
novel gene-disease associations, we determined the putative biologically closest known 
genes and their associated diseases for 13,005 human genes not currently reported to 
be disease-associated. We used these data to construct the closest disease-causing 
genes (CDG) server, which can be used to infer the closest genes with an associated 
disease for a user-defined list of genes or diseases. We demonstrate the utility of the 
CDG server in five immunodeficiency patient exomes across different diseases and 
modes of inheritance, where CDG dramatically reduced the number of candidate genes 
to be evaluated. This resource will be a considerable asset for ascertaining the potential 
relevance of genetic variants found in patient exomes to specific diseases of interest. The 
CDG database and online server are freely available to non-commercial users at: http://
lab.rockefeller.edu/casanova/CDG.
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INtRodUCtIoN

Genetic mutations have been found to underlie a large number of inherited human diseases. In the 
past decade, refinements in next-generation sequencing techniques (NGS) have made it possible to 
detect the full set of gene variants in patients. The average human genome contains about 20,000 
coding variants and hundreds of thousands of non-coding variants (1). A common approach to 
identify candidate variants for further investigation from NGS data involves screening for those in 
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FIGURe 1 | Predicted degrees of separation between (blue) the 13,005 
genes from human gene mutation database (HGMD) not known to be 
disease-causing and their closest predicted HGMD disease-causing  
genes, and (orange) between all pairs of human genes.
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known disease-causing genes (2–4). However, variants in novel 
disease-associated genes should be estimated by computational 
predictions (5).

Databases such as the Human Gene Mutation Database  
[HGMD (6)], and ClinVar (7, 8) provide manually curated infor-
mation about mutations in known disease-causing genes, also 
known as the Clinome (9). Several methods including the Search 
Tool for the Retrieval of Interacting Genes/Proteins [STRING 
(10)], Exomiser that prioritizes genetic variants from a vcf file 
(11), the Probabilistic functional gene network of Homo Sapiens 
[HumanNet (12)], and Functional Coupling [FunCoup (13, 14)] 
can be used to assess human genes directly connected to can-
didate genes. The human gene connectome [HGC (15)] extends 
these approaches by prioritizing candidate genes according  
to their computed biological distances from known disease-
causing genes.

We generated a complementary resource, the closest disease-
causing genes (CDG) database and server to identify novel 
gene-disease associations. CDG computes the biologically clos-
est known disease-causing genes and corresponding diseases 
for 13,005 human candidate genes not currently observed to be 
disease-causing, allowing investigators to associate these candi-
date genes with known disease phenotypes. We demonstrate the 
efficiency of this method in five patients with various primary 
immunodeficiencies and modes of inheritance, significantly 
reducing the number of candidate genes in these examples by 
using CDG (see Supplementary Material, Section 2 for details). 
CDG also identifies novel gene candidates for lists of diseases 
defined by an investigator. Thus, this resource provides a refer-
ence for the potential relevance of novel candidate genes to 
specific disease phenotypes, simplifying the analysis of NGS data.

MAteRIALs ANd Methods

CdG Generation
Human Gene Mutation Database is a manually curated data-
base of variants that may be associated with or predisposing to 
human genetic conditions (16, 17). From the HGMD March 
2015 public full version (updated through December 2014), we 
selected 5,430 HGMD genes classified as high-quality disease-
causing or disease-associated mutations (mostly linked to 
monogenic diseases). We next identified 13,005 protein-coding 
genes present in the HGC that are not currently reported to be 
disease-causing in the HGMD database. Briefly, the HGC (15) 
is a network of all human genes (represented as nodes), where 
each edge represents the direct biological distance between two 
human genes. Direct biological distance is defined as the inverse 
confidence score for binding connectivity provided by STRING 
(10). The HGC biological distance between any two genes is 
defined as the weighted sum of direct distances in the shortest 
path connecting two given genes (calculated using the Dijkstra 
algorithm), on the network containing most protein-coding 
human genes.

For each of these 13,005 genes, we calculated their biologically 
CDG and associated diseases by first retrieving the corresponding 
connectome for each gene from the HGC database (15, 18).  

A gene-specific connectome contains, for any given human 
gene, the set of all other human genes ranked by their biological 
distance to that specific gene. Then, following the HGC criterion 
for biological relatedness, we selected only the HGMD known 
disease-causing genes in the connectome within p  <  0.01. 
Additionally, we assigned the corresponding human phenotype 
ontology codes [HPO (19)] to each gene-phenotype association 
(Figure S1 in Supplementary Material). A summary of the CDG, 
diseases, and routes associated with each of the 13,005 genes not 
currently known to be disease-causing is provided in Table S1 in 
Supplementary Material.

Validation
We validated CDG and compared the performance of CDG with 
FunCoup and HumanNet using a validation set of genes not 
used during the construction of the original CDG database. As 
validation set, we used two external datasets (1) a new HGMD 
dataset, containing 339 disease-causing genes added between 
January and September 2015 (i.e., not used to construct CDG); 
and (2) the pathogenic genes from ClinVar not present in 
HGMD, comprising 84 genes. We calculated the CDG for each of 
these genes as described above and compared the performance 
of CDG versus FunCoup and HumanNet in terms of number 
of predicted genes and how many predicted diseases coincided 
with the reported disease. As FunCoup and HumanNet do not 
associate diseases, we retrieved the disease names related to each 
predicted gene from HGMD. To compare the predicted and 
expected disease names, we implemented in CDG the following 
phrase-comparison procedure (1) first, the disease names were 
compared by exact coincidence. Then (2) using the “starts-with” 
comparison: if one phrase exactly starts with the other phrase, or 
vice versa. If at this point no matches were found, we used (3) the 
Levenshtein distance algorithm (20). All comparisons between 
disease names for the validation dataset were verified manually.

data storage and web Access
To make CDG easily accessible, we created a webserver that allows 
to consult the CDG database using either genes or diseases as input. 
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FIGURe 2 | Comparative performance of CDG, FunCoup, and HumanNet using (A) 339 new genes in human gene mutation database (HGMD) and (B) using  
84 genes in ClinVar that are not in HGMD. The numbers below each method show the number of genes with at least one predicted gene (left) and how many  
were associated with the expected disease (right). Black numbers show the gene distribution across the three servers and white numbers show how many  
were associated with the expected disease in each server.

FIGURe 3 | Bootstrapping simulations between a set of (1) expected: 
p-values between 13,005 genes not reported to cause disease and their 
predicted CDGs; (2) observed: p-values between new human gene mutation 
database genes (i.e., not used to generate the CDGs presented in this study) 
and their predicted CDGs. Test performed by random sampling using a 
Gaussian distribution.
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If the input gene is known to be disease-causing, the server provides 
the known associated diseases. And if the gene is unknown to be 
disease-causing, predicted data is displayed. The server also allows 
using disease names as input, returning the list of both known and 
predicted causative genes. The disease names in the CDG database 
are as reported in HGMD. If the user input is not a HGMD disease 
name, the procedure to compare disease names described above is 
used to estimate the closest HGMD disease name.

For the CDG server, MySQL was used to structure and store 
the multi-dimensional profile of the results of this study, and to 
process queries to allow efficient access. JSP and servlets were 
used to parse inputs and generate queries. The web interface is 
stored on a Rockefeller University Linux-based server in solid 
state drives. The CDG resource is platform-independent and is 
freely available to all non-commercial users. The CDG database 
and server will be periodically updated with new public versions 
of HGMD, STRING, and HGC.

ResULts

CdG Validation and Comparative Analysis
We first explored the relationship between the 13,005 genes not 
currently described to cause clinical phenotypes with HGMD 
known disease-causing genes. Each of the 13,005 genes was 
associated on average with 48 HGMD disease-causing genes 
and 7 diseases by HGC biological proximity (see Table S1 in 
Supplementary Material for the top-ranked associations). Notably, 
92.9% of the associated disease-causing genes were within one 
or two degrees of sepa ration from the corresponding query gene 
(Figure 1). Conver sely, only 13.9% of all human gene pairs were 
within one or two degrees of separation (p < 10−300, two-tailed 
equal variance t-test).

The accuracy and utility of these associations was then 
assessed using new disease-causing genes not known during the 

construction of the CDG database. Using the first dataset (339 
new genes from HGMD), we found that 287 had at least one 
predicted gene by CDG, compared to 133 using FunCoup and 
116 using HumanNet. From these predicted genes, 134 of 287 
were associated with the expected disease by CDG, compared 
to 46 genes of 133 by FunCoup and 47 of 116 by HumanNet 
(Figure 2A). We repeated the comparison using the second dataset 
(84 genes from ClinVar not present in HGMD) and observed 
that CDG similarly outperformed the other two software both 
in number of genes with at least one predicted disease-causing 
gene and also in correct association with the expected disease 
(Figure 2B).
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FIGURe 4 | Schematic of the closest disease-causing genes (CDG) server pipeline, where CDG can be estimated by queries of gene or disease lists provided by 
the user.
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To address the robustness of the predictions, we randomly 
sampled 1,000 sets of 287 genes from the 5,430 known disease-
causing genes and estimated their CDGs and associated 
diseases. CDG identified the expected disease in 86.33% of 
cases by exact disease name match. Then, we examined the 
profiles of biological proximity for CDG predictions and 
known disease-causing genes. Assuming a Gaussian distri-
bution, we performed 10,000 bootstrapping simulations for 
HGC p-values of CDG predictions between the observed 287 
new HGMD genes with at least one CDG and the expected 
set of 13,005 genes not currently known to cause disease. 
The observed and expected CDG predictions yielded similar 
p-value profiles for biological relatedness between the observed 
and expected gene sets and their CDG (Figure 3). Therefore, 
CDG associations are expected to be more robust and relevant 
for the putative diseases associated with candidate genes than 
previous methods. Due to the lack of flat files from FunCoup 
and HumanNet, it was not possible to repeat this analysis 
with these methods. Thus, we expect that CDG predictions 
are of significant utility to researchers exploring genes without 
published phenotypes.

examples of CdG Usage
Finally, we demonstrated the utility of CDG in WES data in 
five patients with various primary immunodeficiencies, modes 
of inheritance, and known mutated genes that were not in the 
HGMD public database during CDG generation (extended 
description and flowchart in Supplementary Material, Section 2). 
Phenotypes and associated genotypes in these examples include 
(1) severe autoinflammation, a homozygous mutation in RNF31 
(21); (2) Epidermodysplasia verruciformis, a homozygous muta-
tion in STK4 (MST1) (22); (3) herpes simplex encephalitis,  
a homozygous mutation in UNC93B1 (23); (4) common variable 

immunodeficiency, a heterozygous mutation in IKZF1 (24); and 
(5) natural killer cell deficiency, compound heterozygous muta-
tions in GINS1 (25). The range of initial number of genes per 
patient was 14,800–18,862. We then applied standard QC 
(DP > 4, MQ > 40, and QD > 2), minor allele frequency (<1%) 
(26), and gene-level filtering using GDI (27) and MSC (28), 
reducing the number of genes in each patient to the range from 
18 to 322 candidate genes (numbers mostly dependent on mode 
of inheritance). Finally, applying the CDG server to the number 
of genes to investigate reduced this range from 1 to 11, a reduc-
tion in candidate genes of 92.1–96.6%, without losing any of the 
pathogenic genes.

CoNCLUsIoN

We provide the first resource by estimating the closest known 
disease-causing genes and their associated diseases for 13,005 
human genes not currently known to be disease-causing. From 
the comparisons performed, we conclude that CDG predictions 
capture meaningful candidate disease-causing genes and diseases. 
We propose to use CDG with lists of genes from NGS studies or 
similar sources to (1) explore the likelihood of candidate genes 
being associated with a disease of interest by investigation of 
its CDGs and associated diseases; (2) rapidly identify known 
diseases associated with HGMD disease-causing genes; and (3) 
assign CDGs and associated diseases in variant annotation soft-
ware. We are also providing an option for users to perform CDG 
queries based on OMIM (29), although this resource contains less 
pathogenic mutations compared to HGMD. See Supplementary 
Material, Section 3 for further details regarding the webserver’s 
construction.

Users can submit genes to the webserver (Figure 4) to obtain 
two outputs (1) all CDGs and associated diseases, including 
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