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Abstract
Tuberculosis (TB) remains a global health problem and there is an ongoing effort 
to develop more effective therapies and new combination regimes that can reduce 
duration of treatment. The purpose of this study was to demonstrate utility of a 
physiologically-based pharmacokinetic modeling approach to predict plasma and 
lung concentrations of 11 compounds used or under development as TB therapies 
(bedaquiline [and N-desmethyl bedaquiline], clofazimine, cycloserine, ethambu-
tol, ethionamide, isoniazid, kanamycin, linezolid, pyrazinamide, rifampicin, and 
rifapentine). Model accuracy was assessed by comparison of simulated plasma 
pharmacokinetic parameters with healthy volunteer data for compounds admin-
istered alone or in combination. Eighty-four percent (area under the curve [AUC]) 
and 91% (maximum concentration [Cmax]) of simulated mean values were within 
1.5-fold of the observed data and the simulated drug-drug interaction ratios were 
within 1.5-fold (AUC) and twofold (Cmax) of the observed data for nine (AUC) 
and eight (Cmax) of the 10 cases. Following satisfactory recovery of plasma con-
centrations in healthy volunteers, model accuracy was assessed further (where 
patients’ with TB data were available) by comparing clinical data with simulated 
lung concentrations (9 compounds) and simulated lung: plasma concentration 
ratios (7 compounds). The 5th–95th percentiles for the simulated lung concentra-
tion data recovered between 13% (isoniazid and pyrazinamide) and 88% (pyrazi-
namide) of the observed data points (Am J Respir Crit Care Med, 198, 2018, 1208; 
Nat Med, 21, 2015, 1223; PLoS Med, 16, 2019, e1002773). The impact of uncer-
tain model parameters, such as the fraction of drug unbound in lung tissue mass  
(fumass), is discussed. Additionally, the variability associated with the patient lung 
concentration data, which was sparse and included extensive within-subject, in-
terlaboratory, and experimental variability (as well interindividual variability) is 
reviewed. All presented models are transparently documented and are available 
as open-source to aid further research.
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INTRODUCTION

Despite efforts to improve the available treatments for tuber-
culosis (TB), this infection remains a global health burden 
with an estimated 1.6 million deaths recorded in 2017.1 A 
cornerstone of current TB therapy is the use of combinations 
of drugs because no single agent proves to be as effective as 
monotherapy.2 Current regimens for drug-susceptible TB 
require treatment with up to four co-administered drugs and 
a long treatment duration (i.e., 6 months). In the context of 
drug-resistant strains, the treatment duration and pill bur-
den become even more challenging. To improve the effective 
options for patients and to curb the global pandemic, efforts 
to develop new TB treatments are ongoing. Bedaquiline was 
approved by the US Food and Drug Administration (FDA) 
in 2012 and several other novel agents are at various stages 
of the drug development process.3 It is anticipated that 
emerging drugs for TB will be combined into shorter dura-
tion regimens, whereas remaining highly effective for both 
drug susceptible and drug-resistant strains. However, given 
the large size of the development pipeline for new agents, ef-
ficiently evaluating the vast number of potential drug com-
binations is a challenging task.3 Approaches that enable the 
selection of the most promising combinations early in the 
drug development process are essential.

In silico modeling and simulation (M&S) approaches 
provide a mechanism for understanding experimental 
drug data as it is generated and also for guiding the deci-
sion making procedure in drug and regimen development 
programs.4 Mechanistic M&S approaches have the poten-
tial to be particularly amenable to inform drug combina-
tion selection in TB, as they can link exposure and response 
data for new compounds to the existing knowledge of more 

widely studied drugs in order to predict drug pharmaco-
dynamic (PD) effects.5,6 One such mechanistic modeling 
approach utilizes physiologically-based pharmacokinetic 
(PBPK) models. PBPK models combine information on 
human physiology, demographics, and pharmacogenet-
ics, together with information on drug properties (phys-
icochemical, binding, permeability, metabolism, and, if 
appropriate, transport) into a computational model that 
allows the plasma and tissue concentrations of the com-
pound to be simulated.4 The predicted concentrations in 
the target tissues can then be compared to known or ex-
pected concentration-related targets for efficacy and/or 
safety or even linked to response measurements in the form 
of PBPK/PD models.6 Such PBPK and PBPK/PD models, 
typically developed initially for single-agents, have the po-
tential to be extended to assess the pharmacokinetic (PK) 
drug interactions and synergistic/antagonistic PD effects of 
co-administered drugs simultaneously, which is important 
for the TB regimen development process, given the strong 
reliance on combination therapy.

To facilitate the application of mechanistic PBPK 
modeling in TB drug development, PBPK models were 
constructed for 11 standard-of-care and experimental TB 
drugs. These drugs include bedaquiline (and N-desmethyl 
bedaquiline), clofazimine, cycloserine, ethambutol, ethi-
onamide, isoniazid, kanamycin, linezolid, pyrazinamide, 
rifampicin, and rifapentine, as well as moxifloxacin, which 
will be detailed in a separate publication. In addition, to 
support model verification and application in a relevant 
patient population, data were gathered on the major phys-
iological changes (body weight, plasma protein levels, 
etc.) that occur during TB infection. These were used to 
construct a virtual population of South African patients 

Study Highlights
WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?Physiologically-
based pharmacokinetic (PBPK) models have been described in the literature for 
selected anti-tuberculosis (TB) compounds, but the ability of PBPK models to 
simulate the plasma and lung concentrations of anti-TB agents has not been re-
ported for many of the drugs used to treat TB, including newer agents.
WHAT QUESTION DID THIS STUDY ADDRESS?
Can PBPK models that describe plasma and lung concentrations of anti-TB agents 
be developed? Can the PBPK models be modified to account for physiology and 
demographic differences in patients with TB compared with healthy subjects?
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
PBPK models were developed for 11 standard-of-care and newer anti-TB agents 
and the plasma and lung concentrations predicted by the models were compared 
with available clinical data.
HOW MIGHT THIS CHANGE DRUG DISCOVERY, DEVELOPMENT, 
AND/OR THERAPEUTICS?
The PBPK models have the potential to help with the design of clinical studies to 
optimize dosing regimens of TB therapy.



1384  |      HUMPHRIES et al.

infected with TB (detailed in Supplementary Material). 
The drug PBPK models and virtual TB population are avail-
able for research purposes (https://membe​rs.simcyp.com/
accou​nt/globa​lHeal​thRep​ository). This manuscript details 
the development of these PBPK models, which were con-
structed using a previously published multicompartment 
permeability-limited lung model7 (Figure  S1) and com-
pared with available plasma, and, where possible, lung and 
drug concentration data to assess model performance.

METHODS

PBPK models were constructed in the Simcyp Simulator 
(V16 release 1) using the workflow illustrated in Figure 1. 
The performance of the PBPK models was compared against 
clinical data. Ten simulated trials were conducted with vir-
tual subjects that matched (by the number, age range, and 
proportion of women) the subjects used in each clinical 

study (the simulation design is described in Table S3). A base 
model was constructed for each compound using in vitro or 
in silico data (plasma protein binding, blood to plasma ratio, 
lipophilicity, pKa, rate of metabolism in human liver micro-
somes, hepatocytes, or human recombinant enzymes, etc.). 
A workaround for a known software issue was included in 
the simulations to ensure blood pH (7.4) was used to calcu-
late unionized drug concentration in the pulmonary blood 
compartment (https://membe​rs.simcyp.com—corrected in 
the more recent Simulator version 20).

If necessary, the model was refined to ensure that the 
model closely reflected the clinical data. The performance of 
the final model was then checked (where possible) against 
independent clinical data not used in the model refinement. 
For rifampicin, rifapentine, and bedaquiline (selected due 
to availability of relevant clinical data with sensitive sub-
strates and/or strong inhibitors of specific CYP enzymes), 
drug interactions were simulated. Simulations investigating 
the change in clearance of midazolam when co-dosed with 

F I G U R E  1   Workflow outlining the 
process used to construct PBPK models 
for the 13 anti-TB compounds. ADME, 
absorption, distribution, metabolism, and 
excretion; PBPK, physiologically-based 
pharmacokinetic; PK, pharmacokinetic; 
TB, tuberculosis

https://members.simcyp.com/account/globalHealthRepository
https://members.simcyp.com/account/globalHealthRepository
https://members.simcyp.com
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rifapentine at steady-state, were conducted at doses of 5, 10, 
15, and 20  mg/kg using a study design analogous to that 
used in the clinical study by Dooley et al.8 A list of the dif-
ferent clinical studies that were simulated and the details 
of the populations used for each simulation are provided in 
Table S3.

Model assumptions

The PBPK models were constructed using full body PBPK 
models where different organs of the body are represented 
as compartments with specified blood flow, volume, and 
tissue composition. The disposition of the compounds 
into the lung was modeled using a permeability-limited 
lung model that has been previously described in detail7 
(Figure  S1). The other organs were generally assumed 
to behave as well-stirred compartments where distri-
bution of the compound into the tissue is governed by 
standard perfusion rate-limited PBPK model equations.9 
Absorption was described by using either the first order 
absorption model (with intestinal metabolism described 
using the Qgut model10) or the more complex, regionally 
distributed permeability-limited (advanced dissolution, 
absorption, and metabolism [ADAM]) model, as indicated 
in Table S1.11 Tissue:plasma partition ratios (Kp) and the 
extent of tissue binding in the lung (fraction of drug un-
bound in lung tissue mass [fumass]) were initially predicted 
using the approach outlined by Rodgers and Rowland and 
co-workers.12–14

Final input parameters are listed in Tables S1 and 
S2 and sources referenced and categorized as experi-
mental, predicted, or optimized. It is important to note 
a degree of uncertainty associated with some input pa-
rameters, particularly those that have been predicted 
or optimized. Lung fumass was identified as a particu-
larly sensitive and uncertain parameter and so sen-
sitivity analysis for this parameter is described in the 
Supplementary Material (Results) and Figure 2. Other 
compound-specific assumptions are also described in 
the Supplementary Material (Methods), including ap-
proaches to account for known population variability in 
N-acetyltransferase 2 metabolism (isoniazid), optimiza-
tion of fraction metabolized by CYP3A4 (bedaquiline), 
scaling of flavin-containing monooxygenase isoform 
3 intrinsic clearance (ethionamide), and induction of 
CYP3A4 (rifapentine).

Simulation design

Virtual populations used in the simulations are described 
in Table S3.

F I G U R E  2   Impact of fumass on simulated lung concentrations 
of ethambutol, rifampicin and rifapentine. (a) Impact of fumass on 
simulated lung concentration of ethambutol after multiple oral 
doses of 15 mg/kg. Green line: initial lung model (fumass = 0.36), 
orange line: fumass = 0.036, black line: fumass = 0.072, vertical blue 
bar: range of mean ethambutol concentrations in alveolar cells, 
collected from different subgroups of subjects in the clinical study 
reported by Conte et al.22 (b) Impact of fumass on simulated lung 
concentration of rifampicin after multiple oral doses of 600 mg. 
Green line: initial PBPK model fumass = 0.058, black line: fumass 
increased by a factor of 2 = 0.116, Square symbol: observed data 
reported by Ziglam et al.19  
(mean ± SD). (c) Impact of fumass on simulated lung concentration 
of rifapentine after a single oral dose of 600 mg. Black line: initial 
PBPK model fumass = 0.02, red line: fumass increased by a factor 
of 2 = 0.04, dashed black line: fumass increased by a factor of 
1.5 = 0.03, Square symbol: observed data reported by Conte et al.24 
(mean ± SD). fumass, fraction of drug unbound in lung tissue mass; 
PBPK, physiologically-based pharmacokinetic
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Development of a population with the 
physiological characteristics of TB-infected 
individuals

In order to simulate the pharmacokinetics (PKs) of com-
pounds in TB-infected subjects, a virtual population was 
constructed to represent a Black South African popula-
tion. Details of this virtual population are fully described 
in the Supplementary Material, including data sources for 
age distribution, relationships between age, height and 
weight, phenotypic differences for enzyme activity and 
population frequency, and sources of other physiologi-
cal data. The impact of changing the population from the 
default Simcyp library Sim-North European Caucasian 
(NEC) population to the South African and South 
African-TB infected population for the simulated expo-
sure of midazolam and isoniazid is shown in Figure 3.

Sensitivity analyses

The sensitivity of the simulated concentration profiles in the 
plasma and lung to some of the uncertain or sensitive model 
input parameters was evaluated using local sensitivity analy-
sis. The parameters of interest were adjusted over a range 
of values that spanned the initial input parameter and the 
change in simulated output was evaluated. Ranges of parame-
ter values were determined with the aim of improving predic-
tion accuracy and so multiples of initial values used differed 
for the different compounds. The fumass values were decreased 
by 10-fold (ethambutol) or increased by twofold (rifampicin) 
or threefold (rifapentine and linezolid) and optimal values 
selected from within these ranges. The results from these 
local sensitivity analyses are shown in Figure  2 and in the 
Supplementary Material (Results section including Table S5).

RESULTS

Simulations of drug concentrations in the 
plasma of healthy volunteers

Input parameters used in the PBPK models are listed in 
Tables S1 and S2. The PBPK models reasonably described 
the observed plasma maximum concentration (Cmax), 
time to Cmax (Tmax), and area under the curve (AUC) val-
ues for a healthy volunteer in the North European pop-
ulation (Figure  4, Figure  S2 and Table  S4). Ninety-one 
percent of simulated Cmax, 81% of simulated Tmax, and 
84% of simulated AUC values were within 1.5-fold of the 
observed data. The remaining simulated Cmax, Tmax, and 

AUC values were within twofold of the observed values, 
apart from simulated isoniazid Tmax (Figure 4).

Simulations of drug–drug interactions in 
healthy volunteers

For rifapentine, rifampicin, and bedaquiline, drug-drug 
interaction (DDI) studies were simulated, and the results 
are summarized in Table  1. Simulated values for AUC 
ratio were within 1.5-fold of the observed values for the ef-
fect of rifampicin or rifapentine (5–20 mg/kg) on sensitive 
CYP 3A4/5 marker substrates (midazolam or triazolam). 
Simulated values for Cmax ratio were within twofold for 
the same simulations, except for the effect of 10 mg/kg ri-
fapentine on midazolam (predicted Cmax ratio was 2.5-fold 
higher than observed).

The impact of the strong CYP 3A4 inhibitor ketoconazole, 
or CYP 3A inducer rifampicin on bedaquiline were simu-
lated with acceptable accuracy (predicted/observed DDI ra-
tios were between 0.8 and 1.25). The simulated changes in 
exposure to the N-desmethyl metabolite of bedaquiline were 
within 0.7 and 2.8-fold of the observed AUC ratio when co-
dosed with ketoconazole and rifampicin, respectively.

Observed lung concentration data in 
patients with TB

Observed lung concentration data in patients with TB 
were predominantly drawn from two clinical studies re-
ported by Prideaux et al.15,16 and Dheda et al.,17 which 
include patients assessed in South Korea and Cape Town, 
South Africa, respectively. Significant variability was ob-
served for lung concentrations in (1) different patients 
at different time points postdose15–17 and also in (2) re-
peated measurements in the same subject (e.g., range in 
coefficient of variation [CV] for linezolid 6–67% for 2–7 
samples from each of nine patients15,16; Figure 5). In ad-
dition, 13% (isoniazid and pyrazinamide), 67% (cyclo-
serine), and 100% (clofazimine and ethionamide), of the 
reported lung concentrations were below the reported 
lower limit of quantification (LLOQ) of the assay used 
by Dheda et al.17 (Figure 5). This observation needs to be 
considered when comparing the simulated and observed 
data. Data points were excluded by Prideaux et al.,15,16 if 
they were below the LLOQ. In some cases (ethambutol 
and ethionamide), plasma and lung concentrations were 
not available at the same time postdose and so it was not 
possible to estimate observed lung-to-plasma concentra-
tion ratios.17
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Simulations of drug distribution to the 
lung tissue mass of patients with TB

Observed drug plasma exposure was variable but gener-
ally within the range of the simulations (Figure  S3). A 
comparison of PBPK predicted lung tissue mass concen-
trations over time against observed lung concentration 
data is given in Figure 5 for nine compounds where ob-
served data were available (clofazimine, cycloserine, eth-
ambutol, ethionamide, kanamycin, isoniazid, linezolid, 
pyrazinamide, and rifampicin). Lung concentration data 
were also analyzed relative to plasma concentration at the 
same time points postdose in the same patients (Figure 6).

Despite the described issues with observed data assay 
sensitivity and variability, simulated lung tissue concen-
trations (lung tissue mass compartment) using an ini-
tial PBPK model were reasonably consistent with data 
reported by either Prideaux et al.15,16 or Dheda et al.17 
(Figure 5) for eight of the nine drugs. The 5th–95th per-
centiles of the predicted lung concentrations were able 
to recover 67% (clofazimine), 54% (kanamycin), 81% 
(isoniazid), 33% (linezolid), 88% (pyrazinamide), and 
66% (rifampicin) of the observed data points reported by 
Prideaux et al.15,16 (Figure 5) and 60% (cycloserine), 25% 
(ethambutol), and 13% (isoniazid and pyrazinamide) of 
the observed data points reported by Dheda et al.17 For 
clofazimine, cycloserine, and ethionamide, all observed 
data points reported by Dheda et al. and not captured by 

the 5th–95th percentiles were below the assay LLOQ17 
(Figure 5). Observed plasma and lung concentrations were 
determined by Dheda et al.,17 the 20 h post-pyrazinamide 
dose were successfully recovered by the predicted 5th–
95th percentile concentration range, whereas lung con-
centrations at initial time points were overpredicted 
(Figure 5 and Figure S3).

Cycloserine lung concentrations were initially over-
predicted using the preliminary PBPK model (6–28 
fold).17–19 However, sensitivity analysis showed that ad-
justing lung permeability improved model prediction ac-
curacy. For the final model, cycloserine lung permeability 
was reduced to the lower limit allowed by the software 
(0.001 10−4 cm/s; overprediction reduced to 1.4–4.5-fold; 
Figures 5 and 2c).

For cases where observed plasma concentrations were 
available at the same time postdose as lung concentra-
tions, lung-to-plasma concentration ratios were compared 
with simulated data (Figure 6). For clofazimine, cycloser-
ine, and kanamycin, the 5th–95th percentiles of the pre-
dicted lung-to-plasma concentration ratios were able to 
recover 80%, 100%, and 52% of the observed data, respec-
tively. Despite the large amount of variability in the clin-
ical lung concentrations, predicted mean lung-to-plasma 
concentration ratios for isoniazid and pyrazinamide (0.97 
and 0.59, respectively) were in good agreement with the 
observed mean ratios (1.20 and 0.59, respectively)15,16 
(Figure  6). An underprediction of the extent of clinical 

F I G U R E  3   Simulated impact of using either Sim-North European Caucasian (NEC) or virtual Black South African TB population 
on midazolam (CYP 3A5) or isoniazid (NAT-2) exposure. Simulations were run as 10 trials of 10 individuals, 20–50 years, 50% women. 
Pie charts show the different phenotype frequencies used in the two populations for CYP 3A5 or NAT-2 extensive metabolizers (EM), 
intermediate metabolizers (IM), or poor metabolizers (PM; South African population described in more detail in Supplementary Material. 
Sim-NEC population used as V16 library file with added NAT-2 phenotype data published by Sabbagh et al.26)
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variability was noted for isoniazid, linezolid, and pyra-
zinamide. The reason for this is not currently clear and 
additional research specifically into this issue needs to be 
conducted. There is also a need for more clinical data in 
order to distinguish the impact of simulation variability 
in comparison to a need for refinement of the techniques 
used to obtain the clinical lung concentration data.20,21 
For rifampicin, use of an optimized value for lung fumass 
(increased from 0.058 to 0.116), resulted in a predicted 
lung-to-plasma concentration ratio being in line with 
that reported by Ziglam et al.19 (Figure 2b) and Prideaux 
et al. 15 (Figure S5).

Simulations of drug distribution to 
additional lung compartments (epithelial 
lining fluid, alveolar cells, or tissue) of 
patients with TB

For 10 of the compounds (clofazimine, cycloserine, eth-
ambutol, ethionamide, isoniazid, kanamycin, linezolid, 
pyrazinamide, rifampicin, and rifapentine), additional 
studies that measured drug concentrations in lung tis-
sue alveolar cells and/or epithelial lining fluid (ELF) 
were identified and simulated data were compared to the 
observed clinical data (Table  S5). Using a preliminary 
PBPK model, simulated lung tissue mass (ethambutol) 
or the ELF-to-plasma concentration ratio (ethionamide) 
initially underpredicted observed data.15,22 Sensitivity 
analysis showed that adjusting either lung tissue mass 
pH or decreasing fumass (ethambutol) or accounting for 
P-glycoprotein activity by scaling available in vitro data23 
(ethionamide) improved model prediction accuracy. The 
dibasic nature of ethambutol makes it particularly sen-
sitive to local pH. In contrast for rifapentine, simulated 
lung tissue mass initially overpredicted observed concen-
trations (cells collected during alveolar lavage)24 using a 
preliminary PBPK model and sensitivity analysis showed 
that increasing fumass (from 0.02 to 0.03) improved simula-
tion of the clinically measured concentrations (Figure 2c).

Simulations comparing the 
pharmacokinetics of midazolam and 
isoniazid in North European Caucasian, 
South African, and TB patient populations

The impact of demographic and physiological differences 
among the virtual NEC, Black South African (SA), and 
Black South African TB (SA-TB) populations was inves-
tigated for midazolam and isoniazid. Midazolam was not 
modified from the default Simcyp V16 compound file. For 
the same dose (5 mg), the simulated midazolam AUC0–24 

was twofold higher in the NEC versus SA population, due 
to the higher presence of CYP3A5 extensive metabolizers 
in the SA population (0.82 vs. 0.17). The predicted fraction 
unbound in plasma (fup) was unchanged between the SA 
and NEC populations (0.03), however, in the SA-TB popu-
lation, the fup was 0.05, which resulted in a 0.6-fold lower 
exposure compared to the general Black South African 
simulations. Midazolam is highly bound to human serum 
albumin, which is reduced in patients with TB.25

The disposition of isoniazid is altered between in-
dividuals based on the NAT-2 acetylator phenotype. 

F I G U R E  4   Simulated plasma Cmax (a), AUC (b), and 
Tmax values (c) in comparison to observed clinical values for 
13 tuberculosis (TB) drugs. Solid lines represent unity and 
dashed lines represent a 1.5-fold difference in simulated values 
in comparison to observed. AUC, area under the curve; Cmax, 
maximum concentration; Tmax, time to maximum concentration
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A meta-analysis of 5382 White individuals shows a 
proportion of slow, intermediate, and fast acetylator 
phenotypes of 0.58, 0.37, and 0.05, respectively.26 The 
corresponding phenotype frequencies in the South 
African population are 0.339, 0.425, and 0.236, respec-
tively (Table  S7). Due to the higher proportion of in-
termediate and fast acetylators in the SA population, 
isoniazid exposure was lower. The low plasma bind-
ing of isoniazid meant that the difference in exposure 
between the general SA population and patients with 
TB was negligible, with a slightly higher exposure pre-
dicted for patients with TB, mainly driven by reduced 
renal clearance (major elimination route for isoniazid).

DISCUSSION

PBPK models have been developed, which are capable of 
simulating plasma concentrations of 11 standard-of-care 
and newer anti-TB agents. All PBPK models were able 
to simulate healthy volunteer plasma Cmax and AUC val-
ues to an acceptable degree of accuracy—the simulated 
mean values were within 1.5-fold of those reported in the 
clinical study in the majority of cases. It has been indi-
cated that for comparisons of predicted versus observed 
exposure of drugs, within twofold of observed data is con-
sidered to be “a primary metric for assessment of model 
fidelity”.27

For nine of the compounds (bedaquiline, clofazimine, 
ethambutol, ethionamide, isoniazid, linezolid, pyrazin-
amide, rifampicin, and rifapentine), the constructed 
models provide additional performance verification or 
the ability to account for additional mechanistic function-
ality (e.g., to describe DDIs or to simulate lung concen-
trations).7,28–34 For the other two compounds (cycloserine 
and kanamycin), the constructed PBPK models are the 
first to be published in the literature.

The PBPK models for each compound contained a 
multicompartment permeability-limited model7 of the 
lungs allowing the concentration of the anti-TB agents to 
be simulated in the lung tissue and ELF. For those com-
pounds where lung concentrations have been measured 
in humans, the simulated concentrations or tissue:plasma 
ratios were compared with the clinical data.

In addition, elimination and interaction parameters 
were specified in the PBPK models for rifampicin, ri-
fapentine, and bedaquiline to allow DDIs to be simulated. 
Observed and simulated DDI ratios were within 1.5-fold 
(AUC) and 2-fold (Cmax) of the observed data for nine 
(AUC) or eight (Cmax) of the 10 cases.

The ability of the rifampicin PBPK model to recover 
the clinically observed magnitude of induction (follow-
ing co-administration with a number of sensitive CYP 3A T
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substrates), has been described previously.35 Use of the 
whole body PBPK model with combined permeability-
limited lung model for rifampicin (Figure S1) did not affect 
the accuracy of predicted extent of interaction for midaz-
olam and triazolam in comparison to use of the default 

minimal PBPK model for rifampicin (lumping all tissues 
excluding the intestine, liver, and portal vein; Table 1).

Although PBPK models have been published previ-
ously for rifapentine,28,32 the current model allows both 
auto-induction of arylacetamide deacetylase (AADAC; 

F I G U R E  5   Simulated versus observed concentration in lung tissue mass over time for nine drugs administered to patients with 
tuberculosis (TB). Simulated (lines) and observed (data points) lung concentration over time for clofazimine, cycloserine, ethambutol, 
ethionamide, kanamycin, isoniazid, linezolid, pyrazinamide, and rifampicin. The observed data were obtained from Prideaux et al.15 
(linezolid and kanamycin published by Strydom et al.16) and Dheda et al.17 The n represents the number of patients with TB. Simulated data 
are from the right lung (RL) compartment and are after the final dose at steady state, except where indicated as single dose (kanamycin, 
isoniazid, pyrazinamide, and rifampicin). The short dashed lines represent the 5th and 95th percentile of the prediction in the total virtual 
population (10 trials of 15 healthy volunteer population, 23–59 years, 33% women for the Prideaux et al.15 study; 10 trials of 12 Black South 
African TB population, 23–50 years old, 67% women for the Dheda et al.17 study)
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modeled using a surrogate enzyme) and induction of 
CYP 3A4 following administration of rifapentine to be 
simulated. The simulated DDIs between rifapentine and 
midazolam showed good agreement with the reported 
magnitude of interaction,8 with a slight over predic-
tion of the change in Cmax. In addition, the interaction 
between multiple doses of rifampicin and bedaquiline 
were simulated with an acceptable degree of accuracy, 
showing the potential of using PBPK for simulating dif-
ferent dosage regimens of these drugs in the future. The 
DDI liability of bedaquiline when administered with 
ketoconazole (a strong CYP 3A inhibitor) was also ad-
equately simulated using the PBPK model. In contrast, 
the changes in exposure to the N-desmethyl metabo-
lite of bedaquiline were simulated with less precision. 
The contribution of CYP 3A4 to the elimination of 

N-desmethyl bedaquiline is not known and incorpora-
tion of this information may allow further improvement 
of the PBPK model for this important active metabolite 
of bedaquiline. The ability to account for potential inter-
actions between co-administered drugs is important in 
designing effective therapeutic TB regimes as currently, 
treatment involves administration of multiple doses of a 
number of drugs concomitantly.

An important question is what should be considered 
a successful prediction for drug tissue concentrations? In 
the initial development of the mechanistic tissue com-
position equations proposed by Rodgers and co-workers, 
a prediction of tissue:plasma ratio was considered ac-
ceptable if it was predicted within a factor of 3.12–14 In a 
more recent study, which examined the ability of in silico 
models to predict drug distribution into human tissues, a 

F I G U R E  6   Simulated versus 
observed lung tissue mass:plasma 
concentration ratio over time for seven 
compounds administered to patients with 
tuberculosis (TB). Simulated (lines) and 
observed (data points) data from Prideaux 
et al.15 (linezolid and kanamycin data 
are unpublished) and Dheda et al.17 The 
n represents the number of patients. 
The short dashed lines represent the 5th 
and 95th percentile of the total virtual 
population of 10 trials of 15 healthy 
volunteers, 23–50 years, 33% women,15 
or 10 trials of 12 individuals, 23–50 years 
old, 67% women.17 Simulated data are for 
a single oral dose (isoniazid, kanamycin, 
pyrazinamide, and rifampicin) or after the 
final dose at steady-state (cycloserine and 
clofazimine) and are for the right lung 
(RL) compartment
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prediction was considered successful if it was within 2.5-
fold of the observed values.36 An additional complication 
with the clinical data used for comparative purposes in 
this study, is that there was a high degree of interstudy, 
intersubject, and within-subject (from different sam-
ples in the same individual) variability. This variability 
partly arises from the actual procedure to measure the 
lung concentration of anti-TB drugs, which is techni-
cally challenging and not routine. The caveats and chal-
lenges that arise when using measured concentrations of 
drugs in ELF, as a measure of lung penetration of com-
pounds, have been eloquently discussed by Kiem and co-
workers.20,21 In this study, predictions were considered 
successful if the predicted mean data were within 2.5-
fold of the observed data. For individual timepoint data, 
predictions were considered successful if the majority of 
the observed data were within the simulated 5th–95th 
percentiles. Based on these criteria, lung concentrations 
could be predicted with an acceptable degree of accuracy 
for six of the nine compounds where clinical data were 
available for comparison.

For a number of compounds, the final models represent 
the culmination of model refinement steps (Figure 5). In 
particular, the initial PBPK models (prior to refinement) 
poorly predicted the measured lung concentrations for cy-
closerine, ethionamide, and rifapentine. Possible reasons 
for these initial mispredictions of tissue concentrations 
are discussed below.

The permeability of cycloserine into the lung tissue 
was initially overpredicted, leading to an overprediction 
of lung concentrations. Predicted fumass was ~ 1 so it could 
not be contributing to this prediction inaccuracy. The 
physicochemical properties of cycloserine are outside the 
range of the compounds used to construct the quantitative 
structure activity relationship (QSAR) model to predict 
permeability. Obtaining experimental permeability values 
for this compound may improve the prediction accuracy. 
In addition, four out of six measured cycloserine lung 
tissue mass concentrations were below the stated LLOQ 
of the assay17 and data were only available from this one 
clinical study for this compound. For ethionamide, it was 
necessary to include the action of the P-glycoprotein trans-
porter (moving drug from the lung tissue mass to ELF), in 
order to correctly predict the ELF concentration.37,38

Due to a lack of observed lung concentration data for 
rifapentine or linezolid, PBPK model accuracy was as-
sessed using observed plasma and ELF concentrations. 
For rifapentine, plasma concentrations over time were 
reasonably simulated under different dosing scenarios. 
However, the simulated ELF:plasma ratio underpre-
dicted the data from the single clinical study (where 
this parameter has been measured24) by a factor of six-
fold. This is perhaps not surprising given that reported 

ELF:plasma ratio for rifapentine is similar to that re-
ported for the related compound rifampicin, despite 
the plasma unbound fraction (fu) of rifapentine being 
10-fold lower. Sensitivity analysis showed that the PBPK 
model was sensitive to some of the uncertain parameters 
in the model including the fuELF, the ELF pH and the 
physicochemical properties of rifapentine. Optimization 
of these parameters resulted in simulated ELF: plasma 
ratios being within the range of the reported clinical 
data. Further experimental work is needed to build con-
fidence in these values. As Kiem et al. have discussed, 
the bronchoalveolar lavage technique to ascertain ELF 
concentrations can be subject to experimental error20,21 
and there is also a lack of reliable clinical data sources 
available.

The ELF:plasma ratios of linezolid were simulated and 
compared with clinical data obtained in four different 
studies39–42 (Figure  S4). Simulation ratios were compa-
rable to those reported by Boselli et al.39,40 but underpre-
dicted those measured by Honeybourne et al.,42 and Conte 
et al.41 It is not clear whether this clinical variability is due 
to differences in methodology (i.e., mini BAL Boselli et al. 
vs. BAL Conte et al. and Honeybourne et al. measure-
ments) or patient population differences.

Although local sensitivity analyses were conducted 
for each compound, a common theme for all compounds 
was that simulated total drug lung tissue concentration 
was sensitive to the binding of drug in the lung tissue. 
This is not surprising, because the compounds studied 
(apart from cycloserine and kanamycin) were predicted 
to have high permeability between the blood and lung 
tissue. The predicted concentrations for the majority of 
compounds were not sensitive to changes in permea-
bility over a factor of 100 (10-fold lower or higher than 
predicted).

Use of either a predicted (0.00019) or optimized (0.01) 
value for clofazimine fumass, allowed recovery of clinical 
data reported by either Prideaux et al.15 or Dheda et al.,17 
respectively. However, as the measured lung tissue con-
centrations differed by a factor of 1000, it is not feasible to 
simulate both sets of data with a single PBPK model. As 
all observed clofazimine data points were below the LLOQ 
for the assay described by Dheda et al.,17 simulated clofaz-
imine lung concentrations are presented that correspond 
to use of the value predicted (0.00019), using the mecha-
nistic tissue composition approach described by Rodgers, 
Rowland, and co-workers.12–14 It should be considered 
that these equations are sensitive to the lipophilicity of 
the compound and are therefore, less accurate for highly 
lipophilic compounds such as clofazimine (log P ~7.4).

An important consideration for all PBPK models is 
that, although it is possible to change the total concentra-
tion within the lung tissue compartment by adjusting the 
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binding in the lung (fumass), these changes do not have a 
pronounced effect on the unbound concentration within 
the lungs, which is the concentration generally assumed 
to drive PD efficacy or toxicity.

An additional factor that needs to be considered, is that 
physiological, demographic, and biochemical data used for 
the PBPK model, should reflect the characteristics of the 
target population. In this study, observed data from patients 
mainly located in South Korea were compared with PBPK 
model outputs using the Sim-North European Caucasian 
virtual population.15 This is a limitation of the study and 
future work will involve assessment of data availability to 
develop a PBPK population specific to South Korea.

A first step toward developing a PBPK population 
for South African patients with TB is detailed in the 
Supplementary Material. Due to data limitations, it was 
not possible to identify all physiology data in studies that 
only considered South African patients with TB (as de-
scribed in the Supplementary Material). Therefore, the 
default NEC Simcyp library values were used to provide 
estimates for some of the physiological parameters (e.g., 
liver volume, kidney density, concentrations of human 
serum albumin, and blood α-acid-glycoprotein). The TB 
population was used to compare simulations with clini-
cal data provided by Dheda et al.17 For both midazolam 
(CYP 3A4/5 substrate) and isoniazid (NAT-2 substrate), 
PK differences were simulated for the SA-TB population 
in comparison to the European Caucasian population 
(Figure 6). In patients with TB, changes in a number of 
parameters, including body weight, plasma proteins, and 
hematocrit, were noted when compared with healthy in-
dividuals. As the fraction unbound in blood is influenced 
by both plasma protein concentration and hematocrit, 
measured values for these parameters in the clinical pop-
ulation would be beneficial. Further studies are needed 
to refine the developed TB population and to verify the 
simulated PKs for a range of drugs and comedication 
regimes.
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