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A B S T R A C T   

Combining imaging modalities and metrics that are sensitive to various aspects of brain structure and maturation 
may help identify individuals that show deviations in relation to same-aged peers, and thus benefit early-risk- 
assessment for mental disorders. We used one timepoint multimodal brain imaging, cognitive, and question
naire data from 1280 eight- to twenty-one-year-olds from the Philadelphia Neurodevelopmental Cohort. We 
estimated age-related gray and white matter properties and estimated individual deviation scores using 
normative modeling. Next, we tested for associations between the estimated deviation scores, and with psy
chopathology domain scores and cognition. More negative deviations in DTI-based fractional anisotropy (FA) 
and the first principal eigenvalue of the diffusion tensor (L1) were associated with higher scores on psychosis 
positive and prodromal symptoms and general psychopathology. A more negative deviation in cortical thickness 
(CT) was associated with a higher general psychopathology score. Negative deviations in global FA, surface area, 
L1 and CT were also associated with poorer cognitive performance. No robust associations were found between 
the deviation scores based on CT and DTI. The low correlations between the different multimodal magnetic 
resonance imaging-based deviation scores suggest that psychopathological burden in adolescence can be mapped 
onto partly distinct neurobiological features.   

1. Introduction 

Adolescence confers extensive brain maturation and reorganization 
across both brain tissue types and regions (Arain et al., 2013; Blakemore, 
2012; Norbom et al., 2021). During this period, there is also a sharp 
increase in the incidence rates of several mental disorders, including 
schizophrenia and bipolar disorder (Dalsgaard et al., 2020). While the 
etiologies of common mental disorders are highly complex and largely 
unknown, accumulating behavioral, neuroimaging and genetic evidence 
supports a neurodevelopmental contribution (Birnbaum and 

Weinberger, 2017; Insel, 2010; Kessler et al., 2007). To understand the 
determinants of both normative and diverging developmental trajec
tories, more knowledge about the factors that facilitate and impede 
brain maturation and plasticity, and how these different factors interact 
during childhood and adolescence is needed. 

Cortical thickness and cortical surface area capture various aspects of 
the coordinated maturational processes. Longitudinal structural mag
netic resonance imaging (sMRI) studies have shown that cortical 
thickness increases during the first years of life, followed by monotonic 
thinning in most cortical regions from childhood to adulthood (Lyall 

* Corresponding authors at: Department of Psychology, University of Oslo, Norway. 
E-mail addresses: rikka.kjelkenes@psykologi.uio.no (R. Kjelkenes), l.t.westlye@psykologi.uio.no (L.T. Westlye).  

Contents lists available at ScienceDirect 

Developmental Cognitive Neuroscience 

journal homepage: www.elsevier.com/locate/dcn 

https://doi.org/10.1016/j.dcn.2022.101173 
Received 10 August 2022; Received in revised form 10 October 2022; Accepted 31 October 2022   

mailto:rikka.kjelkenes@psykologi.uio.no
mailto:l.t.westlye@psykologi.uio.no
www.sciencedirect.com/science/journal/18789293
https://www.elsevier.com/locate/dcn
https://doi.org/10.1016/j.dcn.2022.101173
https://doi.org/10.1016/j.dcn.2022.101173
https://doi.org/10.1016/j.dcn.2022.101173
http://creativecommons.org/licenses/by/4.0/


Developmental Cognitive Neuroscience 58 (2022) 101173

2

et al., 2015; Vidal-Pineiro et al., 2020). Cortical surface area expands 
largely during the two first years, followed by small increases until 
peaking in late childhood or early adolescence (Gilmore et al., 2018; 
Tamnes et al., 2017). 

While sMRI offers excellent opportunities to study macrostructural 
and gross morphological brain development, diffusion tensor imaging 
(DTI) offers a complementary view by providing sensitive measures of 
the diffusivity and directional coherence of brain tissue. DTI has been 
used to infer various aspects of gray and white matter microstructure, 
connectivity, and coherence (Ehrlich et al., 2014; le Bihan, 2003). 
Developmental studies have found distinct age-related increases in 
fractional anisotropy (FA) and decrease in mean diffusion (MD) during 
childhood, adolescence, and early adulthood (Beck et al., 2021; Kling
berg et al., 1999; Kwon et al., 2020; Miller et al., 2012; Tamnes et al., 
2010; Westlye et al., 2010). These age-related changes have been re
ported in specific areas of the brain, but robust associations have also 
been found with global DTI measures (Koenis et al., 2015; Roalf et al., 
2020; Tamnes et al., 2011). 

The maturation of the brain, captured through DTI and sMRI, reflect 
various simultaneously interacting microstructural and biological pro
cesses, including synaptic pruning and cortical myelination in youth 
(Natu et al., 2019; Norbom et al., 2021). Supranormal deviations from 
these maturational patterns in cortical morphometry, and in white 
matter microstructural properties, have been found to be associated 
with lower cognitive performance and psychopathology in youth(Alnæs 
et al., 2020; Asato et al., 2010; Erus et al., 2014; Kaczkurkin et al., 2019; 
Mewton et al., 2021; Tung et al., 2021). 

Careful assessment of individual differences in brain structure and 
function is important for achieving a better understanding of both 
normative and aberrant development during adolescence (Foulkes and 
Blakemore, 2018). Normative modeling is a statistical method used to 
estimate and characterize the expected age-related trajectories of 
different biological measures and other phenotypes (Marquand et al., 
2019). Individual deviations can then be evaluated in relation to the 
estimated normative range, offering an individualized quantification of 
deviation from the expected trajectory. 

Previous work has used age and sex based normative models esti
mated for cortical thickness and brain volume to parse the heterogeneity 
in brain gray matter in patients with schizophrenia, bipolar disorder, 
autism spectrum disorder and attention-deficit hyperactivity disorder 
(Bethlehem et al., 2019; Marquand et al., 2019; Tunc et al., 2019; 
Wolfers et al., 2020, 2018; Zabihi et al., 2019). Normative modeling has 
also revealed associations between white matter DTI and both preterm 
birth (Dimitrova et al., 2020) and schizophrenia (Lv et al., 2021), and 
between cognitive performance and polygenic scores and clinical 
symptoms of psychopathology in youth (Kjelkenes et al., 2022). 
Whereas normative modeling has been applied to various data types 
independently, considering different sources of information or imaging 
modalities in the same individuals is less common (Fraza et al., 2021). 
Combining modalities that are sensitive to various aspects of brain 
maturation has the potential to provide a more extensive characteriza
tion of individual brain maturation, which can further be used as a tool 
for early-risk assessment. 

To this end, we used normative modeling and compared individual 
deviation from estimated age-related norms of features derived from DTI 
metrics, cortical thickness, surface area and cognitive performance in 
1280 participants aged 8–22 years in the Philadelphia Neuro
developmental cohort (PNC) (Satterthwaite et al., 2014). 

Previous normative modelling approaches in the PNC have used 
regional measures of brain volume (Parkes et al., 2021), cortical thick
ness and surface area (Cropley et al., 2021) to test for associations with 
dimensional psychopathology. Our work adds to this previous work by 
considering different MRI modalities and features yet focus on global 
characteristics for transparency and simplicity. First, we tested for as
sociations between deviations in the different modalities and assessed 
the degree to which the various normative models converged for 

individual participants. Secondly, we tested the associations between 
the imaging-derived deviation scores and self- reported and collateral 
caregiver reported symptoms of psychopathology and cognition. 
Adopting a Bayesian regression framework, we hypothesized that par
ticipants deviating in one modality would be more likely to deviate in 
the other modalities, and that individuals with higher overall deviation 
scores, would show higher burden of psychopathology symptoms and, 
given the previously reported link between cognition and psychopa
thology (Kjelkenes et al., 2022), poorer cognitive function. 

2. Materials and methods 

2.1. Participants 

PNC is a publicly available population-based sample, with partici
pants between 8 and 21 years from the greater Philadelphia area (Sat
terthwaite et al., 2016, 2014). It includes medical history, clinical and 
cognitive data, as well as neuroimaging for a subset. Recruitment pro
cedures, sample characteristics, clinical, cognitive, and imaging pro
cedures have previously been reported (Satterthwaite et al., 2016, 
2014). Complete cognitive and psychopathology data was available for 
6481 participants (3377 girls). We excluded participants with severe 
medical conditions (n = 44, based on rating performed by trained health 
personnel in the PNC study team), and datasets that did not pass quality 
assessment leaving a total DTI sample of 1308 participants and a 
T1-weighted MRI sample of 1400 participants. A total of 1280 partici
pants with all measures available were used to analyze the relationship 
between deviation scores. 

2.2. Normative deviation score for cognitive performance 

We included a previously estimated cognitive deviation score based 
on normative modeling (Kjelkenes et al., 2022). This deviation score was 
calculated through running a principal component analysis on 14 
cognitive tests from the PNC computerized test battery assessing general 
intellectual abilities, executive functioning, episodic memory, complex 
cognition, social cognition, and sensorimotor speed (Moore et al., 2015) 
(see Supplemental Fig. S1 for more details). The first component was 
then extracted as a measure of general cognitive function, which was 
used to estimate a normative deviation score for cognitive performance 
(Kjelkenes et al., 2022). 

2.3. Psychopathology domains 

To assess the major domains of psychopathology a computerized, 
structured interview (GOASSESSS) was used including measures of 
anxiety, mood, behavioral, eating, and psychosis spectrum disorders. 
The youths answered themselves, but additional collateral informants 
were used for participants aged 18 or younger (Calkins et al., 2015). The 
129 items were decomposed through an independent component anal
ysis (ICA) using Icasso (Himberg et al., 2004)(see Alnæs et al., 2018 for 
further description of the procedure). Based on previous work (Alnæs 
et al., 2018) we included seven independent components (IC) and a 
proxy for general psychopathology derived from the mean weights 
across the components. The included ICs included attention problems 
(IC1), anxiety (IC2), norm-violating behavior (IC3), positive and pro
dromal psychosis symptoms (IC4), depression, suicide, and psychosis 
negative symptoms (IC5), mania (IC6), and obsessive-compulsive 
symptoms (IC7) (Alnæs et al., 2018). 

2.4. MRI acquisition and analysis 

A 3 T Siemens TIM Trio scanner (Siemens Medical Solutions) was 
used for acquiring the MRI scans (Satterthwaite et al., 2014). Diffusion 
MRI scans were acquired using a twice-refocused spin-echo single-shot 
echo-planar imaging sequence (field of view, 240 × 240 mm; matrix, 
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128 × 128 × 70; 64 diffusion-weighted directions; b = 1000 s/mm2; 
voxel resolution, 1.875 × 1.875 × 2 mm) (Satterthwaite et al., 2014). 
T1-weighted MRI were collected using a magnetization prepared 
rapid-acquisition gradient-echo (MPRAGE) sequence (TR=1810 ms; 
TE=3.51 ms; FoV=180 ×240 mm; Resolution=0.94 ×0.94 ×1.0 mm) 
(Satterthwaite et al., 2014). 

Volumetric segmentation, cortical surface reconstruction and esti
mation of vertex-wise, and mean cortical thickness as well as total sur
face area was performed on the T1-weighted images using FreeSurfer 
(FS) 5.3 (http://surfer.nmr.mgh.harvard.edu) (Fischl, 2012). The qual
ity of the cortical reconstructions was assessed using a flagging pro
cedure that was based on Euler number (Rosen et al., 2018) and a robust 
principal component analysis for detecting signal-to-noise and seg
mentation outliers (Hubert and Engelen, 2004). We carefully inspected 
the flagged datasets and performed minor edits as appropriate. We 
excluded scans from 63 participants due to poor image quality. Klikk 
eller trykk her for å skrive inn tekst. We processed the 
diffusion-weighted imaging using tools from FMRIB Software Librarýs 
(FSĹs) Diffusion Toolbox (Jenkinson et al., 2012) including corrections 
for susceptibility induced distortions, head movements and eddy current 
induced distortions using topup (http://fsl.fmrib.ox.ac.uk/fsl/fslw 
iki/topup) and eddy (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/eddy) 
(Andersson and Sotiropoulos, 2016), Next, using dtifit in FSL, FA, 
eigenvector and eigenvalue maps were computed by fitting a tensor 
model to the corrected diffusion data and used to derive maps for axial 
(L1, the principal diffusion tensor imaging eigen value), mean and radial 
diffusivity. We then implemented tract based spatial statistics (TBSS, 
(Smith et al., 2006)) to transform all maps to the FMRIB58_FA template 
and skeletonize the maps. TBSS processing was also applied to the 
non-FA DTI measures (L1, MD, RD) and we computed the mean of these 
measures across the whole skeleton using FSL tools. Data quality was 
assessed by eyeballing snapshots of individual FA maps, and flagging the 
images with obvious problems for further evaluation. After review 91 
participants were excluded. 

2.5. Normative modeling 

We estimated the normative models using python version 3.8 (http 
s://www.python.org/), and the pcntoolkit version 0.21 (Rutherford 
et al., 2022). We used the Bayesian linear regression (BLR) algorithm 
within the pcntoolkit (Fraza et al., 2021; Huertas et al., 2017) where we 
aimed to predict each brain-derived measures using age and sex as 
covariates and applied common B-spline basis expansion to the age 
variable with cubic splines with three evenly spaced knot points. We 

used the Powell method for optimization. All selected features showed 
evenly distributed variations across the age range and standard Gaussian 
warping was thus applied (see S2 for distribution plots). Performance of 
the normative model was estimated out of sample using 10-fold cross 
validation. The deviations from each normative model were quantified 
by computing a Z-score reflecting the difference between the predicted 
and the observed feature normalized by the uncertainty (Fraza et al., 
2021; Huertas et al., 2017). 

For cortical morphometry data we estimated normative models for 
mean cortical thickness, and total cortical surface area. Here the BLR 
predicted 21.5 % of the variance of the observed mean thickness score 
out-of-sample, and 29.3 % for surface area. For DTI we estimated 
normative models using FA, MD, RD, and L1 averaged across the TBSS 
skeleton. Here the BLR predicted 21.8 %, 36.0 %, 33.6 %, and 23.8 % of 
the variance of the respective modality out-of-sample. Additional per
formance measures are provided in the Supplementary materials (table 
S3). (Fig. 1). 

2.6. Statistical analysis 

We calculated Pearson correlations between the different deviation 
scores to quantify their pair-wise associations. We applied a Bayesian 
approach using the brms (Bürkner, 2018, 2017) package in R (R Core 
Team, 2020) to examine linear associations between the deviation 
scores derived from the different modalities, the psychopathology 
scores, and the cognitive deviation score. The deviation scores from each 
of the normative trajectories (i.e., subject-level Z-statistics) were 
included as the dependent variable and age, sex and the clinical domain 
scores were entered as independent variables. Prior to analysis the re
siduals of the psychopathology domain scores and age were standard
ized, by subtracting their mean and dividing by their standard deviation. 
The Savage-Dickey density ratio method was used to calculate the Bayes 
Factors (BF) (Wagenmakers et al., 2010), which indicates the strength of 
evidence in favor of the null hypothesis or the alternative hypothesis. 
BF= 1 can be interpreted as evidence in either direction. The following 
values can be interpreted as weight towards the alternative hypothesis 
with the following strengths: 0.3–1 (anecdotal), 0.1–0.3 (moderate), 
0.03–0.1 (strong), 0.01–0.03 (very strong), < 0.01 (extreme). BF> 1 
provides evidence towards the null hypothesis: 1–3 (anecdotal), 3–10 
(moderate), 10–30 (strong), 30–100 (very strong), > 100 (extreme) 
(Wagenmakers et al., 2010). 

Fig. 1. A) Overview of the different raw data included, the 
processing steps employed, and the final features added to 
the analysis. B) Overview of the estimation of the norma
tive models. dMRI = diffusion magnetic resonance imag
ing, sMRI = structural magnetic resonance imaging, PCA 
= principal component analysis, TBSS = tract-based spatial 
statistics, FA = fractional anisotropy, MD = mean diffu
sivity, RD = radial diffusivity, L1 = the principal diffusion 
tensor imaging eigen value, CT = cortical thickness, SA 
= surface area.   
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3. Results 

3.1. Associations between deviation scores from different modalities 

Fig. 2 shows the pairwise Pearson’s correlations between the 
different deviation scores, revealing high correlations between the mean 
FA deviation (FAdev) score and the DTI derived measures mean MD 
deviation (MDdev) score (r = − .65) and the mean RD deviation (RDdev) 
score (r = − .88). The correlation between FAdev and the mean L1 de
viation score (L1dev) was low (r = − .03). L1dev had a higher correlation 
with MDdev (r = .78) and RDdev (r = .49). The analysis revealed low 
correlations between the cortical thickness deviation (CTdev) score and 
the other deviation scores (r = 0.005–0.13), with the highest correlation 
with total surface area deviation (SAdev). For SAdev the analysis revealed 
highest correlations with the cognitive deviation score (r = − .32) and 

FAdev (r = .27). 

3.2. Associations between normative models of DTI-based white matter 
structure, cognitive deviations and psychopathology 

The posterior distributions for the associations between the psy
chopathology domain scores, the cognitive deviation score and the de
viation scores derived from different DTI-based measures are illustrated 
in Fig. 3. These results showed extreme evidence of a negative associa
tion between cognition and FAdev (BF=<.01, B=− .170), indicating 
lower cognitive performance with more negative FA deviation. There 
was also extreme evidence for an association between FAdev and the 
psychosis positive and prodromal symptoms (BF<0.01, B=− .098), and 
strong evidence for an association with the general psychopathology 
factor (BF=0.06, B=− .102). The comparison revealed moderate 

Fig. 2. Pairwise scatter plots. In the diagonal section we see density plots for the deviation scores from the different modalities. The scatter plots show the pairwise 
relationships between the deviation scores. The corresponding Pearson correlations are listed in the upper diagonal. FAdev= mean fractional anisotropy deviation 
score, L1dev = mean axial diffusivity deviation score, MDdev = mean mean diffusivity deviation score, RDdev= mean radial diffusivity deviation score, CTdev = global 
cortical thickness deviation score, SAdev = global surface area deviation score, COGdev = cognitive deviation score, Corr= correlation, * p < .05, ** = p < 0.01, 
* ** = p < 0.001. 
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evidence for no association between the FAdev and depression, suicide, 
and negative symptoms (BF=4.49, B=− .044), obsessive-compulsive 
symptoms (BF=4.49, B=− 0.044), and anxiety (BF=9.90, B=− 0.029). 
Lastly, the test indicated strong evidence for no association between 
FAdev and attention problems (BF=16.36, B=0.005), norm-violating 
behavior (BF=18.60, b=− .006), and mania (BF=14.06, B=− .021). 

For L1dev, the analysis revealed extreme evidence of an association 
with general psychopathology (BF<0.01, B=− .113) and cognitive de
viation (BF<0.01, B=− .115), strong evidence of an association with 
psychosis positive and prodromal symptoms (BF=.06, B=− .083) and 
norm-violating behaviour (BF=.08, B=− .088), and anecdotal evidence 
of an association with anxiety (BF=0.80, B=− .068). The results also 
suggested moderate evidence for no association with depression, sui
cide, and negative symptoms (BF=7.19, B=− .036) and strong evidence 
for no association with attention problems (BF=16.35, B=.008), 
obsessive-compulsive symptoms (BF= 19.28, B=− .001), and mania 
(BF=19.43, B=− .007). 

For MDdev, anecdotal evidence was found for an association with 
norm-violating behaviour (BF=0.62, b=− .068), moderate evidence for 
no association with anxiety (BF=6.87, B=− .038) and obsessive- 
compulsive symptoms (BF=8.15, B=.033), and strong evidence for no 
association with attention problems (BF=16.45, B=− .009), psychosis 

positive and prodromal symptoms (BF=19.80, B=− .001), depression, 
suicide, and negative symptoms (BF=18.37, B=.004), mania 
(BF=15.23, B=.016), general psychopathology (BF=11.53, B=− .102) 
and cognitive deviation (BF=14.86, B=.014). 

For RDdev, the tests confirmed moderate evidence of an association 
with cognitive deviation (BF=0.15, B=.088), moderate evidence for no 
associations with norm-violating behaviour (BF=5.11, B=− .042), pos
itive and prodromal symptoms (BF=3.10, B=.048), obsessive- 
compulsive disorder (BF=4.401, B=.045), and general psychopathol
ogy (BF= 8.72, B=.035), and strong evidence for no association with 
attention problems (BF=16.08, B=− .008), anxiety (BF=16.85, 
B=− .012), depression, suicide, and negative symptoms (BF=10.96, 
B=.027), and mania (BF=14.99, B=.018). 

3.3. Associations between normative deviations in cortical morphometry, 
cognitive deviations and psychopathology 

Fig. 4 shows the posterior distributions reflecting the associations 
between deviation scores in cortical morphometrics, cognition, and 
psychopathology. For CTdev, the tests revealed extreme evidence of a 
negative association with general psychopathology (BF <0.01, 
B=− .10). This indicates that higher general psychopathology is linked 

Fig. 3. Association between cognitive and psychopathology domain scores and DTI deviation scores, including deviations score from FAdev, L1dev,MDdev, and RDdev. 
FAdev= mean fractional ansisotropy deviation score, L1dev = mean axial diffusivity deviation score, MDdev = mean diffusivity deviation score, RDdev= mean radial 
diffusivity deviation score. Mean clinICA=generalized psychopathology, symp=symptoms, Pos= positive, neg= negative. 
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with lower cortical thickness. We found anecdotal evidence for an as
sociation with positive and prodromal symptoms (BF=0.71, B=− .062) 
and with the cognitive deviation score (BF=.97, B=− .068). In addition 
we found strong evidence for no association with attention problems 
(BF=16.71, B=− .012) and anxiety (BF=10.50, B=− .028). The test 
provided moderate evidence for no association with norm-violating 
behaviour (BF=7.60, B=− .034), obsessive-compulsive (BF=9.50, 
B=− .031), and mania (BF=8.94, B=− .032). Finally, we found anec
dotal evidence for no association with depression and suicide and 
negative symptoms (BF=2.69, B=− .050). 

For SAdev, the tests revealed extreme evidence of an association with 
anxiety (BF<.001, B=− .097), norm-violating behaviour (BF <0.01, 
B=− .104), general psychopathology (BF<.001, B=− .124) and cognitive 
deviation (BF<.001, B=− .33), anecdotal evidence of an association 
with positive and prodromal symptoms (BF=0.44, B=− .066) was also 
found. In addition we found strong evidence for no association with 
depression (BF=17.17, B=.014) and obsessive-compulsive disorder 
(BF=14.70, B=.021), moderate evidence for no association with mania 
(BF=8.25, B=− .033), and anecdotal evidence of an association with 
attention problems (BF=2.34, B=− .054). 

4. Discussion 

The emergence of mental disorders during adolescence and young 
adulthood is likely preceded and partly mediated by deviations from 
typical brain maturation. We used structural brain imaging and 
normative modeling to examine relationships between individual de
viations from expected brain white and gray matter trajectories derived 
from different MRI modalities, cognitive function, and mental healthy 
symptoms spanning various domains. 

Our analyses revealed low correlations between normative deviation 
scores derived from DTI-based white matter structure and cortical 
morphometrics. Overall, this supports a multidimensional view on brain 
maturation during childhood and adolescence indicating that different 
driving factors of brain development have different impact on gray and 
white matter maturation, respectively, serving as a reminder that in
dividuals deviating in one modality are not necessarily deviating in 
another. Next, while all MRI based deviation scores were associated with 
a questionnaire-derived proxy of generalized psychopathology, the 
symptom measures reflecting specific domains of psychopathology 
showed differential associations with the imaging-based deviation 
scores. This confirms that individual departures from typical brain 
developmental trajectories are related to symptoms of psychopathology 

and demonstrates that different clinical domains and symptoms might 
map onto different imaging modalities and brain tissue types. Lastly, we 
observed significant associations between all brain derived deviation 
scores and the cognitive deviation score, with the strongest association 
for surface area. This supports the sensitivity of surface area as a proxy 
for global maturational processes supporting neurocognitive develop
ment, and the close link between cognition and brain maturation. 

4.1. Normative deviations across different modalities show little overlap 

Our analysis revealed overall evidence of low to no correlations 
between deviation in cortical thickness and deviations in the other im
aging modalities. Thus, our findings partly diverge from previous re
ports of weak to moderate correlations between mean cortical thickness 
and both mean FA and mean MD among healthy participants aged 8–30 
years (Tamnes et al., 2011). The lack of correlations between modalities 
also contrasts the general assumption that cortical gray and white matter 
developmental processes reflect coordinated and closely intertwined 
biological mechanisms with similar sensitivity to cognitive development 
and psychopathology (Jeon et al., 2015). 

Our analyses revealed a negative correlation between the deviation 
scores in cortical thickness and surface area. Developmental changes in 
cortical thickness might partly be a consequence of the underlying white 
matter tissue growth e.g., due to myelination, and subsequent stretching 
of the cortex, making it thinner, and at the same time expanding the 
surface area (Seldon, 2005). This balloon model would explain the 
observed negative relationship between CTdev and SAdev. Low correla
tions between surface area and cortical thickness have been reported 
during the first two years of life (Lyall et al., 2015), less consistent and 
more regionally specific associations during childhood and adolescence 
(Tamnes et al., 2017), and largely negative correlations across adult
hood (Hogstrom et al., 2013). Combined, these studies suggest that both 
the strength and direction of the association might change with age 
(Norbom et al., 2021). Considering this balloon model, apparent cortical 
thickness likely reflects a combination of the biology of the cortical gray 
matter and the dynamics and mechanical forces of the underlying white 
matter stretching the cortical mantle. It has been suggested that such 
“cortical stretching” reflects a phylogenetic principle of the benefits of 
maximizing surface area and gyrification rather than increase thickness 
to facilitate brain connectivity and development (Hogstrom et al., 
2013). While the lack of associations between DTI-based and cortical 
morphometry normative deviations does not support a simple link be
tween white matter architecture and cortical development, previous 

Fig. 4. Association between cortical thickness deviation score (left) and surface area deviation score (right) and psychopathology. CTdev = global cortical thickness 
deviation score, SAdev = global surface area deviation score, Mean clinICA=generalized psychopathology, symp=symptoms, Pos= positive, neg= negative. 
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studies have shown weak correlations between white matter volume and 
FA, indicating these indices are sensitive to different characteristics of 
white matter integrity and growth (Fjell et al., 2008). 

The interpretations of shared variance, or a lack thereof, between 
imaging modalities, should be done with caution. The signal captured by 
each MRI modality is likely to be sensitive to partly independent and 
partly non-independent genetic and biological processes (Rakic, 1988; 
Smith et al., 2021). The correspondence between different MRI based 
measures are also likely to be influenced by developmental, 
aging-related, and pathological processes, which may or may not act 
globally. In line with the current observations, a prior study reported a 
positive correlation between global cortical thickness and global FA 
among patients diagnosed with schizophrenia, but not among healthy 
controls (Sasamoto et al., 2014). This may indicate that high corre
spondence between imaging modalities primarily reflects 
disease-specific and possibly global pathological processes that are not 
present in the current young, undiagnosed sample. It could also mean 
that some of the variance shared between modalities is due to global 
age-related effects. Data fusion approaches often identify global 
age-related effects across modalities (Groves et al., 2012; Llera et al., 
2019), which are effectively accounted for using age and sex based 
normative modeling. Another possible explanation is that the associa
tions are regionally specific. This is supported by previously reported 
regional fusing between modalities in a lifespan sample (Groves et al., 
2012), regional associations between cortical thickness and FA in 
healthy adults (Ehrlich et al., 2014), and correlations between cortical 
thickness and FA in the frontal lobe in youth (Jeon et al., 2015). 

While the current associations between modalities were weak, there 
is wide support for the benefits of combining multiple MRI modalities 
when studying brain development, aging, and disease (Fernandez-Ca
bello et al., 2022; Groves et al., 2012; Rokicki et al., 2021; Smith et al., 
2020). Combining measures increases sensitivity to age and improves 
discrimination accuracy for common disorders of the brain (Doan et al., 
2017; Rokicki et al., 2021) and has been shown to boost gene discovery 
for brain imaging features (van der Meer et al., 2020),. Our findings 
support that adolescent brain development as captured using cortical 
morphometry and DTI-based white matter structure comprises several 
multidimensional and heterogeneous processes. This corroborates pre
vious work demonstrating the importance of studying multiple brain 
and behavioral phenotypes when characterizing individuals in relation 
to normative developmental trajectories. 

4.2. Associations between brain deviations and general and domain- 
specific psychopathology 

The second aim of our analysis was to examine associations between 
brain deviation scores and both generalized and specific domains of 
psychopathology. We found evidence for a negative association between 
the deviation scores derived from cortical thickness, surface area, FA 
and L1 and a questionnaire-derived generalized psychopathology mea
sure. This suggests that broad dimensions of psychopathology cutting 
across diagnostic boundaries are associated with deviations in cortical 
morphometry and white matter properties. This is in line with prior 
population-based studies showing relationships between generalized 
psychopathology and brain volume and surface area in both children 
aged 9–10 years (Mewton et al., 2021) and in the PNC sample (Kacz
kurkin et al., 2019; Parkes et al., 2021). DTI associations with psycho
pathology have also been reported in both youth from the PNC sample 
(Alnæs et al., 2018) and in children aged 6–10 years (Neumann et al., 
2020). 

In addition to generalized psychopathology our analyses also 
revealed associations between specific domains of psychopathology and 
brain deviations. Strongest evidence was found for an association be
tween psychosis positive and prodromal symptoms and normative de
viations in FA, indicating lower mean FA with higher symptom levels. 
While it is unclear to which degree the clinical domain scores reflect 

future risk of developing schizophrenia or other severe psychotic dis
orders, prior studies have reported similar global reductions in FA in 
both early psychosis and in the prodromal phase in youth aged 11–20 
from the PNC sample (Hegarty et al., 2019), and among early-onset 
(Tamnes and Agartz, 2016) and adult patients with schizophrenia 
compared to healthy controls (Kelly et al., 2018; Tønnesen et al., 2018). 

We also found norm-violating behavior to be associated with L1dev 
and SAdev. This is in line with a study of 7124 children aged 9–11 years 
from the ABCD study reporting a negative association between exter
nalizing problems and surface area (Fernandez-Cabello et al., 2022). For 
SAdev we also found evidence for an association with the anxiety domain 
score. This is in line with a study showing a similar association between 
anxiety and surface area in youths aged 7–20 years from the PING study 
(Newman et al., 2016). Here, an additional association between cortical 
thickness and anxiety was reported, which we did not find evidence for 
in the current study. 

A recent longitudinal study predicted neurodevelopmental trajec
tories using normative modeling on both global and regional cortical 
thickness and surface area based on 5454 brain scans from 4415 par
ticipants aged 6–16 years (Blok et al., 2022). They reported similar as
sociations between psychopathology and cortical volume, surface area 
and cortical thickness, and found that these associations appeared rather 
global. In line with our observations, they reported low correlation be
tween deviations in cortical thickness and surface area, and a larger 
association between specific psychopathology and surface area than 
with cortical thickness. Importantly, psychopathology symptoms were 
overall related to negative deviations for cortical volume and surface 
area and to positive deviations for cortical thickness, supporting our 
findings. Thus, the previous and current studies provide converging 
evidence for the importance of surface area for detecting brain matu
rational deviations, both in relation to generalized or more specific 
domains of psychopathology. 

4.3. Brain normative deviations and cognitive function 

Deviation scores derived from most imaging features were found to 
be associated with the cognitive deviation score, indicating higher 
cognitive performance with deviations reflecting a more mature brain, 
with small to medium effect sizes. The exception was cortical thickness, 
where we found a weak negative association, indicating that having a 
thicker cortex was linked to better cognitive performance. Prior studies 
have supported a relationship between cognitive performance and sur
face area in 10-year-old children (Patel et al., 2022), and white matter 
DTI in both the PNC sample (Tang et al., 2017) and during childhood 
and adolescence (Goddings et al., 2021). Studies assessing the link be
tween cognition and cortical thickness have revealed mixed results, with 
some reporting a positive association (Burgaleta et al., 2013; Choi et al., 
2008; Karama et al., 2013, 2011), and others no significant associations 
(Tamnes et al., 2011). A study including 515 middle-aged twins reported 
that the overall genetic and phenotypic associations between brain 
volume and general cognitive ability was primarily accounted for by 
surface area rather than cortical thickness (Vuoksimaa et al., 2014). 
Similar to our findings, a study on 9623 kids aged 9–10 years from the 
ABCD study utilizing canonical correlation analysis (CCA) reported links 
between higher cognitive ability and brain development across modal
ities (Modabbernia et al., 2021). Other CCA-studies in youths have also 
linked cross modality patterns of brain development, cognition, and 
psychopathology across disorders (Alnæs et al., 2020; Voldsbekk et al., 
2022). These studies, and ours, suggest that deviations from expected 
cognitive development precedes disease onset and therefore should be 
viewed as a cross-diagnostic risk factor for mental illness. 

4.4. Limitations 

To ease interpretation and reduce analytical complexity we only 
included global MRI measures. It is possible that including regional 
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measures would have revealed different patterns of associations. Future 
studies may be able to pursue a regional approach across modalities. 
Further validation of the models outside of the PNC are needed to be 
able to generalize the findings to a wider population. Longitudinal data 
are also needed to validate the normative trajectories and their predic
tive value for future mental health issues and various real-life outcomes. 
The normative modeling framework is ideal for estimating age trajec
tories beyond adolescence, and future studies may benefit from 
including both a younger and older study population. Various environ
mental and genetic variables are likely to explain and modulate the 
associations between brain imaging, cognition, and psychopathology in 
youth, including sociodemographic variables such as poverty and 
quality of schooling, perinatal factors such as birth weight or premature 
birth (Alnæs et al., 2020; Modabbernia et al., 2021), and maturational 
processes including onset and rate of puberty (Holm et al., 2022). Future 
studies may be able to model the instantaneous influence of a range of 
modulating factors to increase the precision, relevance, and predictive 
value of the output from the normative modeling framework. 

5. Conclusion 

This work shows that the normative modeling framework can be 
used to capture multimodal and idiosyncratic patterns of deviations 
from age-expected white and gray matter features during development 
and highlights the potential for early detection of at-risk youths. 
Normative deviations from age-expected white and gray matter trajec
tories were associated with cognitive performance and general psycho
pathology symptom burden in youth, in addition to positive and 
prodromal symptoms of psychosis. The weak associations between the 
different multimodal MRI based deviation scores support the complexity 
of adolescent brain maturation and shows that one modality cannot 
capture all associations and suggest that psychopathological burden in 
adolescence may map onto partly distinct neurobiological features. 
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