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Abstract

Latent class analysis is a widely used statistical method for evaluating diagnostic tests with-

out any gold standard. It requires the results of at least two tests applied to the same individ-

uals. Based on the resulting response patterns, the method estimates the test accuracy and

the unknown disease status for all individuals in the sample. An important assumption is the

conditional independence of the tests. If tests with the same biological principle are used,

the assumption is not fulfilled, which may lead to biased results. In a recent publication, we

developed a method that considers the dependencies in the latent class model and esti-

mates all parameters using frequentist methods. Here, we evaluate the practicability of the

method by applying it to the results of six ELISA tests for antibodies against the porcine

reproductive and respiratory syndrome (PRRS) virus in pigs that generally follow the same

biological principle. First, we present different methods of identifying suitable starting values

for the algorithm and apply these to the dataset and a vaccinated subgroup. We present the

calculated values of the test accuracies, the estimated proportion of antibody-positive ani-

mals and the dependency structure for both datasets. Different starting values led to match-

ing results for the entire dataset. For the vaccinated subgroup, the results were more

dependent on the selected starting values. All six ELISA tests are well suited to detect anti-

bodies against PRRS virus, whereas none of the tests had the best values for sensitivity and

specificity simultaneously. The results thus show that the method used is able to determine

the parameter values of conditionally dependent tests with suitable starting values. The

choice of test should be based on the general fit-for-purpose concept and the population

under study.
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Rostalski A, Kreienbrock L, Campe A (2022) An

intercomparison study of ELISAs for the detection

of porcine reproductive and respiratory syndrome

virus – evaluating six conditionally dependent tests.

PLoS ONE 17(1): e0262944. https://doi.org/

10.1371/journal.pone.0262944

Editor: Brecht Devleesschauwer, Sciensano,

BELGIUM

Received: September 10, 2021

Accepted: January 8, 2022

Published: January 25, 2022

Copyright: © 2022 Schoneberg et al. This is an

open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

Information files.

Funding: The laboratory work was performed at

the Bavarian Animal Health Service financially

supported by the Free State of Bavaria and the

Bavarian Joint Founding Scheme for the Control

and Eradication of contagious Livestock Diseases

(Bayerische Tierseuchenkasse). Publication was

supported by Deutsche Forschungsgemeinschaft

https://orcid.org/0000-0001-9234-190X
https://doi.org/10.1371/journal.pone.0262944
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0262944&domain=pdf&date_stamp=2022-01-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0262944&domain=pdf&date_stamp=2022-01-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0262944&domain=pdf&date_stamp=2022-01-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0262944&domain=pdf&date_stamp=2022-01-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0262944&domain=pdf&date_stamp=2022-01-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0262944&domain=pdf&date_stamp=2022-01-25
https://doi.org/10.1371/journal.pone.0262944
https://doi.org/10.1371/journal.pone.0262944
http://creativecommons.org/licenses/by/4.0/


Introduction

Porcine reproductive and respiratory syndrome (PRRS) is a disease in pigs caused by the

Betaarterivirus suid (PRRSV). Two genotypes (1 and 2) are generally distinguished. Genotype

1 originated from Europe, and genotype 2 originated from North America; viruses within

genotypes are not antigenically homogenous [1]. Infection is associated with late-term abor-

tion in sows and respiratory disease in weaned and fattening pigs and thus results in significant

economic losses worldwide [2]. Vaccination is frequently practiced to prevent clinical disease;

currently, one genotype 2 and four genotype 1 live attenuated vaccines are commercially avail-

able in Germany.

After the discovery of the viral etiology of PRRS in the early nineties of the last century, an

immune peroxidase monolayer assay (IPMA) was developed to detect antibodies [3]. Viral

propagation in cell culture was extremely difficult. Initially, PRRSV was multiplied in primary

lung alveolar macrophages, and later, the virus adapted to a permanent cell line (MARC145)

[4]. Although the neutralization test is frequently regarded as a reliable gold standard for the

detection of antibodies against viruses, in the case of PRRSV, neutralizing antibodies are devel-

oped only late in the course of infection and are quite specific to viral subtypes within geno-

types [5, 6]. In contrast, IPMA allowed the detection of cross-reactive antibodies directed to

the conserved and abundantly present nucleocapsid antigen. Finally, as IPMA was difficult to

standardize, a patent-protected ELISA was developed and commercialized (see Test 1). Since

then, a huge body of experience has accumulated, and this ELISA has been established in

worldwide laboratories. After the patent expired, additional ELISAs were developed and

required validation. The question for a proper gold standard thus re-emerged. At least for

some authors, it became a matter of course to regard the existing ELISA as a gold standard [7].

However, this view precludes any further improvement of antibody ELISAs; therefore, an

alternative approach is required.

In a voluntary study by the Bavarian Animal Health Service, six of these ELISAs were used

on sows, gilts and piglets from farms in southeast Germany with different vaccination statuses.

The aim of the study was to estimate the accuracy of the tests and to assess the applicability of

the newly developed ELISAs both under in-field conditions.

Generally, diagnostic test evaluation is performed by comparison to a gold standard test

[8]. If there is no gold standard or if it only has suboptimal accuracies, a comparison may lead

to incorrect values [9]. The application of the tests to a mostly small group of animals with a

known disease status leads to results that only apply to the observed population. Therefore,

latent class analysis (LCA) is often used as a method for estimating the diagnostic test accuracy

for individuals with unknown disease status without a gold standard [10].

The LCA assumes that an underlying latent structure exists and that the diagnostic tests

that measure the true unknown disease status of the individuals represent imperfect indicator

variables under investigation. Based on the response patterns of the tests, both the accuracy of

the tests and the proportion of both disease statuses (positive/negative) are discovered by the

model. Hence, the test performance under the given conditions, such as the structure of the

population in terms of age, gender, race, immune status, etc., can be estimated. The parameters

may be estimated using Bayesian [11] or frequentist methods [12, 13].

A requirement of LCA is the conditional independence of the diagnostic tests [14]. This

means that within a latent class, the result of one test does not allow conclusions to be drawn

about the results of the other tests. However, if infectious diseases are considered, this condi-

tion is often not met. Conditionally independent tests use different biological principles (e.g.,

detection of antigen or antibodies), which cannot always be detected at the same time of infec-

tion [15]. Thus, these tests do not measure the same latent status, and applying the LCA leads
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to biased results. Therefore, LCA requires tests with the same biological basis, which means

that they are conditionally dependent. This is the case in the study for the detection of PRRSV.

All tests used assess the presence of antibodies against the virus, i.e., they measure the same

latent status.

There are already some approaches that consider conditional dependencies both in the

Bayesian [16–18] and frequentist [19–24] frameworks. These methods often require some

assumptions, such as a large number of diagnostic tests or accurate prior distributions. We

developed a frequentist latent class approach, which takes the dependencies of the tests into

account, thus no longer requiring the assumption of conditional independence [25]. In addi-

tion, this method is easily applicable in many situations even when little prior information is

accessible. This approach expands the LCA by a term for the dependency and estimates the

parameters alternately in an iterative process until convergence occurs. We showed in simula-

tion studies that this method is better than the classic conditionally independent LCA in many

situations and provides results similar to the Bayesian approach for conditionally dependent

tests; however, in contrast this approach does not need any prior distribution.

In this publication, we show that our iterative, frequentist latent class approach is applicable

to real-world data by evaluating the results of the mentioned voluntary study by the Bavarian

Animal Health Service containing the results of six different ELISA tests against the PRRS

virus for pigs in southern Germany. We present the results of the analysis of the entire dataset

as well as a vaccinated subgroup of animals. Different approaches for the starting values of the

algorithm are considered, and the resulting parameter values are compared.

Material and methods

Sample collection and diagnostics applied

Between 2016 and 2018, the Bavarian Animal Health Service offered voluntary PRRSV

immune control to pig farmers in southeast Germany. Therefore, per farm, blood samples

were collected from ten weaned piglets at 8–12 weeks, six gilts and 18 sows of different parities

(1./2., 3./4. and 5./6. parity). After initial testing (PCR, ELISA Test 1, neutralization tests

against and IFN-recall assay after stimulation of whole blood with a panel of PRRSV-vaccine

virus strains), sera were stored at -20˚C. The current vaccination status of the herd was

assessed by a face-to-face questionnaire. Twenty-four farms in 13 districts participated. In

2019, sera were tested for antibodies against the virus by six different ELISA tests from five

manufacturers:

• PRRS X3, Idexx (Test 1)

• pigtyp PRRSV Ab, Indical (Test 2)

• ID Screen PRRS indirect, IDVet (Test 3)

• Ingezim PRRS 2.0, Ingenasa (Test 4)

• Ingezim PRRS universal, Ingenasa (Test 5)

• PrioCHECK, ThermoFisher (Test 6).

A single batch was used for each ELISA, and all sera per test were analyzed in one run. The

farms had been immunized in different ways in the past. Fourteen farms received vaccinations

against genotype 1 of the virus, 4 farms received vaccinations against genotype 2 of the virus, 1

farm was vaccinated against both genotypes, and 5 farms did not have any vaccination in the

past. To ensure comparability of the test results, only tests that checked for both genotypes of

the virus were used.
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In this analysis data from 812 pigs were evaluated. Overall, 8 animals with incomplete

results were documented; therefore, they were removed from further analysis. Thus, 804 ani-

mals were included in the statistical evaluation.

The analysis of the dataset determined the test accuracies and the prevalence in a sample

selected from the entire population without specific selection criteria. The sample consisted of

animals with different vaccination statuses: unvaccinated animals and animals vaccinated

against genotype 1, genotype 2 or both genotypes of the virus. Thus, great heterogeneity in the

immune status of the animals is present as a typical sample from pig farms in Germany. To

examine whether this heterogeneity impacts the performance of the method and how the test

accuracy and prevalence change, we applied the methods used to a uniformly vaccinated popu-

lation for an additional analysis. To examine a group as homogeneous as possible with a large

number of cases, we considered the 468 samples on the 14 farms vaccinated against European

genotype 1 of the virus for the second part of the analysis.

The latent class model

The intercomparison of diagnostic tests was performed with the method introduced recently

using a modified latent class model [25]. In a latent class analysis, it is assumed that there is a

latent variable with two classes. When applied to diagnostic tests, these classes (diseased vs. not

diseased) are defined by the observed diagnostic tests, which assume two values (positive/nega-

tive). Each individual tested by all diagnostic tests analyzed in the LCA represents an observa-

tion in the model. Thus, the proportion of the positive class, i.e., the prevalence, and the

response probability of each test in these classes (i.e., the test accuracies) can be determined for

the sample. Our model also considers conditional dependencies between the tests due to simi-

lar test principles by integrating an additional dependency term into the model.

Formally, in the modified model, it is assumed that there is a latent variable with two clas-

ses, which is measured by M observed variables. Observation Yi = (Yi1,. . .,YiM), i = 1, . . ., N
represents individual i’s response pattern with the possible values rm = 0,1 for observation Yim.

The probability of membership in latent class c can be expressed as γc with
X1

c¼0
gc ¼ 1, and

the probability of the response rm to variable m in class c can be expressed as rm;rm jc
. Let I(�) be

the indicator function. Then, the likelihood of parameters γ and ρ for the observations Y can

be written in the following form:

Lðγ; ρjYÞ ¼
XN

i¼1

X1

c¼0
γc

YM

m¼1

Y1

rm¼0
ρIðYim¼rmÞ
m;rmjc

þ ηc
r1 ;...;rM

� �
; ðaÞ

where Zcr1 ;...;rM is a term for the influence of the
XM

i¼2

M

i

 !

conditional two-way to M-way

dependencies of all M tests in class c on the likelihood of the respective observed response pat-

terns as described in [25]. The conditional dependencies are expressed in terms of the condi-

tional covariances between the test results in the two latent classes, respectively. They are

considered as the differences between the observed proportion of matching correct responses

of two to M tests in latent class c and the expected corresponding proportion in class c under

the conditional independence assumption.

All parameter values from Formula (a) are estimated in an iterative algorithm:

1. Appropriate starting values are chosen for the prevalence, test accuracies and dependencies.

2. The dependencies are considered fixed. The test accuracies and the prevalence are newly

estimated by an expectation maximization (EM) algorithm in the same manner as noted in

the conditionally independent LCA (such as in [13]).
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3. Using the test accuracies and the prevalence estimated in the previous step, the expected

frequencies in the case of conditional independence are redetermined. The dependencies

can then be recalculated from the difference to the observed frequencies.

4. The algorithm starts again with step 2 until it converges, i.e., the difference of the log-likeli-

hood of two successive steps falls below a specified limit or the algorithm reaches the maxi-

mum number of 1000 iterations.

Confidence intervals for test accuracies and the prevalence are calculated using the normal

approximation interval for binomial distributions. The model is applicable if the results of at

least three tests, each with two possible answers (diseased / not diseased), are available. The

procedure was implemented in R (version 3.5.0; [26]); see S1 File.

Starting values

In a previous investigation, we showed that the applied iterative frequentist approach of the

LCA needs well-chosen starting values to converge to the true underlying values [25]. There-

fore, we used three sources of information for the parameters required: the manufacturers’

evaluation studies conducted for every commercially available test, previous publications eval-

uating the diagnostic tests used in this study [7, 27–34] and experience from application from

the researchers of the Bavarian Animal Health Service. Additionally, we used the examined

dataset to estimate the prevalence in the sample.

Based on these sources, we proceeded as follows to determine the starting values that can be

found in S1 and S3 Tables (see Fig 1 also):

1. Determine test accuracies based on each available source:

a. Adopt values from the manufacturer’s evaluation studies (indicated as M).

b. Find previous publications (indicated as P) evaluating the diagnostic tests used in this

study (see S5 Table) and calculate a weighted average by considering the studies that

have a similar structure and study population more strongly.

c. Ask researchers (indicated as R) from the associated laboratories (here, the Bavarian

Animal Health Service) for an assessment of the test accuracies based on their experience

in application and the values of the other sources.

2. Estimate the dependencies of the tests in terms of their correlation (as described in [25])

based on each available source, so that these values are standardized and independent of the

test accuracies:

a. Find previous publications evaluating the diagnostic tests used in this study and use their

values for conditional dependency (here, we could not find any previous publications

considering a dependency of the tests, so this source did not provide any information on

the conditional dependency of the tests).

b. Ask researchers (indicated as R) from the associated laboratories (here, the Bavarian

Animal Health Service) for an assessment of the dependencies of the tests used based on

their experience and the biological principles of the tests used.

3. Establish prevalence for the dataset under consideration by estimating the approximate

proportion of positive tests in the dataset, considering the chosen starting values of the test

accuracies from step 1 (here, using the dataset (Table 1) with a slightly higher prevalence, as

all sources in step 1 assume a higher sensitivity than specificity for all six tests).
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4. Define starting value datasets: All available information on the test accuracies, the depen-

dencies and the prevalence are combined. Every possible combination forms a starting

value set. The exact number of the resulting sets depends on the amount of prior

Fig 1. Step-by-step procedure for determining the starting values when taking various information sources into

account.

https://doi.org/10.1371/journal.pone.0262944.g001

Table 1. Observed frequencies of the two results for all six tests used in the latent class analysis of the complete

dataset (percentage rounded to one digit).

Positive tested Animals (in %) Negative tested Animals (in %)

Test 1 549 (68.3) 255 (31.7)

Test 2 518 (64.4) 286 (35.6)

Test 3 487 (60.6) 317 (39.4)

Test 4 461 (57.3) 343 (42.7)

Test 5 578 (71.9) 226 (28.1)

Test 6 623 (77.5) 181 (22.5)

https://doi.org/10.1371/journal.pone.0262944.t001
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information. At least four different starting values should be applied so that two different

dependency structures and two different test accuracy sets are used to examine the stability

of the results. If there is only one source for the dependencies, independence of the tests

(indicated as I) can also be used as a starting value to test stability of the method.

Here, that means all three starting values for the test accuracies (M, P, R) are combined

with the information for prevalence (step 3) and conditional dependencies (R). In addition,

all three values for the test accuracies are used as starting values with the assumption of con-

ditional independence (I). This leads to six different starting value sets (MI, MR, PI, PR, RI,

RR, see S1 Table).

5. Adjust the standardized values of the dependencies to the selected test accuracies M, P, R

and the prevalence (step 3) so that the conditional dependencies are described in terms of

conditional covariances and any combination of the test results has a positive probability

(see [25]). This leads to deviating values of the conditional covariances depending on the

selected starting values for the test accuracies.

The above-described steps for the starting values 1a and 1c were performed a second time

for the vaccinated subgroup. Since this is a subgroup of the first dataset, we assumed that it has

parameters similar to those of the entire dataset. Therefore, we selected the starting values of

the test accuracies that differ the most from one another to assess the stability of the model. All

starting values for the vaccinated subgroup can be found in S2 Table.

Results

In the following section, we present three main results of the analysis. First, we show the

parameter values calculated by the method for the complete dataset. Second, these values are

considered in context with the selected starting values. Finally, the results are compared with

those of the vaccinated subgroup to obtain an impression of the influence a vaccination has on

the performance of the method proposed and the resulting parameter values. The starting

value sets MI, MR, PI, PR, RI, RR specified in the last chapter are used in the calculation,

where M indicates the information provided by the manufacturer, R denotes the information

on test accuracies and dependencies provided by the researchers, P indicates the values from

previous publications and I represents the assumptions of independent tests.

Overall results and effect of starting values

In general, all calculations agreed that slightly greater than three-quarters (75.3–76.8%) of the

animals in the sample examined were assigned to the positive latent class, i.e., had antibodies

against the virus. Test 6 (PrioCHECK) had the highest estimated sensitivity values, and test 4

(Ingezim PRRS 2.0) had the lowest estimated sensitivity values (see Table 2). The values of the

remaining tests were distributed evenly between these results. Overall, the specificities had

higher values, which were between 95% and 99% for tests 1 to 4. Tests 5 (Ingezim PRRS uni-

versal) and 6 had lower specificities of approximately 88% and 78%, respectively. Test 6 in par-

ticular produced an extended number of false-positive results. Test 1 (PRRS X3) had the

highest values of sensitivity and specificity combined with minimal differences compared with

the other tests considered. These results were consistent with the observed frequencies

(Table 1).

In the negative latent class, tests 1, 2, 3 and 4 had strong pairwise dependencies. Tests 5 and

6 were less dependent on each other and on the other tests. This yields a greater proportion of

the agreeing negative results in the first four tests due to simultaneous incorrect results than in
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the other two tests. All pairwise dependencies of the tests were substantially higher within the

positive latent class. Tests 1, 5 and 6 had the highest dependencies in the positive latent class,

which were almost twice as large as the strongest dependencies in the negative class. Therefore,

the dependency structures in the two classes differ both in the tests with the highest dependen-

cies and in the size of these values.

The calculated dependencies of the tests for all six sets of starting values can be found in S3

Table.

All six starting value sets led to very similar results in the test accuracies and the prevalence

(Table 2). The estimates of prevalence and sensitivity exhibited maximum deviations of 1.5%.

The results for the specificity had an even greater consistency. Only the estimations of the

specificity of test 6 varied by up to 3%. Thus, all six runs of the algorithm yielded consistent

results despite differing starting values in contrast to the first simulation study [25].

Vaccinated subgroup

As the evaluation of diagnostic tests is related to the population under study, we additionally

compared the results with the subgroup of farms that had participated in a vaccination

Table 2. Estimated values for the prevalence and the test accuracies for the six starting value sets for the complete sample with confidence limits reported in brack-

ets (rounded to one digit).

Parameters estimated Starting value sets

Set MI Set MR Set PI Set PR Set RI Set RR

Prevalence 75.5 76.7 75.7 76.8 75.3 76.4

in % [72.5, 78.4] [73.7, 79.6] [72.7, 78,6] [73.9, 79.7] [72.3, 78.3] [73.4, 79.3]

Sensitivity in %

Test 1 88.9 87.7 88.6 87.6 89.0 87.9

[86.7, 91.0] [85.4, 89.9] [86.5, 90.8] [85.3, 89.8] [86.8, 91.2] [85.7, 90.2]

Test 2 84.4 83.1 84.2 83.0 84.5 83.4

[81.9, 86.9] [80.5, 85.7] [81.6, 86.7] [80.4, 85.6] [82.0, 87.0] [80.8, 85.9]

Test 3 79.7 78.5 79.5 78.3 79.8 78.7

[76.9, 82.5] [75.6, 81.3] [76.7, 82.3] [75.5, 81.2] [77.1, 82.6] [75.9, 81.5]

Test 4 75.6 74.5 75.4 74.4 75.8 74.8

[72.6, 78.6] [71.5, 77.5] [72.4, 78.4] [71.4, 77.4] [72.8, 78.7] [71.8, 77.8]

Test 5 91.3 90.5 91.1 90.4 91.4 90.7

[89.3, 93.2] [88.5, 92.5] [89.2, 93.1] [88.3, 92.4] [89.5, 93.4] [88.7, 92.7]

Test 6 95.3 95.0 95.1 94.9 95.3 95.1

[93.8, 96.7] [93.5, 96.5] [93.7, 96.6] [93.4, 96.4] [93.9, 96.8] [93.7, 96.6]

Specificity in %

Test 1 94.9 95.4 95.1 95.5 94.8 95.2

[93.4, 96.4] [94.0, 96.9] [93.6, 96.6] [94.1, 97.0] [93.3, 96.4] [93.8, 96.7]

Test 2 96.8 96.9 96.9 96.9 96.8 96.8

[95.6, 98.1] [95.7, 98.1] [95.7, 98.1] [95.8, 98.1] [95.6, 98.0] [95.5, 98.0]

Test 3 98.2 98.2 98.3 98.2 98.2 98.1

[97.3, 99.1] [97.2, 99.1] [97.4, 99.2] [97.3, 99.1] [97.2, 99.1] [97.2, 99.0]

Test 4 98.8 99.1 98.9 99.1 98.8 99.0

[98.1, 99.6] [98.4, 99.7] [98.1, 99.6] [98.4, 99.7] [98.1, 99.6] [98.3, 99.7]

Test 5 87.8 89.2 88.0 89.2 87.6 88.9

[85.5, 90.0] [87.0, 91.3] [85.7, 90.2] [87.1, 91.4] [85.3, 89.9] [86.8, 91.1]

Test 6 77.1 80.0 77.4 80.1 77.0 79.6

[74.2, 80.0] [77.2, 82.7] [74.5, 80.3] [77.4, 82.9] [74.0, 80.0] [76.8, 82.4]

https://doi.org/10.1371/journal.pone.0262944.t002
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programme before our investigation. The results in this vaccinated subgroup were less clear.

Starting value set 1 led to a significantly reduced prevalence and lower values for all specifici-

ties (see Table 3). According to these results, the vaccinated subgroup included 68.7% anti-

body-positive animals. The specificities were between 89.8% for test 4 and 41.5% for test 6. On

the other hand, the sensitivity was (almost) 100% for all six tests.

In contrast, the other three starting value sets led to a significant deviation from the calcu-

lated parameter values of starting value set RI. These results were very similar to one another

(Table 4). In total, 83.4–88.0% of animals were antibody positive, which is approximately 10%

greater than that in the complete dataset, whereas the calculated values of the sensitivities and

specificities were similar to those of the entire dataset. However, noticeable deviations of up to

11.6% were noted between the estimated parameter values of the different starting values.

The dependencies of the tests were similar to those of the entire dataset. Only starting value

set RI led to differing values. Thus, some dependency values were negative, which implies that

one test has an increased probability of a positive result while that probability is reduced for

the other test.

Discussion

In this publication, we applied an iterative, frequentist latent class approach to real-life data of

six conditionally dependent ELISA tests for PRRSV on pig farms with different vaccination

statuses.

Overall results

The analysis produced clear results for the entire dataset. All runs of the algorithm led to

results with a maximum deviation of about three percentage points from the other results for

all parameters under study, although the selected starting values differed strongly. Therefore,

there seems to be only one maximum of the likelihood function, and these results can be con-

sidered reliable.

Table 3. Resulting values for the prevalence and the test accuracies for starting value set RI (test accuracies esti-

mated by researchers with assumption of independent tests) for the complete sample and the vaccinated subgroup

with confidence limits reported in brackets (rounded to one digit).

Starting value sets Complete dataset Vaccinated subgroup

Prevalence in % 75.3 [72.3, 78.3] 68.7 [64.6, 72.9]

Sensitivity in %

Test 1 89.0 [86.8, 91.2] 100.0 [99.7, 100.0]

Test 2 84.5 [82.0, 87.0] 98.2 [97.0, 99.4]

Test 3 79.8 [77.1, 82.6] 97.4 [95.9, 98.8]

Test 4 75.8 [72.8, 78.7] 95.5 [93.6, 97.3]

Test 5 91.4 [89.5, 93.4] 100.0 [100.0, 0.0]

Test 6 95.3 [93.9, 96.8] 100.0 [100.0, 0.0]

Specificity in %

Test 1 94.8 [93.3, 96.4] 71.0 [66.9, 75.1]

Test 2 96.8 [95.6, 98.0] 80.2 [76.6, 83.8]

Test 3 98.2 [97.2, 99.1] 87.9 [85.0, 90.9]

Test 4 98.8 [98.1, 99.6] 89.8 [87.1, 92.6]

Test 5 87.6 [85.3, 89.9] 59.4 [55.0, 63.9]

Test 6 77.0 [74.0, 80.0] 41.5 [37.0, 46.0]

https://doi.org/10.1371/journal.pone.0262944.t003
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When interpreting the results, the methods of data collection must be considered. The sam-

ples were obtained during a voluntary examination that focused on the immune status after

vaccination. As a result, only farms where the farmers had a high level of interest in the

immune status of their animals and very few unvaccinated farms were included in the study.

Therefore, this dataset is a convenience sample, and the proportion of unvaccinated farms is

less than the proportion of unvaccinated farms in the total population, which is approximately

52% according to information from the Bavarian Animal Health Service. Thus, the calculated

values for the test accuracies and the prevalence might not reflect the total population, as these

values depend on the immune status of the animals examined [35]. However, this study pro-

vided a range of values of all the test accuracies indicating the relationship between the tests,

which can serve as a basis for other investigations on the diagnostic tests used.

Estimation difficulties in the vaccinated subgroup

The results for the analysis of the subset of the farms vaccinated against the EU strains of the

virus were less clear, as the resulting values differed depending on the selected starting value.

In particular, the prevalence and PrioCHECK values varied up to 42%. This finding suggests

that the information on if and to which extent a vaccination was applied in the population

under study is crucial for the evaluation. All four runs of the algorithm provided results that

have the same value of the likelihood function. Therefore, each calculated parameter combina-

tion represents the unknown true parameters with the same probability under the given data-

set. Thus, there is no unique solution, and the composition of the study population and the

biological principles of the tests used must also be considered for interpretation.

Although the results of starting value sets MI, MR and RR had a high level of agreement,

the calculated parameters for starting value set RI deviated from these values. In comparison,

starting value set RI led to a lower prevalence, partially negative dependencies and 100% sensi-

tivities for three of the tests. Perfect tests (i.e., perfect sensitivities) are not to be expected for

the applied ELISA tests. Although a changed sensitivity of the tests used due to the selection of

an equally vaccinated subgroup with less variation in genotype was possible, technical errors

Table 4. Resulting values for the prevalence and the test accuracies for the four starting value sets for the part of

the sample that is vaccinated against genotype 1 of PRRSV with confidence limits reported in brackets (rounded

to one digit).

Starting value sets Set MI Set MR Set RI Set RR

Prevalence in % 83.4 [80.0, 86.8] 88.0 [85.0, 90.9] 68.7 [64.6, 72.9] 87.4 [84.4, 90.4]

Sensitivity in %

Test 1 91.8 [89.3, 94.3] 87.9 [85.0, 90.9] 100.0 [99.7, 100.0] 88.4 [85.5, 91.3]

Test 2 87.6 [84.6, 90.6] 83.4 [80.0, 86.7] 98.2 [97.0, 99.4] 83.9 [80.6, 87.2]

Test 3 84.2 [80.9, 87.5] 80.1 [76.5, 83.7] 97.4 [95.9, 98.8] 80.6 [77.1, 84.2]

Test 4 82.2 [78.8, 85.7] 78.1 [74.3, 81.8] 95.5 [93.6, 97.3] 78.6 [74.9, 82.3]

Test 5 94.6 [92.5, 96.6] 91.3 [88.8, 93.9] 100.0 [100.0, 0.0] 91.8 [89.3, 94.3]

Test 6 99.0 [98.1, 99.9] 96.9 [95.3, 98.4] 100.0 [100.0, 0.0] 96.1 [94.3, 97.9]

Specificity in %

Test 1 92.5 [90.1, 94.9] 96.3 [94.6, 98.0] 71.0 [66.9, 75.1] 95.5 [93.7, 97.4]

Test 2 96.1 [94.3, 97.8] 96.9 [95.3, 98.4] 80.2 [76.6, 83.8] 97.0 [95.4, 98.5]

Test 3 96.8 [95.2, 98.4] 98.0 [96.7, 99.2] 87.9 [85.0, 90.9] 98.0 [96.7, 99.3]

Test 4 98.8 [97.7, 99.8] 99.0 [98.1, 99.9] 89.8 [87.1, 92.6] 98.9 [97.9, 99.8]

Test 5 83.3 [79.9, 86.7] 89.3 [86.5, 92.1] 59.4 [55.0, 63.9] 88.7 [85.8, 91.5]

Test 6 72.1 [68.1, 76.2] 83.7 [80.3, 87.0] 41.5 [37.0, 46.0] 74.6 [70.7, 78.5]

https://doi.org/10.1371/journal.pone.0262944.t004
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and an insufficient antibody concentration in the sample were still possible [36]. A reduced

prevalence in a subgroup with more vaccinated animals is also very unlikely. Moreover, nega-

tive conditional dependencies of the tests imply that the probability of deviating results

between two tests is increased compared to independent tests. Due to the same biological prin-

ciple of the tests, this result is not plausible. Thus, the results of starting value sets MI, MR and

RR seem to be more likely to represent the true parameter values. In that case, the proportion

of animals with antibodies was 8–13% greater than that in the entire dataset. Therefore, vacci-

nation against the European strain of the virus seems to have been successful, with a propor-

tion of approximately 83–88% antibody-positive animals.

The reason that these problems exclusively occur in the vaccinated subgroup despite the

same starting values may be the fact that the animals were all vaccinated against the same geno-

type of the virus. This feature causes a stronger homogeneity in the immune status of the ani-

mals and results in a homogenous dataset regarding positive test results in different diagnostic

tests. This subsequently means that the statistical method has fewer deviating response patterns

available for estimation, which increases the variation of the results from different starting val-

ues. As this was not predictable after the initial evaluation studies [25], it is not possible to indi-

cate a percentage threshold of vaccinated individuals above which such problems can occur

based on this study. This underlines the fact that prevaccination information is crucial for the

evaluation.

The high proportion of vaccinated animals in this sample complicated the estimation for

the statistical method used, but incorrect results can be discovered using several carefully

selected starting values. If the results of all starting values agree (as with the entire dataset),

then there is a clear indication that these are the true parameter values. If there are deviating

results (as in the vaccinated subgroup), implausible results can be determined by considering

the test principles used and the population examined. Hence, the method is also applicable in

the case of a vaccinated population.

Effect of starting values

In the vaccinated subgroup differences in the results may appear, due to poorly chosen starting

values. This was previously shown in simulation studies [25]. Therefore, we used starting val-

ues that we considered similar to the true parameter values based on various sources. However,

these values differ only slightly and were in part selected based on subjective evaluations. Since

there was a possibility that these assumptions were wrong, we systematically varied the indi-

vidual parameter groups of the researchers’ assessment (starting values RR) for the entire data

set in a sensitivity analysis to check what effect changed starting values may have on the result

(S6 Table). These analyses showed that deviating starting values lead to different results in

some cases (S7 Table). For example, some changed starting values resulted in a prevalence of

0% or negative dependencies, which does not seem plausible under given circumstances. This

underlines the conclusion made in the previous publication that the choice of starting values is

important.

The assumption of independent tests seems to deviate greatly from the true parameter val-

ues, depending on the chosen initial values of test accuracies. Therefore, independent tests do

not seem to be a good choice for starting values for this dataset. The result of starting value set

RI, which assumed independent tests, deviates strongly from the other biologically more plau-

sible results. Independence of the tests is an obvious and easy-to-implement choice for the

starting values. However, in the case of several ELISA tests with the same biological principle,

it would be a rather inapt assumption. Therefore, analyzing the biological test principles used

combined with experience from application seems to be the more appropriate approach for
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identifying starting values for the dependency, as that led to values that were more similar to

the outcomes. However, starting value set MI, which also assumed independence, did not lead

to implausible results. This result indicates that the selected initial test accuracies also influence

the result. Some starting parameter constellations of test accuracies were closer to the results

and therefore better suited as a starting point for the algorithm. Experience from application

on the test accuracies led to starting values that were similar to the outcome. Previous publica-

tions also provided information on the values of the test accuracies. However, clear differences

exist between the animals examined in the different studies in terms of species, sex and

immune history. The statistical methods used also differed between the various publications.

These factors influence the calculated values for the test accuracies [8, 35], which led to differ-

ent results in the examined studies. These differences made determining the starting values

based on the results of previous publications challenging. However, considering these influ-

ences, we were able to determine well-fitted starting values. The values from the manufactur-

ers’ studies were always greater than the values calculated in this study, which was probably

also due to the different study situations.

Overall, the sources used for the starting values were useful for the application to our statis-

tical method. Some values were closer to the results than others. Given that this difference is

due to the composition of the population examined in this study, this may be different from

other studies on other diseases.

Accuracy and applicability of the tests examined

Overall, the presented method calculated predominantly high accuracies for the diagnostic

tests used in the complete dataset. We determined values of 74.4–95.3% for the sensitivity and

76.9–99.1% for the specificity of the tests. However, none of these tests had the best values for

sensitivity and specificity simultaneously. Thus, the method again shows that there is no gen-

eral gold standard that is applicable for all situations. The optimal test depends on the objective

of the investigation and whether the false-negative or false-positive results are to be minimized.

If the user wants to have a high level of certainty with the positive results and thus reduce the

possibility of false-positive results, then a test with high specificity, such as the Ingezim PRRS

2.0, may represent the optimal test. Conversely, if all positive animals are actually to be identi-

fied as such, a test with maximum sensitivity (e.g., PrioCheck) might be the right choice. The

accuracy of the diagnosis can also be further increased if a sequential test procedure is used

[8]. For example, if false-positive animals are to be excluded with maximum certainty, it may

be helpful to first sample the animals with a test with an overall very high accuracy (e.g., PRRS

X3). All individuals with a positive test are then also sampled with a test with maximum speci-

ficity (e.g., ID Screen PRRS indirect or Ingezim PRRS 2.0), and only observations with two

positive test results are then considered positive. This process minimizes the risk of a false-pos-

itive assessment and therefore an unnecessary intervention. However, the dependency of the

tests must be taken into account when combining them. If two tests have a very high depen-

dency, the same factors lead to incorrect results. A high dependency increases the probability

of matching false results [37].

Conclusion

In this publication, we calculated the test accuracies of six ELISA tests used for the detection of

PRRSV in pigs in southern Germany. Using the examined dataset as an example, we were able

to demonstrate that the applied latent class approach is able to determine the parameter values

of conditionally dependent tests with suitable starting values. Different methods of choosing

starting values were shown.
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None of the tests used had the best sensitivity and specificity simultaneously. Hence, the

detection method must be chosen depending on the general fit-for-purpose concept and the

sample population under study.

Here, the estimation of the parameters in a vaccinated subgroup was less precise, which

suggests the need to take the heterogeneity and homogeneity of the immune status into

account.
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1. Brühl-Schneider L, Hiller E, Frey T, Akimkin V, Hoferer M, Sting R. Comparitive ORF and whole genome

sequencing analysis of the porcine preproductive and respiratory syndrome virus (PRRSV) in routine

samples reveal a recombinant virus strain. Berliner und Münchener Tierärztliche Wochenschrift. 2020

(133).

2. Lunney JK, Benfield DA, Rowland RR. Porcine reproductive and respiratory syndrome virus: an update

on an emerging and re-emerging viral disease of swine. Elsevier; 2010.

3. Wensvoort G, Terpstra C, Pol J, Ter Laak E, Bloemraad M, De Kluyver E, et al. Mystery swine disease

in The Netherlands: the isolation of Lelystad virus. Veterinary Quarterly. 1991; 13(3):121–30. https://

doi.org/10.1080/01652176.1991.9694296 PMID: 1835211

4. Mengeling WL, Lager KM, Vorwald AC. Diagnosis of porcine reproductive and respiratory syndrome.

Journal of Veterinary Diagnostic Investigation. 1995; 7(1):3–16. https://doi.org/10.1177/

104063879500700102 PMID: 7779961

5. Yoon K-J, Zimmerman JJ, Swenson SL, McGinley MJ, Eernisse KA, Brevik A, et al. Characterization of

the humoral immune response to porcine reproductive and respiratory syndrome (PRRS) virus infec-

tion. Journal of Veterinary Diagnostic Investigation. 1995; 7(3):305–12. https://doi.org/10.1177/

104063879500700302 PMID: 7578443

6. Meier WA, Galeota J, Osorio FA, Husmann RJ, Schnitzlein WM, Zuckermann FA. Gradual develop-

ment of the interferon-γ response of swine to porcine reproductive and respiratory syndrome virus infec-

tion or vaccination. Virology. 2003; 309(1):18–31. https://doi.org/10.1016/s0042-6822(03)00009-6

PMID: 12726723

7. Sattler T, Wodak E, Revilla-Fernández S, Schmoll F. Comparison of different commercial ELISAs for

detection of antibodies against porcine respiratory and reproductive syndrome virus in serum. BMC vet-

erinary research. 2014; 10(1):300. https://doi.org/10.1186/s12917-014-0300-x PMID: 25518885

8. Dohoo IR, Martin W, Stryhn H. Veterinary epidemiologic research. 2rd ed: AVC Incorporated Charlotte-

town, Prince Edward Island, Canada; 2009.

9. Valenstein PN. Evaluating diagnostic tests with imperfect standards. American Journal of Clinical

Pathology. 1990; 93(2):252–8. https://doi.org/10.1093/ajcp/93.2.252 PMID: 2405632

10. Walter SD, Irwig LM. Estimation of test error rates, disease prevalence and relative risk from misclassi-

fied data: a review. Journal of clinical epidemiology. 1988; 41(9):923–37. https://doi.org/10.1016/0895-

4356(88)90110-2 PMID: 3054000

11. Branscum A, Gardner I, Johnson W. Estimation of diagnostic-test sensitivity and specificity through

Bayesian modeling. Preventive veterinary medicine. 2005; 68(2–4):145–63. https://doi.org/10.1016/j.

prevetmed.2004.12.005 PMID: 15820113

12. Hui SL, Walter SD. Estimating the error rates of diagnostic tests. Biometrics. 1980:167–71. PMID:

7370371

13. Pouillot R, Gerbier G, Gardner IA. “TAGS”, a program for the evaluation of test accuracy in the absence

of a gold standard. Preventive veterinary medicine. 2002; 53(1–2):67–81. https://doi.org/10.1016/

s0167-5877(01)00272-0 PMID: 11821138

14. Collins LM, Lanza ST. Latent class and latent transition analysis: With applications in the social, behav-

ioral, and health sciences: John Wiley & Sons; 2009.

15. Markey B, Leonard F, Archambault M, Cullinane A, Maguire D. Clinical veterinary microbiology e-book:

Elsevier Health Sciences; 2013.

PLOS ONE Evaluating conditionally dependent PRRS tests

PLOS ONE | https://doi.org/10.1371/journal.pone.0262944 January 25, 2022 14 / 16

https://doi.org/10.1080/01652176.1991.9694296
https://doi.org/10.1080/01652176.1991.9694296
http://www.ncbi.nlm.nih.gov/pubmed/1835211
https://doi.org/10.1177/104063879500700102
https://doi.org/10.1177/104063879500700102
http://www.ncbi.nlm.nih.gov/pubmed/7779961
https://doi.org/10.1177/104063879500700302
https://doi.org/10.1177/104063879500700302
http://www.ncbi.nlm.nih.gov/pubmed/7578443
https://doi.org/10.1016/s0042-6822(03)00009-6
http://www.ncbi.nlm.nih.gov/pubmed/12726723
https://doi.org/10.1186/s12917-014-0300-x
http://www.ncbi.nlm.nih.gov/pubmed/25518885
https://doi.org/10.1093/ajcp/93.2.252
http://www.ncbi.nlm.nih.gov/pubmed/2405632
https://doi.org/10.1016/0895-4356(88)90110-2
https://doi.org/10.1016/0895-4356(88)90110-2
http://www.ncbi.nlm.nih.gov/pubmed/3054000
https://doi.org/10.1016/j.prevetmed.2004.12.005
https://doi.org/10.1016/j.prevetmed.2004.12.005
http://www.ncbi.nlm.nih.gov/pubmed/15820113
http://www.ncbi.nlm.nih.gov/pubmed/7370371
https://doi.org/10.1016/s0167-5877(01)00272-0
https://doi.org/10.1016/s0167-5877(01)00272-0
http://www.ncbi.nlm.nih.gov/pubmed/11821138
https://doi.org/10.1371/journal.pone.0262944


16. Dendukuri N, Joseph L. Bayesian approaches to modeling the conditional dependence between multi-

ple diagnostic tests. Biometrics. 2001; 57(1):158–67. https://doi.org/10.1111/j.0006-341x.2001.00158.x

PMID: 11252592

17. Georgiadis MP, Johnson WO, Gardner IA, Singh R. Correlation-adjusted estimation of sensitivity and

specificity of two diagnostic tests. Journal of the Royal Statistical Society: Series C (Applied Statistics).

2003; 52(1):63–76.

18. Black MA, Craig BA. Estimating disease prevalence in the absence of a gold standard. Statistics in

Medicine. 2002; 21(18):2653–69. https://doi.org/10.1002/sim.1178 PMID: 12228883

19. Yang I, Becker MP. Latent variable modeling of diagnostic accuracy. Biometrics. 1997:948–58. PMID:

9290225

20. Qu Y, Tan M, Kutner MH. Random effects models in latent class analysis for evaluating accuracy of

diagnostic tests. Biometrics. 1996:797–810. PMID: 8805757

21. Albert PS, McShane LM, Shih JH, Network UNCIBTM. Latent class modeling approaches for assessing

diagnostic error without a gold standard: with applications to p53 immunohistochemical assays in blad-

der tumors. Biometrics. 2001; 57(2):610–9. https://doi.org/10.1111/j.0006-341x.2001.00610.x PMID:

11414591

22. Zhang B, Chen Z, Albert PS. Estimating diagnostic accuracy of raters without a gold standard by exploit-

ing a group of experts. Biometrics. 2012; 68(4):1294–302. https://doi.org/10.1111/j.1541-0420.2012.

01789.x PMID: 23006010

23. Liu W, Zhang B, Zhang Z, Chen B, Zhou X-H. A pseudo-likelihood approach for estimating diagnostic

accuracy of multiple binary medical tests. Computational Statistics & Data Analysis. 2015; 84:85–98.

24. Hanson TE, Johnson WO, Gardner IA. Log-linear and logistic modeling of dependence among diagnos-

tic tests. Preventive Veterinary Medicine. 2000; 45(1–2):123–37. https://doi.org/10.1016/s0167-5877

(00)00120-3 PMID: 10802337

25. Schoneberg C, Kreienbrock L, Campe A. An iterative, frequentist approach for latent class analysis to

evaluate conditionally dependent diagnostic tests. Frontiers in Veterinary Science. 2021; 8:31. https://

doi.org/10.3389/fvets.2021.588176 PMID: 33681320

26. R Development Core Team. R: A language and environment for statistical computing. Vienna, Austria:

R Foundation for Statistical Computing; 2019.
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