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Abstract

Numerical body models of children are used for designing medical devices, including but not

limited to optical imaging, ultrasound, CT, EEG/MEG, and MRI. These models are used in

many clinical and neuroscience research applications, such as radiation safety dosimetric

studies and source localization. Although several such adult models have been reported,

there are few reports of full-body pediatric models, and those described have several limita-

tions. Some, for example, are either morphed from older children or do not have detailed seg-

mentations. Here, we introduce a 29-month-old male whole-body native numerical model,

“MARTIN”, that includes 28 head and 86 body tissue compartments, segmented directly from

the high spatial resolution MRI and CT images. An advanced auto-segmentation tool was

used for the deep-brain structures, whereas 3D Slicer was used to segment the non-brain

structures and to refine the segmentation for all of the tissue compartments. Our MARTIN

model was developed and validated using three separate approaches, through an iterative

process, as follows. First, the calculated volumes, weights, and dimensions of selected struc-

tures were adjusted and confirmed to be within 6% of the literature values for the 2-3-year-old

age-range. Second, all structural segmentations were adjusted and confirmed by two experi-

enced, sub-specialty certified neuro-radiologists, also through an interactive process. Third,

an additional validation was performed with a Bloch simulator to create synthetic MR image

from our MARTIN model and compare the image contrast of the resulting synthetic image

with that of the original MRI data; this resulted in a “structural resemblance” index of 0.97.

Finally, we used our model to perform pilot MRI safety simulations of an Active Implantable

Medical Device (AIMD) using a commercially available software platform (Sim4Life), incorpo-

rating the latest International Standards Organization guidelines. This model will be made

available on the Athinoula A. Martinos Center for Biomedical Imaging website.
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1. Introduction

Computational modeling studies of the human body have been widely used in government,

industry, and academia. In the medical device market, the safety and effectiveness of medical

devices play an important role, and modeling can support the development from the design

stage to the final marketing. The areas of computational modeling with human body are wide:

fluid dynamics [1], electromagnetics [2], optics [3], ultrasound [4], thermodynamics [5], and

mechanics [6, 7]. Computational modeling with virtual humans is helpful in studying the

interaction of complex biological problems in silico [7], for source localization [8, 9], radio-fre-

quency (RF) and specific absorption rate (SAR) exposure [10], and neurostimulation [11–13].

The accurate anatomical representation of human numerical models has become an integral

part of many state-of-the-art safety studies, such as computed tomography (CT) dosimetry

[14] and in MRI RF exposure [15–17]. The Visible Photographic Man (VIP-MAN) is a well-

known, image-based whole-body model that was introduced by the National Library of Medi-

cine’s Visual Human Project [18, 19]. The cadaver of a 38-year-old male was imaged with four

data modalities; X-ray, CT, MRI, and cryosection color photography, and the data were seg-

mented into a 3D whole-body voxel model. More recently, the Virtual Family was introduced

with various ages ranging between eight weeks and 80 years by IT’IS [20, 21]. The segmenta-

tion of tissue compartments was done using medical images from whole-body in-vivo subjects.

Numerical simulations of the human body are realistic when the high-resolution segmented

tissues are anatomically accurate, and when using the correct dielectric and thermal properties

[15, 22, 23]. By far, one of the most anatomically accurate head and neck models is MIDA

[16], which is an open-source model that includes the 115 structures with individual nerve

tracts and deep brain structures, and it was used for estimating the MR signal intensities [24],

neuronal stimulation [25, 26], and the assessment of electromagnetic (EM) field distribution

in the head [27]. Furthermore, the higher level of detail in the high-resolution model led to a

better estimation of the SAR exposure in the vertebrae, where the layer of cortical/cancellous

bones can clearly be distinguished; by comparison, a low-resolution model included only one

type of bone in the vertebrae [21]. The most anatomically accurate child model to date is

Roberta [21], which is a model of a 5-year-old female. However, all the 3-year-old models cur-

rently available are not anatomically accurate (see Table 1 and S1 File for the complete survey

of the existing pediatric models). For instance, Nina is a 3-year-old female model, and it was

morphed from Roberta, which resulted in the anatomical inaccuracies due to the anisotropic

growth of different tissues since the body tissues do not grow proportionally during childhood.

For example, the heart of a 6-year-old child weighs 1.59 times more than that of 3 years old

child while the brain weights only 1.09 times more, which can represent a 68.6% relative differ-

ence between the growth of two different tissues [28].

In order to address these limitations, we introduce an open-source 29-month-old whole-

body voxel model (MARTIN). The segmentation was done based on in-vivo MRI and CT

data, which allow accurate tissue segmentation for a 29-month-old child. Unlike some other

models, all the details of brain structures were segmented without morphing. The quality of

segmentation was quantified using metrics (i.e., Dice similarity coefficient and Hausdorff dis-

tance), volumetric information, and by numerically comparing the Bloch simulation estima-

tions with MARTIN to the original MRI data.

The investigation of RF safety in children is of interest since RF exposure in pediatric head

tissues differs from that of adults [36, 37]. We chose a vagus nerve stimulation (VNS) implant

as our pilot model for simulation testing because this is a well-studied, important application

in the literature [38, 39]. Indeed, it was reported that more than 30,000 children had used a

VNS [40], and 60 to 90% seizure reduction has been achieved in four out of six patients [39].
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Although VNS was approved by the US Food and Drug Administration (FDA) for the treat-

ment of pediatric epilepsy, no citations have been available through PubMed regarding the

MR safety of the VNS device in children. MRI, however, is a routine diagnostic modality that

may be required in younger patients with VNS implants, for follow up or identifying conse-

quent comorbidities. As per Shellock et al. [41], important considerations with VNS implants

include excessive heating in MRI scanners using body RF transmit coils. Thus, the VNS Ther-

apy (Cyberonics/LivaNova, Houston, TX) implantable device for treating seizures comes with

a warning of potential significant heating with VNS therapy when the RF body transmit coil is

used (a 30˚C increase or higher during head or MRI scanning) [42]. Thus, the current VNS

product label lists several MRI restrictions to avoid tissue heating by limiting head-averaged

SAR and spatial gradient field, as well as avoiding the use of the RF body transmit coil in

patients with VNS implants. Several clinical studies conducted at 1.5 T and 3T have shown

that adults [43, 44] and younger subjects with ages between 5 and 12 [45] can be scanned in

MRI under controlled condition using a transmit/receive head coil without any report of heat-

ing, discomfort, or any other unusual sensation. The numerical simulations of MRI RF safety

of pediatric subject with VNS are not presented in literature yet. In our simulation, the VNS

lead was connected to an implantable pulse generator (IPG) and placed inside “MARTIN’s”

chest with neurologist guidance. The electromagnetic field distribution changes in the simu-

lated child, with and without a VNS implant, were assessed using a head transmit coil at 1.5T,

as per similar labeling for adults [42].

Table 1. List of pediatric whole-body models currently available.

Model Name Charlie Nina Roberta Korean Child

model ETRI

UF Family of

reference hybrid

phantoms

GSF Family

(Baby,Child)

Pediatric xCAT

phantoms

Chinese family

phantom USTC

Year of model

released

2014 2014 2014 2009 2010 2003 2015 2017

Imaging

modalities used

GSF family,

Baby [29]

Roberta [21] MRI MRI CT CT PET-CT RPI mesh

phantom [30]

Age imaging

scans used for

segmentation

Eight-week-

old

3-year-old 5-year-old 7-year-old Newborn, 1-,5-

and 10-year- old

Eight-week-old

and 7-year-old

Newborn,1-,5-,10-

,15-year-old

5-, 10-,15-year-

old

Number of

tissue varieties

45 tissues 75 tissues 78 tissues 44 tissues 47 tissues 41 tissues 64 tissues 50 tissues

Segmented both

white- and grey-

matter

Yes Yes Yes Yes No No No No

Morphing or

adjustments

used

No Yes No Yes Yes Yes Yes Yes Database: 50th

percentile

population

Method of

validation

Anatomical

knowledge

Anatomical

knowledge

Anatomical

knowledge

Comparison with

the physiques

measurement of

reference models

Comparison with

the physiques

measurement of

reference models

Comparison with

the physiques

measurement of

reference models

Comparison with

the physiques

measurement of

reference models

Comparison with

the physiques

measurement of

reference models

Is the model

freely accessible

to the research

community

No No No No Yes, upon request Yes, upon request No Information not

available

References/

company

Petoussi-

Henss et al.,
2002 [29]

/IT’IS [21]

IT’IS [21] IT’IS [21] Lee et al., 2009

[31]

Lee et al., 2010

[32]

Petoussi-Henss

et al. 2002 [29] /

Helmholtz

Zentrum

München

Segars et al., 2015

[33, 34]

Pi et al., 2017 [35]

https://doi.org/10.1371/journal.pone.0241682.t001
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In summary, we have introduced MARTIN, a 29-month-old boy whole-body model, which

includes 86 segmented tissues, segmented directly from MRI and CT images of a 29-month-

old child, and was validated using three separate approaches. We show an example of RF safety

simulations with MARTIN by preliminarily studying the case of a vagus nerve stimulation

(VNS) implant in a 1.5 Tesla MRI.

2. Materials and methods

The numerical model

Subject and data acquisition. A 29-month-old male (height: 86.1 cm, weight: 13 kg) was

selected based on adequate image quality and lack of anatomical abnormalities in the CT and

the MRI images (Fig 1) as well as the availability of multiple sequences that would facilitate the

segmentation process (Fig 2). Subjective image quality was assessed by two experienced, sub-

specialty certified neuro-radiologists with over 20 years of experience, P.E.G. and M.H.L., and

images with adequate diagnostic quality, and without abnormal anatomy were selected to rep-

resent a healthy 29-month-old child. Images were retrieved from the picture archiving and

communication system (PACS) database at Boston Children’s Hospital. The data were

acquired under IRB written approval (The Boston Children’s Hospital Institutional Review

Board and The Partners Human Research Committee) and in compliance with the health

insurance portability and accountability act (HIPAA). The study protocol received approval

by the Boston Children’s Hospital (BCH) Institutional Review Board, which waived the need

for written informed consent due to the study’s retrospective nature.

The MRI data included both T1 and T2 weighted sequences were acquired with a SIEMENS

TRIOTIM 3T scanner (SIEMENS Healthineers, Erlangen, Germany) from the top of the skull

through the toes (Table 2). The CT scans were acquired on a SIEMENS SOMATOM DEFINI-

TION FLASH (SIEMENS Healthineers, Erlangen, Germany) that covered the partial-head and

neck (Table 2).

Fig 1. Structural MRI and CT scans used for segmentation. Several sequences with different resolution and contrast

were used for the segmentation of different tissues. For example, MPRAGE, a T1 weighted image, was useful for the

segmentation of brain structures while T2 Flair was used for the segmentation of the arteries and veins of the brain and

Radial VIBE with a gadolinium-based contrast was used for the segmentation for the vessels of the lower extremities.

CT was used for the segmentation of the cortical bone of the pelvis and the core, as well as the base of the skull.

Inversion Recovery was useful for the segmentation of the CSF and the Vitreous body of the eyes. HASTE was initially

for segmenting the kidneys and the CSF of the spinal cord as well. T2 Fast Spin Echo offered a good outline of the

anatomy of the intervertebral disc. All the different tissues were finally referred to the whole body T1 space, while T1

was used for their manual refinement.

https://doi.org/10.1371/journal.pone.0241682.g001

PLOS ONE A high-resolution open source whole body pediatric model for numerical simulations

PLOS ONE | https://doi.org/10.1371/journal.pone.0241682 January 13, 2021 4 / 31

https://doi.org/10.1371/journal.pone.0241682.g001
https://doi.org/10.1371/journal.pone.0241682


PLOS ONE A high-resolution open source whole body pediatric model for numerical simulations

PLOS ONE | https://doi.org/10.1371/journal.pone.0241682 January 13, 2021 5 / 31

https://doi.org/10.1371/journal.pone.0241682


Data co-registration. Co-registration between different sequences and modalities was

done using an extension tool in 3D Slicer, an open-source software platform [46].

i. Registration between MRI sequences. Linear registration (six affine degrees of freedom as

rotation in x, y, and z and translation in x, y, and z) was done between MRI sequences using

the whole-body coronal T1 image as a reference volume. For the registration of the

MPRAGE, the details of the brain structures and non-brain structures were extracted using

the Brain extraction tool (BET) in FMRIB Software Library (FSL) [47] to improve the align-

ment of the brain.

ii. Registration between CT and MRI. First, the linear registration (six affine degrees of free-

dom as rotation in x, y, and z and translation in x, y, and z) was used to align the CT image

into the reference MRI image volume. The linear registration provided a starting point for

the non-linear registration between the reference MRI volume and CT volume. Second, the

non-linear registration was applied, since the subject was CT imaged in a different posture

from the original MRI acquired six months before. The non-linear registration was done

using the 3D Slicer extension tool, Elastix [48]. The reference volume in MRI was first to

cut into the equivalent volume as three parts of the CT volume and registered into the CT

volume. The warping matrix was then inverted and applied to the CT volume for the regis-

tration into reference MRI volume. Fig 3 shows the sagittal view of T1 MRI with the regis-

tered CT chest and neck.

Segmentation process. Images from a whole-body 3T MRI were used to segment the soft

tissues, including the uncalcified part of the bones. CT images of the lower head, chest, and

Fig 2. Flow chart–process of the segmentation. The first step was to select a male patient with available whole-body

sequences without major deformities as well as multiple sequences that would facilitate the segmentation process. We

then pulled all the available MRI and CT scans from the database of the Boston Children’s Hospital. The meticulous

process of the segmentation of the different tissues of the body was slightly differentiated for the brain and the non-

brain tissues. For the segmentation of the brain structures, an automated infant-specific data processing framework

was used, and the result was reviewed by two subspecialized neuroradiologists. Non-brain tissues were segmented

using different sequences by two MDs, and the volumes and the weights of the segmented tissues were compared with

the values from the literature. When the agreement was achieved between the operators and the tissues were aligned

with the surrounded segmented tissues, the two sub-specialty certified neuroradiologists confirmed the result

following a “pass or fail” process through an interactive process. The tissues that were scored with a “pass” were then

finalized. Given that gradually more and more tissues were added to the segmentation project, some of which were not

available when the first of the tissues were segmented and finalized, all the tissues were put together in the reference T1

sequence, and the model was again confirmed by the two neuroradiologists.

https://doi.org/10.1371/journal.pone.0241682.g002

Table 2. MRI and CT sequence parameters that were used for segmentation.

MRI Name of sequence Resolution (mm) TR (ms) / TE (ms)/ TI (ms) / FA (˚) FOV (mm) NSA

MPRAGE 0.86 × 0.86 × 1.0 1130/2.22/800(TI)/9 256 × 256 1

T2 FLAIR 0.63 × 0.63 × 5.0 9000/137/2500(TI)/150 320 × 288 1

T2 Fast Spin-Echo 0.88 × 0.88 × 5.2 2000/84/120 320 × 168 4

Inversion Recovery 0.68 × 0.68 × 4.0 5000/107/200(TI)/125 384 × 277 1

T1 Spin Echo 0.68 × 0.68 × 4.0 769/9.4/75 384 × 307 1

Volumetric interpolated breath-hold examination (VIBE) 1.33 × 1.33 × 4.0 3.77/1.71/12 256 × 256 1

Echo Planar Fast Spin Echo (HASTE) 1.33 × 1.33 × 4.0 750/53/160 256 × 143 1

Radial VIBE 1.4 CC GADAVIST 1.02 × 1.02 × 4.0 3.78/1.85/12 260 × 260 1

CT SOMATOM definition FLASH Resolution (mm) CT dose index FOV (mm) NSA

CT of neck 0.18 × 0.18 × 2.0 1.53 512 × 934 1

CT of chest 0.29 × 0.29 × 2.0 2.30 512 × 567 1

CT of abdominal 0.30 × 0.30 × 2.0 3.71 512 × 904 1

https://doi.org/10.1371/journal.pone.0241682.t002
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abdomen were used to segment the calcified bones (Fig 1). Segmentation of the brain struc-

tures (Fig 4) was done on brain MRI using an automated infant-specific data processing

framework developed by Zöllei et al. [49]. They designed a multi-atlas label fusion segmenta-

tion framework [50] where the ground-truth information from a labeled training data set

could be used for the segmentation. Further details about their automated tools can be found

in the literature [49]. Minor manual edits to the automatic segmentation were done to correct

errors and improve the outcome of the automated segmentation process (Fig 5). In particular,

the misalignment of the grey matter boundary was refined to obtain accurate CSF and menin-

ges boundaries around the grey matter. All the tissues that were not segmented using the auto-

mated infant-specific data processing framework (Artery, Vein, claustrum in white matter,

Septum pellucidum, CSF, meninges, Cranial Nerves-II, V, VIII, IX) were manually segmented

(Fig 6).

Segmentation of the labels for non-brain anatomical regions of interest was performed

using 3D Slicer [46]. Two additional tools were used to segment the upper skull that was not

CT scanned [51, 52]. The upper skull was combined with the lower mandible that was seg-

mented from CT volume and processed with manual refinement for higher accuracy by the

two MD segmentors (G.N. and M.A.), who employed 3D Slicer for all the manual segmenta-

tion by tracing the boundaries of each tissue or organ on each slice section. IR sequence was

used in the region of the spine (Fig 7). Since both the arteries and the veins were lacking any

MRI contrast in the given sequences, especially in the head, a knowledge-based segmentation

was done for the vessel segmentation (Fig 8). Finally, all the tissue labels were overlaid and

inspected in the reference image space to avoid the intersection between segmentation labels

and any empty space without a label (Fig 9). Remaining empty holes and unlabeled islands

that were not detected during the segmentation were found and replaced with the label of the

Fig 3. MRI and CT registration. Coronal view of the co-registered MRI and CT Flash neck. The contrast of skull and

bone, e.g., vertebrae, ribcage, was higher in CT, while the brain, e.g., WM, GM, was enhanced in MRI.

https://doi.org/10.1371/journal.pone.0241682.g003
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Fig 4. 3D surfaces of the brain and its subcortical areas (created by automatic segmentation algorithm). 1) Left-Cerebral-Cortex, 2) Left-

Cerebellum-Cortex, 3) Left-Thalamus, 4) Left-Caudate, 5) Left-Cerebral-White-Matter, 6) Lateral ventricle, 7) Left-Accumbens-area, 8)Left-Putamen, 9)

Left-Amygdala, 10) Left-Hippocampus, 11) Pons, 12) Medulla, 13) Left-Pallidum, 14) Vermis, 15) Left-Cerebellum-White-Matter, 16) 3rd-Ventricle, 17)

Left-Ventral diencephalon (DC), 18) Midbrain, 19) 4th Ventricle. See S1 Table in S1 File for the list of tissues segmented by an automatic segmentation

algorithm [42].

https://doi.org/10.1371/journal.pone.0241682.g004

Fig 5. Outlining the cortical bone segmentation process from CT. (a) coronal section of the CT centered on the hips

and pelvis, (b) the results of the semi-automatic threshold-based segmentation of the cortical bone (step ii), (c) the

results of smoothing with a median filter with a kernel size of 5mm (step iii), and (d) the final segmentation result after

manual refinement of the cortical bone (step iv).

https://doi.org/10.1371/journal.pone.0241682.g005
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tissues that dominated the neighborhood using MATLAB (MathWorks, Natick, USA). The

analysis and visualization of medical images were done with ANSA (BETA CAE Systems, Swit-

zerland), 3D Slicer [46], and FreeSurfer [53–55].

Fig 6. Segmentation of brain structures (manual refinement of automatic segmentation) and vessels. (a.) Axial, (b)

sagittal, and (c) coronal views of the brain structures segmentations displayed on the MPRAGE. (d) and (e) show 3D

surfaces of the brain and subcortical areas, respectively. Structures of interest: 1. Brain Grey Matter; 2. Brain White

matter; 3, Caudate; 4. Lateral Ventricles; 5. Septum Pellucidum; 6. Internal capsule; 7. External Capsule; 8. Putamen; 9.

Globus Pallidus; 10. Thalamus; 11. Cerebral Vein; 12. Cerebral Artery; 13b. Optic nerves; 13c. Optic nerves; 14.

Hypothalamus and chiasm; 15. Mamillary bodies; 16. Epiphysis; 17. Ventral Diencephalon; 18. Midbrain; 19. Pons; 20.

Medulla; 21. Vermis (Gray Matter); 22. Cerebellum White Matter; 23. Cerebellum Gray Matter; 24. Pituitary; 25.

Nucleus Accumbens; 26. 4th Ventricle; 27. 3rd Ventricle; 28: Amygdala.

https://doi.org/10.1371/journal.pone.0241682.g006

Fig 7. Segmentation of the spinal cord and vertebrae. (a) Sagittal view of the CT image used for the segmentation of

the vertebrae. Arrows on the right were pointing anatomical structures included in the image and represented in the

3D reconstruction while anatomical locations were also marked on the left side. (b) Coronal view of the T2 image used

to segment the intervertebral disks and the vertebral bone marrow, as shown with the 3D reconstruction on the right

side. (c) Sagittal view of the IR used to delineate the spinal cord and the surrounding cerebrospinal fluid (CSF).

https://doi.org/10.1371/journal.pone.0241682.g007
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Fig 8. Vessel segmentation in 3D representation. a. Large arteries of the legs and their main branches. i. External

Iliac Artery and vein, ii. Deep Femoral Artery and Vein of the thigh, iii. Femoral Artery and Vein, iv. Popliteal Artery,

v. Peroneal vessels, vi. Anterior tibial vessels, vii. Great Saphenous Vein, viii. Lesser saphenous vein. b. Proximal large

veins (blue) and arteries (red) of the brain and neck: 1. Superior Sagittal Sinus, 2. Internal Cerebral Vein, 3. Vein of

Galen, 4. Straight Sinus, 5. Transverse Sinus, 6. Sigmoid Sinus, 7. Torcula, 8. Basal Vein of Rosenthal, 9. Internal

Jugular Vein, 10.Vertebral Artery, 11. Basilar Artery, 12. Internal Carotid Artery, 13. Middle Cerebral Artery and main

branches, 14. Anterior Cerebral Artery and main branches, 15. Posterior Cerebral Artery, 16. Arteries of the neck.

https://doi.org/10.1371/journal.pone.0241682.g008

Fig 9. Coronal view of the whole-body segmentation. 1. Cerebrospinal Fluid, 2. Superior Sagittal Sinus, 3. Transverse

sinus, 4. Air in the Mastoid, 5. Brain Grey Matter, 6. Brain White Matte, 7. Cerebellum White Matter, 8. Cerebellum

Gray Matter, 9. Vermis, 10. Thalamus, 11. Hippocampus, 12. Skull, 13. Vertebrae, 14. Intervertebral Disc, 15. Humerus

Cartilage, 16. Humerus Bone, 17. Humerus Bone Marrow, 18. Radius, 19. Ulna, 20. Metacarpal bone, 21. Proximal

Phalanges, 22. Femur Bone Marrow, 23. Femur Bone, 24. Tibia, 25. Trachea, 26. Esophagus, 27. Aortic trunk, 28.

Lungs, 29. Heart, 30. Liver, 31. Gallbladder, 32. Pancreas, 33. Stomach, 34. Large Intestines, 35. Small Intestines, 36. Air

in the Small Intestines, 37. Intra-abdominal fat, 38. Bladder, 39.Penis (Corpus cavernosum, Corpus spongiosum), 40.

Testis, 41.Vessels of lower extremities, 42.Fat, 43.Connective Tissues, 44.Muscle, 45.Skin, 46.Subcutaneous Fat, 47.

Secondary Ossification Center, 48. Spleen, 49. Meninges.

https://doi.org/10.1371/journal.pone.0241682.g009
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The validation

The Dice similarity coefficient (DSC) and Hausdorff distance were used to assess the inter-

operator variability (Fig 10). The DSC allowed one to compute the level of agreement between

different segmentations and was used to compare manual and automated image segmentation

[56, 57]. Since DSC results can be biased in the evaluation of the segmentation of a large vol-

ume (i.e., liver) [58], we also estimated the Hausdorff distance, which measures the distance

between two segmentations of the same tissue provided information on intra- and inter-opera-

tor variability. Both DSC and Hausdorff distance were measured in 11 different tissue com-

partments (Bladder, Right Humerus, Right Kidney, Spleen, Air, Vitreous Humour, Heart, Left

Femur, Left Femur Cartilage, Liver, Lung) among the segmentations of the three trained seg-

mentors (one more segmentor participated in providing statistical information). The resulting

values were compared with labels already adjusted and confirmed by certified neuro-radiolo-

gists, P.E.G. and M.H.L. through an iterative process, which provided the most accurate

Fig 10. Inter-operator variability. (Top) Example of variability among segmentor A (red), B (green), and C (yellow)

for a few representative structures in the body. (Bottom) Box plots of the values of DSC and Hausdorff distance for the

11 structures were included in the analysis. The variabilities were assessed by comparing each segmentation with a

ground truth obtained via two CAQ subspecialized neuro-radiologists.

https://doi.org/10.1371/journal.pone.0241682.g010
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information of the MRI and CT segmentations without a bias. The following DSC definition

was used:

DSC ¼
2jX \ Yj
jXj þ jYj

where X is the manually labeled region by one of our trained segmentors, Y is the region of

interest volume that was confirmed as a ground truth by certified neuro-radiologists, P.E.G.

and M.H.L., also through an interactive process [21]. DSC ranges from a value of 0 to 1, greater

than 0.8 was considered as acceptable, whereas 0.9 was considered excellent.

The measured values of dimensions and volume of each tissue compartment were com-

pared with literature values [28, 59–65]. Furthermore, in order to estimate the weight of each

tissue compartment, we multiplied the tissue density taken from IT’IS database [23] with the

volume of the tissue compartment. Segmented tissues were then adjusted and confirmed inde-

pendently by certified neuro-radiologists, P.E.G. and M.H.L, also through an iterative process,

following a “pass or fail” method. When both raters scored each tissue with “pass”, the segmen-

tation was finalized.

A Bloch simulation tool kit in Sim4Life [66] called SYSSIM was used in order to generate a

synthetic MRI image for additional validation. The results of B1
+ and E-fields at 3T (same as

the base MR data) were resampled to the isotropic resolution of 0.8 mm × 0.8 m × 0.8 mm and

fed into the T1- and T2- relaxation times and proton density tissue properties at 3T that were

obtained from the literature [67–74]. The matching between the MRI image and the SYSSIM

results was assessed using the mean-squared-error (MSE) and the cross-correlation.

The pilot use case for MRI RF safety simulation

Surface extraction. Surface meshes were generated from a voxelized model by simplifying

and smoothing of triangulated surfaces using a package Mesh toolkit in Sim4Life. In this pro-

cess, we could achieve the reduction of model data size to an affordable level (reduction from

4.1 GB to 530 MB). Before the surface extraction, the segmentation project was finalized to the

condition that any intersections between adjacent labels were removed by the Boolean subtract

operator, and gaps between tissue labels were filled by the surrounding and prevalent tissue as

described in the segmentation process section. Once a surface was extracted, curvature

smoothing was applied using a constrained Laplacian surface smoothing method with small

tolerance using geometric flow that prevents volume shrinking [75]. The methodology

includes the self-intersection check function that any smoothing in the vicinity of self-intersec-

tion to be reverted and collapse the short edges and edge flips [16, 76]. Remaining self-intersec-

tion and non-manifold elements in the individual meshes were cured again using a Mesh

Doctor tool in Sim4Life.

Tissue properties. Several studies have reported the variation of dielectric properties with

age due to the change in the water content of tissues [77–79], resulting in both decreases in the

value of the conductivity and permittivity with age. Previously, Peyman et al. reported changes

in the conductivity across different rats ages due to a decrease in the tissue water content [79,

80]. The dielectric properties of 29-month-old tissues were estimated using the method of

Dimbylow et al. [81] by scaling the adult tissue properties chosen from the IT’IS database [22,

23]. The conductivity and permittivity scaling factors for six reported tissues at 130 MHz in

Peyman’s study were computed as the ratio between adult rat and the ten days old rat, which

corresponds to three human years for a rat [79, 80]. To estimate the scaling factor of non-

reported soft tissue properties of the body averaged scaling ratio among four soft tissues was

used except the skin and the bone that was treated as an outlier [36]. The dielectric properties
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of air, bile, blood, CSF, intestine contents, urine, aqueous humour, and vitreous humour were

not accounted for changing with age [36, 81]. The conversion ratio between adult rats and ten

days rat was estimated at 130 MHz, which was the lowest frequency measured in Peyman’s

study [79, 80]. According to J. Wells et al., the variation of tissue density with age is relatively

small for lean tissues (1.7% lower for the 5-year-old than adult lean tissue density) [82]. The tis-

sue densities used in our simulations are from the tissue density database in IT’IS [23].

A pilot use case for MRI RF safety simulation. An MRI RF safety simulation was per-

formed on MARTIN by implanting VNS electrodes to illustrate how safety simulation studies

may be conducted. The simulation consisted of estimating the electric field (E-field) distribu-

tion and the specific absorption rate (SAR). Examples of simulations followed the newest

(2018) International Organization for Standardization Technical Specification (ISO/TS) 10974

–assessment of the safety of magnetic resonance imaging for patients with an active implant-

able medical device [83]. Sim4Life (ZMT, Switzerland) was used to solve the Maxwell equation

at 64 MHz using the finite-difference time-domain (FDTD) method [84]. 16-rung high-pass

birdcage coil (diameter: 290 mm, length: 290 mm) tuned to 64 MHz (S11 < -14 dB) and was

used to generate a B1 transmit field with circularly polarized mode with an RF shield [85] (Fig

11). MARTIN was used to calculate the EM field at 1.5 T, and the head was positioned at the

center of the coil. The position and trace of the vagus nerve were registered from MIDA head

and neck model [16] into MARTIN using the Elastix tool kit in 3D Slicer [46, 48]. Two cuff

electrodes (cuff design with diameter: 1.4 mm, length: 1 mm, thickness: 0.3 mm) were posi-

tioned to surround the nerve, and the third anchoring VNS electrode was ignored in EM simu-

lation (Fig 12). The lead trajectory followed the outline from the CT images and was also

overseen by a neurologist, J.P. The insulation layer was added along with the lead, which

entirely covered the lead. The diameter of the lead was 1 mm, and the insulation was 0.5 mm

thick. The smallest size of the grid (0.3 mm) was set around the VNS implant to allow for a

Fig 11. The MARTIN pediatric model with head birdcage coil in 1.5 T. The head of the model is positioned at the center of

the high-pass birdcage coil tuned at 1.5 T.

https://doi.org/10.1371/journal.pone.0241682.g011
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continuous connection between electrodes and IPG while entirely wrapping the lead with

insulation using a manual grid setting in Sim4Life. The dynamic grid resolution was used on

the rest of the body, that had at least a 2 mm grid resolution on the body and a 1 mm grid reso-

lution on the head [86]. The case without an implant was computed to estimate the contribu-

tion of the RF heating induced by the VNS implant. We studied the RF heating in a typical

clinical scan [87] using the regional averaged SAR (in the head and whole-body), and 10g aver-

aged SAR (10gSAR). The field magnitude was normalized to the B1
+ (B1

+ indicates the

counter-clockwise rotational component of the transmit magnetic field) equals to 2μT at the

coil center, to simulate a 90˚ flip angle with a rectangular pulse of 3 ms duration [88]. The EM

fields were also normalized to the 3.2 W/kg SAR in the head to assess the RF heating, while we

reported the rms E-field averaged over 10g mass [83].

3. Results

The numerical model

The MRI data (Fig 1) from the T1 weighted, T2 weighted, MPRAGE, Inversion Recovery,

HASTE, and VIBE allowed to successfully segment 86 tissues including brain structures, CSF,

skull, vessels, eyes, kidneys, lungs, stomach, heart, muscle, skin, subcutaneous fat (SAT), spinal

cord, cortical bone, bone marrows, and other soft tissues in the whole-body in MARTIN.

Table 3 shows the list of segmented tissue compartments, some of which are also shown in Fig

9 with the coronal slice of the segmented tissues in the whole-body with the color-coded map.

Segmentation of the brain structures. The results of automated-segmentation in the

brain structures are shown in Fig 4, resulting in 17 different labels of the brain parenchyma

(Brain Grey Matter, Brain White Matter, Cerebellum Grey Matter, Cerebellum White Matter,

Ventricles, Thalamus, Caudate, Putamen, Pallidum, Hippocampus, Amygdala, Accumbens

Area, Ventral DC, Vermis, Midbrain, Pons, Medulla) finely segmented (Fig 4; S1 Table in S1

File). High importance was given in achieving a highly detailed segmentation of the brain. As

a result, the output of the automatic segmentation was manually adjusted, and some additional

structures were included through an iterative process. Those structures were the cranial nerves

Fig 12. The MARTIN pediatric model with the position of the VNS. (a) pulse generator (IPG), (b) Vagus nerve, (c) lead, (d)

Electrodes, (e) insulation (bottom).

https://doi.org/10.1371/journal.pone.0241682.g012
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(CN II, V, VIII, IX), the hypothalamus, the pituitary gland, the pineal gland, the mammillary

bodies, the white matter of the cerebellar vermis, the septum pellucidum, the veins and the

arteries of the brain, the CSF and the meninges (Fig 6). The addition of the septum pellucidum

to the segmentation affected the initial labels of the lateral ventricles, which were manually

adjusted. Furthermore, the white matter was manually segmented for some gyri of the anterior

frontal lobes and the external capsule, which also led to the manual refinement of the neigh-

boring part of the putamen. The adjustment of the posterior genu of the internal capsule led to

some changes in the automatic segmentation result in the globus pallidus and the thalamus

bilaterally. White matter tracts from the cerebellar vermis and the lateral hemispheres were

also manually added using the 3D Slicer software (Fig 6).

Segmentation of the non-brain structures. Semi-automatic techniques followed by man-

ual adjustment through an iterative process were applied for the segmentation of all the tissues of

MARTIN, except for the brain structures, the segmentation process of which was described above

(S2 and S3 Tables in S1 File). Multiple sequences were used for the more challenging type of tis-

sues as the blood vessels running inside the skull for which T2 Flair images were first consulted.

The result was superimposed onto the T1 weighted MPRAGE sequence that was used for the seg-

mentation of the brain structures. The final adjusted result was projected onto the whole body T1

in order to ensure the alignment with the rest of the tissues of the head (Figs 6 and 8). A knowl-

edge-based segmentation was done for parts of the vessels that were lacking given MRI contrast.

VIBE sequence with contrast was used to keep track of the vessels of the lower extremities during

the segmentation, of which we did not differentiate the arteries from the veins. The tissues were

finalized after achieving intra-operator agreement, inter-operator agreement, and once they were

adjusted and confirmed by the two neuro-radiologists through an interactive process and were

well aligned with the neighboring tissues (Fig 2). Fig 8 shows a 3D reconstruction of the volume

of the vessels of the brain, the neck, the thorax, the abdomen, the pelvis, and the lower extremities

Table 3. List of all tissue segmented.

Accumbens area Eye Aqueous Humour Meninges (Brain) Skull

Adrenal gland Eye Cornea Meninges (Spinal cord) Skull (Bone marrow red)

Air head Eye Lens Midbrain Small Intestine

Air neck Eye Muscle Mucosa Spinal cord

Amygdala Eye Sclera Muscle Spleen

Bile Eye Vitreous Humour Muscle periocular Sternum

Bladder wall Fat between muscles Nasal Cartilage Stomach

Blood vessels body Gallbladder Optic Nerves Sublingual glands

Blood Vessels (Circle of Willis) Heart Pallidum Substantia Nigra

Bone Marrow (Red) Hippocampus Pancreas Teeth

Bones (Cortical) Hypothalamus Penis Testis

Brain Grey matter Intervertebral discs Pineal gland Thalamus

Brain White Matter Intestine Contents Pituitary Thymus

Caudate Intestine Gas Pons Thyroid

Cerebellum Cortex Intra-abdominal-chest FAT Prostate Tongue

Cerebellum White Matter Kidney Putamen Trachea and main Bronchi

Connective tissue Large Intestine Rib and vertebrae (Bone marrow red) Urine

Cranial Nerves (Large Branches II,V,VIII,IX) Liver Rib and vertebrae (Cortical bone) Veins of Brain

CSF (Brain) Long bones joint and femur cartilage SAT (Subcutaneous fat) Vermis Grey Matter

CSF (Spinal Cord) Lung Secondary ossification centers in long bones Vermis White Matter

Epididymis Mammillary body Septum pellucidum

Esophagus Medulla Skin

https://doi.org/10.1371/journal.pone.0241682.t003
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The validation

Brain CSF was initially segmented based on the IR sequence of the head. The initial CSF seg-

mentation was combined and reevaluated with the segmentation of the neural brain structures

and the vessels of the brain using the MPRAGE sequence. The final result was adjusted on the

T1 Spin Echo sequence to ensure the alignment with the bony structures of the head. After seg-

menting the meninges, outlining the border of the CSF with the brain and skull, the volume of

the CSF was calculated to be 108.7 cm3, 1.2% smaller than the literature values [60] (Table 4).

The heart was segmented on the whole-body T1 and was computed to be 56.7 g, which is

0.01% larger than the literature value. The liver was also segmented on the whole body T1 and

after outlining its border with the gallbladder (wall and bile) as well as after segmenting the big

vessels running through it. Its volume was estimated to be 335 cm3, which is within the literature

range of values (0%) for the age of MARTIN [61]. Regarding the spleen, the abdominal IR was

first consulted, and the final segmentation was performed on the whole body T1, having a volume

of 38.5 g, which is 4.1% larger than the literature value, while the longitudinal diameter had no

difference (0%) from the literature values [62]. The same process was followed for the kidneys for

which the left and the right kidney weighed 48 g and 48.6 g, respectively, being 4.2% and 3.3%

larger than the literature values. Adrenal glands were segmented after the segmentation of the

kidneys, and their combined weight was 6.19 g, which is only 0.01% different for the reference

values [89]. IR of the chest was first used for the segmentation of the thymus, and the tissue was

finalized using the whole-body T1, with its weight being 19.8 g, which is only 0.1% smaller than

the reference value. The same technique was used for the segmentation of the testis for which the

combined weight was 2.9 g that had no difference (0%) from the reference value [63]. The sternal

bone, which was segmented using the CT had no (0%) difference from the reference values.

Since a CT was not available for the extremities, the long bones were segmented using MRI

data. Some of the model’s measurements that were used for the adjustment and validation of

the segmentation process are shown in Table 4. In particular, the bone length ratio for the

humerus to the radius had 3.9% difference from the literature values, for the tibia to the femur,

Table 4. Validation table (absolute value of the difference between the measured value and literature value).

Tissue Measurement type Measured value Literature value Difference (%)

Adrenal glands (combined) Weight (g) according to age 6.46 g 6.2–6.7 g [28,59] 0%

Brain Weight (g) according to age 1052 g 1064 g [28] 1.1%

Brain CSF Volume (cm3) according to age 108.7 cm3 110–120 cm3 [60] 1.2%

Heart Weight (g) according to age 56.7g 56 g [28] 0.01%

Liver Volume (cm3) according to age 335 cm3 299.7–426.2 cm3 [61] 0%

Longitudinal dimension (mm) according to age and height 82.3 mm 85 mm [62] 1.6%

Spleen Weight (g) according to age 38.5 g 37 g [28] 4.1%

Longitudinal dimension (mm) according to age and height 70 mm 70 mm [62] 0%

Right Kidney Weight (g) according to age 48.6g 47g [28] 3.3%

Longitudinal dimension (mm) according to age and height 65.8 mm 61 mm [62] 3.8%

Left Kidney Weight (g) according to age 48 g 46 g [28] 4.2%

Longitudinal dimension (mm) according to age and height 68.8 mm 66 mm [62] 2%

Thymus Weight (g) according to age 19.8 g 20–38 g [28] 0.1%

Testes (combined) Weight (g) according to age 2.9 g 2.3–4.3 g [63] 0%

Sternal Bone Length (cm) according to age 10.2 cm 8–12.5 cm [64] 0%

Radius/Humerus Bone length ratio according to age 0.78 0.75 [65] 3.9%

Tibia/Femur Bone length ratio according to age 0.81 0.81 [65] 0%

Humerus/Femur Bone length ratio according to age 0.71 0.71 [65] 0%

Radius/Tibia Bone length ratio according to age 0.69 0.65 [65] 5.9%

https://doi.org/10.1371/journal.pone.0241682.t004
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and for the femur to the humerus, the ratio had no difference (0%) from the literature and

from the radius to the tibia the ratio was calculated 5.9% for the age of the patient.

The way that DSC was integrated into our validation system is demonstrated in the flow-

chart in Fig 2. The inter-operator variability indices (Fig 7) were calculated for each segmentor

independently and compared against the ground truth that was adjusted and confirmed by

certified neuro-radiologists through an iterative process [21]. The example of the segmenta-

tions done by segmentor A (red), B (green), and C (yellow) for nine representative organs in

the body is shown in Fig 10. The results of DSC and Hausdorff distance in 11 tissue compart-

ments were ranked as DSC = 0.94 ± 0.05 (mean ± SD) and HD = 0.54 ± 0.48 across segmentors

and over the representative tissue compartments (Table 5). The highest match (DSC > 0.99

and HD< 0.11) for all the comparison was found in the lung, and the lowest (DSC > 0.81 and

HD< 1.22) was found in the right humerus. The evaluation of the DSC showed that the intra-

operator variability was less than 20%, which indicated that the intra-operator bias was mar-

ginal (Table 5). The results of a Bloch Simulator (SYSSIM) were compared with the original

inversion recovery MRI data in Fig 13. The MSE between the original IR sequence and SYS-

SIM returned the value of 0.14 (in normalized and zero averaged intensities), which along with

the cross-correlation coefficient of 0.782 (See S3 Fig in S1 File for the cross-correlation plots)

indicates a high level of matching between the two images.

Table 5. Inter-operator variability across structures on the coronal slices.

Tissue type Dice Similarity Coefficient (DSC) Hausdorff distance—average (mm)

1 vs. GT 2 vs. GT 3 vs. GT 1 vs. GT 2 vs. GT 3 vs. GT

Bladder 0.91 0.92 0.92 1.31 1.14 1.14

Right Humerus 0.81 0.81 0.84 1.16 1.22 1.17

Right Kidney 0.89 0.89 0.89 1.29 1.34 1.40

Spleen 0.99 0.93 0.93 0.03 0.38 0.39

Air head and neck 0.96 0.94 0.98 0.23 0.55 0.18

Vitreous Humour 0.99 0.98 0.98 0.06 0.12 0.09

Heart 0.93 0.93 0.98 0.91 0.91 0.23

Left femur 0.98 0.97 0.99 0.34 0.45 0.04

Left femur cartilage 0.94 0.98 0.92 0.36 0.13 0.45

Liver 0.98 0.98 0.98 0.26 0.25 0.25

Lung 0.99 0.99 0.99 0.11 0.09 0.01

https://doi.org/10.1371/journal.pone.0241682.t005

Fig 13. SYSSIM results. (a) shows the axial view of the Inversion Recovery used in segmentation, (b) shows the results

of Bloch simulation, SYSSIM, using proposed voxel model, (c) shows the overlay between MRI image ((a), in

grayscale) and SYSSIM ((b), in colormap scale).

https://doi.org/10.1371/journal.pone.0241682.g013
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Pilot use case for MRI RF safety simulation

The dielectric properties of MARTIN’s tissues at 64 MHz and 128 MHz were shown in

Table 6. The highest permittivity ratios (i.e., adult rat vs. ten days old rat) were found in the

bone, the brain, and in the skin as 1.99, 1.33, and 1.29, respectively, compared to the averaged

soft tissue ratio of 1.22. The conductivity ratios of 2.4, 1.6, and 1.5 were calculated for the bone,

the brain, and the skin, respectively. The tissue property assignment for the tissues for which

no measurements have been published was shown in S4 Table in S1 File [16, 21, 23]. We stud-

ied the tissue density variation of 1.7% in the uncertainties table in (S5 Table in S1 File), and

found that the uncertainty budget is very small, < 0.03%/%, thus can be neglected [36]. The

head averaged SAR (SARhead), whole-body averaged SAR (SARwb), 10gSAR, and 10g averaged

rms E-field (10gE) of a pilot use case of MARTIN with and without a VNS implant are

reported in Table 7. The marginal difference was found in SARhead between MARTIN in 1.5T

without an implant (0.2046 W/kg) and in the case with a VNS implant (0.2064 W/kg) when

fields were averaged to 2μT at the center of the coil [88]. Similar results were found at the

SARwb, which were 0.0456 W/kg for MARTIN without an implant, 0.0462 W/kg for in the

case with a VNS implant. The results of a maximum 10gSAR were analyzed to assess the RF

heating in normal MRI operational mode [87] that reported 47% higher results of 10gSAR

(0.7137 W/kg) when a VNS implant was included in the simulation compare to the case with-

out an implant (0.4858 W/kg). Fig 14 shows the maximum intensity projection of 10gSAR

with and without a VNS implant. The highest 10gSAR was found in the side of the neck with-

out a VNS implant and near the VNS electrodes in the case with the VNS implant. In the case

of RF exposure limit in the normal mode head MRI, the maximum 10g|E| in the head was

shown 281.05 V/m near the electrodes in the case of VNS, which in this pilot example case.

(See the uncertainties analysis shown in S5 Table in S1 File, and an example of incident tan-

gential E-field calculation using for Tier 3 analysis in S1 Fig in S1 File). The uncertainties anal-

ysis based on Martin with a VNS implant shows a maximum 10g E-field sensitivity with Skin

conductivity (See S5 Table in S1 File). Finally, we compared the results of head averaged SAR

from Martin with the results using Nina model (Table 7), which were 0.2046 W/kg and 0.2068

W/kg, corresponding only to marginal variations of 1.06%. (See S7 Table in S1 File for the sim-

ulation results comparison between Martin and Nina with adult tissue properties [23]). Even

though the variations are marginal, the anatomical inaccuracies of Nina not present in MAR-

TIN, may lead to SAR peaks in mis-labelled tissue.

4. Discussion and conclusion

MARTIN model is developed as a computational model that has full body anatomical detail,

and that can be primarily used for investigating tissue interactions with electromagnetic fields

generated from the medical device as well as for the dosimetry studies of children around

29-month-old. An advantage of this study is the use of in-vivo medical images of a 29-month-

old child. Such images represent the age-appropriate development of the different tissue, such

as the brain, the CSF, the heart, the liver, the skull, the bone marrows, the finger bones, and

more that were difficult to account correctly when the model is morphed from older due to

the various development rate in each organ (Table 4; S2 Fig in S1 File). The validation meth-

ods of the model include an adjustment and confirmation by two neuroradiologists through

an interactive process to avoid personal bias [16, 21], as well as the metrics of physical mea-

surement (e.g., volume, length, weight) [31, 91]. The segmentation of the skull and deep-brain

structures may be useful for transcranial focused ultrasound modeling [92] and neuromodula-

tion application [93], and the presence of blood vessels can be valuable for accurate thermal

estimation in RF safety studies in MRI [94, 95].
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Table 6. Dielectric properties of 29-month-old at 1.5T and 3T.

Tissue Permittivity ratio a 29-month-old tissue Permittivity Conductivity ratio a 29-month-old tissue Conductivity

(S/m)

64 MHz 128 MHz 64 MHz 128MHz

Adrenal Gland 1.15 74.73 73.36 1.4 0.8810 0.8956

Air 1 1 1 1 0 0

Bile 1.0 105.44 88.9 1.0 1.4818 1.5764

Blood 1.0 86.44 73.16 1.0 1.2067 1.2486

Blood Vessel Wall 1.22 83.74 68.31 1.4 0.6010 0.6705

Bone (Cortical) 1.99 33.2 29.29 2.4 0.1429 0.1616

Bone Marrow (Red) 1.22 20.05 16.52 1.4 0.2161 0.2268

Brain (Grey Matter) 1.33 129.58 97.78 1.6 0.8174 0.9388

Brain (White Matter) 1.33 90.22 69.87 1.6 0.4664 0.5474

Cartilage 1.22 76.76 64.57 1.4 0.6329 0.6837

Cerebellum 1.33 154.75 106.05 1.6 1.1504 1.3270

Cerebrospinal Fluid 1.0 97.31 84.04 1.0 2.0660 2.1430

Connective Tissue 1.22 72.58 63.27 1.4 0.6641 0.6982

Dura 1.33 97.44 74.44 1.6 1.1307 1.2027

Eye (Cornea) 1.22 106.6 87.18 1.4 1.4008 1.4822

Eye (Lens) 1.22 61.41 52.21 1.4 0.4002 0.4378

Eye (Retina) 1.33 129.58 97.78 1.6 0.8174 0.9388

Eye (Sclera) 1.22 91.87 79.3 1.4 1.2357 1.2847

Eye (Vitreous Humor) 1.22 84.33 84.26 1.4 2.1044 2.1075

Fat 1.22 16.65 15.09 1.4 0.0926 0.0976

Gallbladder 1.0 87.4 74.14 1.0 0.9660 1.0418

Heart Muscle 1.18 125.69 99.42 1.4 0.9498 1.0726

Intervertebral Disc 1.22 62.78 60.63 1.4 1.1807 1.2043

Kidney 1.22 144.64 109.33 1.4 1.0378 1.1932

Large Intestine 1.22 115.49 93.42 1.4 0.8934 0.9873

Liver 1.22 98.28 78.39 1.2 0.5376 0.6131

Lung 1.22 45.26 35.95 1.4 0.4046 0.4419

Muscle 1.18 85.24 74.92 1.4 0.9635 1.0069

Nerve 1.22 67.18 53.76 1.4 0.4370 0.4953

Salivary Gland 1.15 92.71 91.38 1.4 0.9507 0.9644

Skin 1.29 118.9 84.41 1.5 0.6536 0.7841

Small Intestine 1.22 144.4 107.33 1.4 2.2280 2.3700

Spleen 1.22 134.88 101.13 1.4 1.0415 1.1693

Stomach 1.22 104.7 91.37 1.4 1.2290 1.2779

Tendon\Ligament 1.22 72.58 63.27 1.4 0.6641 0.6982

Testis 1.22 103.12 88 1.4 1.2388 1.2970

Thymus 1.22 68.09 66.95 1.4 0.8924 0.9032

Thyroid Gland 1.15 85.04 76.8 1.4 1.0896 1.1258

Tongue 1.22 91.87 79.3 1.4 0.9130 0.9620

Trachea 1.22 71.85 61.7 1.4 0.7398 0.7831

Ureter\Urethra 1.22 83.74 68.31 1.4 0.6010 0.6705

Urinary Bladder Wall 1.22 30.01 26.67 1.4 0.4023 0.4172

Urine 1.0 49.95 49.95 1.0 1.7500 1.7500

a. The permittivity (conductivity) ratio is the permittivity of the 29-month-old tissue/permittivity of adult tissue [23, 36, 79]. Dielectric parameters were based on

Gabriel dispersion relationship [90] and IT’IS database [23]. Values from similar tissues were assigned for tissues for which no measurement value have been published

[16, 23] (also see S4 Table in S1 File).
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The discussion follows the order of the workflow for the development, validation, and the

pilot use case of the model.

The numerical model

Image acquisition and pre-processing. A well-designed image acquisition plan would

allow the optimal condition of data required for the tissue segmentation [16]. However, the

special considerations on the pediatric population discourage unnecessary imaging due to the

potential need for sedation for motion control [96], and the risk on the pediatric subject

against radiation exposure [97]. In regard to MRI, the high-resolution and multiple image

Fig 14. Results of 10g averaged SAR. a) Maximum intensity projection of 10gSAR without an implant in 3D view and the

coronal, sagittal, and axial view, b) Maximum intensity projection of 10g averaged SAR in the case of a VNS implant in 3D view,

and the coronal, sagittal, and axial view (�EM simulation results were averaged to 2μT at the coil center [82]).

https://doi.org/10.1371/journal.pone.0241682.g014

Table 7. Specific absorption rate and 10g averaged rms E-field results of Nina and MARTIN at 1.5T using Tx/Rx head coil.

Nina in 1.5 T using Head Tx/

Rx coil (Head centered, No

implant)

MARTIN in 1.5T using Head

Tx/Rx coil (Head centered, No

implant)

MARTIN in 1.5T using Head Tx/

Rx coil (Head centered, with a

VNS implant)

Fields were averaged to 2μT at the

center of the coil [87]

Head averaged SAR

(W/kg)

0.21 0.20 0.21

Whole-body averaged

SAR (W/kg)

0.04 0.05 0.05

Whole-body maximum

10gSAR (W/kg)

0.48 0.49 0.71

Normalization factor

(V)

13.71 13.95 14.04

Fields were averaged to 3.2 W/kg

in the head (Scanner head

scanning limit) [83]

Maximum 10g rms E-

field (V/m)

176.54 165.45 281.05

Normalization factor

(V)

53.94 55.17 55.26

https://doi.org/10.1371/journal.pone.0241682.t007
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scans used in the production of high-resolution anthropomorphic adult models such as MIDA

[16] might not be an option in pediatric models. In particular, biological noise, anatomical

posture [98] (due to smaller bodies), motion [99], and behavioral performance (especially in

early age) may significantly affect the quality of pediatric models [99, 100]. Hence existing

scans in the data repositories such as the PACS medical technologies available in Hospitals

were used instead, which limits the available images (e.g., clinical images often lack isotropic

resolution). For this reason, most of the MRI sequences used in this study were not acquired

with the iso-resolution in all three-directions. The resolution of segmentation is binding to the

base medical image; thus, data resampling was required for all medical images used in segmen-

tation. Isotropic resolution of 0.5 mm was chosen; in this way, anatomical information cap-

tured in submillimeter resolution was accounted for details of small geometric changes while

the stair-cased effect between slides can be minimized.

Data co-registration. Data co-registration was required due to the use of images with

multi-regional sequences and different modalities. Inter-modal data registration was relatively

straightforward in the data acquired from the same subject. For example, MR images were

acquired in a single session where a child subject remained in the same posture. Thus, most of

the registration was related to the simple translation and rotation in 3D (x-, y-, z-). Whereas,

the registration of CT scan into MRI required a non-linear registration [48] on three CT sub-

sections: neck from C1 to T5 vertebrae, the chest between T6 and L5 vertebrae, and abdominal

below L5 vertebrae. The partial-body CT scan was conducted 5-month before the MR scan

that caused size difference within intra-subject data, and also the position of the subject, which

made it difficult to register the entire CT images into MRI at once. CT was still valuable infor-

mation to capture the boundary of calcified bone within the coverage of scan (e.g., hands and

legs were missing) followed by the final manual refinement based on the T1 whole-body com-

pleted the registration. The age of the model was determined by the time of the MRI scan, as it

was used for most of the segmentation and final refinement.

Data segmentation and labeling. The critical process of model development is data seg-

mentation and labeling. This includes the classification of the boundary of the tissue and the

assignment of the correct single label to each region based on anatomical atlases. Automatic,

semi-automatic, and manual segmentation can be used, and the accuracy of the segmentation

was determined by a function of the base image resolution, the contrast offered by sequence

and modality, the signal-to-noise ratio, the presence of artifact (motion and system), and the

co-registration of data. The automated segmentation process offers a reduced time of work

and also provides an opportunity for one to separate anatomical regions with limited knowl-

edge of anatomical atlases (e.g., separation of white matter and gray matter using T1 and T2

contrast in MRI). Although, the accurate segmentation of complex structures was challenging

to be solely determined by an algorithm without continued supervision and feedback by an

expert in anatomical atlases due to unclear boundaries, signal inhomogeneities, and noises.

Thus, an addition of knowledge-based refinement on automatic segmentation was required.

The validation

The adjustment and confirmation using DSC and the Hausdorff distance estimation during

segmentation and the oversight by neuro-radiologists were extremely valuable as feedback in

the editing loop that led to minimizing the errors in labeling and the accurate segmentation of

the boundaries of various tissues. Furthermore, the adjustment and confirmation with metrics

from literature (Table 4) show the great agreement in terms of length, volume, and mass.

Although these results were not made by a single trial of segmentation, they were rather

achieved after the multiple stages of trials and errors and interactive processes (Fig 2). For
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instance, the segmentation of CSF in the brain was not trivial due to the close proximity of the

extra-axial CSF to the brain tissue and the skull. The boundary of CSF was initially estimated

by IR data, which led to an overestimation of the CSF region of boundary since the contrast

changes between CSF and grey matter were not as dramatic as the T1-weighted sequence. As a

result, CSF took over the cortex of the brain when two labels were inspected together in the

T1-weighted reference image. Alternatively, we followed the previous study [101] that sug-

gested a method to fill all the empty space between the skull and the cortex of the brain, which

only fitted to the value when CSF and meninges considered as a single label [101] but deviated

from other literature values that CSF and meninges were considered separately (12.2% differ-

ence) due to the presence of meninges on the CSF label. To tackle this issue, we created a thin

layer of tissue outlining the inner surface of the skull and the surface of the brain cortex, and

we subtracted this tissue layer from the cumulative label that was generated in the filling

method. After separating the meninges from the CSF, the discrepancy between the measured

volume of CSF and the literature value was only 1.2%. As a final verification step of the CSF

segmentation, the initial segmentation done via IR data was used to confirm the anatomical

location of our CSF label in the 3D space. The improvement in CSF segmentation results high-

lights the importance of adjustment and confirmation against the values reported in the litera-

ture. Both the brain and the CSF of the head volumes were calculated to have slightly lower

values compared to the literature (1.1%, and 1.2%, respectively), which supports the accuracy

of their relative size. It is also important to mention that the reference used provided absolute

values for the weights of those tissues and not a normal range, which implies that it is highly

likely that the scans belonged to a subject with a slightly smaller head size.

The CT data were a useful source to determine the boundaries of cortical bones. However,

skull boundary detection was challenging since the CT images did not fully cover the head due

to the safety limit made to protect a child’s brain exposure against ionizing radiation. Thus, the

upper skull boundaries were extended from the CT of the mandible and required the aid of

dedicated skull segmentation tools as a starting point of segmentation [52, 102]. An extensive

amount of manual refinement on the skull was still required due to marginal errors on regis-

tration between MR and CT, and the estimation done by the automated skull segmentation

tool. The process of filling the unexpected holes in the skull along with the inspection of the

relationship of the skull with the neighboring tissue labels (e.g., SAT, CSF) was done thor-

oughly several times. The results of the bone segmentation could have been improved if only

the CT data included the extremities by design. Similar to the skull segmentation, knowledge-

based segmentation using the whole-body T1 MRI sequence was done for the segmentation of

the small-sized bones, such as the carpal, and tarsal bones, fingers, and toes where CT scans

did not cover these areas. The small-sized bones lack clear contrast in MR sequences (e.g.,

T1-weighted, IR sequences), which showed a degree of limitation as to the relative lengths of

the radius/tibia (5.9%), and radius/humerus (3.9%) segmentation shown in the confirmation

process using literature values in Table 4. Multiple references were used for hand bones and

other regions and other limbs [65, 103, 104] to increase the confidence in the segmentation of

extremity bones in MR data (S2 Fig in S1 File). Given the limitations mentioned above, we

achieved a high-quality segmentation, as shown by the relative sizes of the humerus/femur and

the tibia to the femur, which showed no difference (0%) compared to literature values. The

detail of the process followed was also represented by the result of the segmentation of the

bones of the hand, which matched the age of the child when compared to the gold standard of

the digital atlas of skeletal maturity [104]. Also, unique pediatric tissues specific for this age

were segmented as the ossification centers of the long bones.
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Limitation on segmentation

Limitations of our study include the resolution along the z-direction of the model (toe to head)

and the segmentation of boundaries between organs. The base image resolution along the z-

direction was the range between 1.0 mm to 5.2 mm. Acquiring high-resolution data requires a

proportionally longer amount of scan time; for that reason, the state-of-the-art fast scanning

method may be considered in order to acquire the image for our segmentation project [105–

108]. The segmentation of boundaries between organs was challenging despite the available

specialized sequences. All the sequences were co-registered to the whole-body T1 image. How-

ever, it was difficult to achieve 100% accuracy of registration due to the physiological noise,

artifacts from motion, different spatial and contrast resolution between sequences, and the

lack of signal in certain regions such as a nasal cavity, CSF, cortical bones, and skin. As a result,

a requisite amount of time was invested into the adjustment of segmentation and inspecting

any overlap of tissue labels that were initially segmented using different sequences. Vessel seg-

mentation is an excellent example of a challenge on the intersection between segmentation

and boundary detection as it is touching and travels through the various organs in the body.

Also, the CT data has a 5-month time lag compared to the MR data as the MR and CT images

used for the segmentation were clinical recordings obtained from the PACS system of Boston

Children’s Hospital. We could not find in our PACS system a patient without a distinctive dis-

ease that could affect its anatomy to have whole-body MRI and also CT scans at the same time.

The CT data were morphed to aid manual segmentation of the mandible, the vertebrae, and

the rib cage, while the MRI scans were used to segment most of the bones, such as the Radius,

Tibia, Ulna, and many others (see S2 Table in S1 File). All of this initial segmentation was

reevaluated and modified on based on the reference MR data as the CT data were not perfectly

aligned in a few spots due to the different time of the scan, the posture of the subject, and the

respiration state (e.g., misalignment of the ribcage around the lungs). As a result, a consider-

able amount of time was required to inspect visually, and further adjustment was required

between different segmentation labels on the T1-reference image. After segmenting the fat

located subcutaneously, intra-abdominally, and between the muscles, we assigned the label of

connective tissue to the empty spaces located mainly in the abdomen and the thorax.

MATLAB was used to inspect any remaining unlabeled region outside the background and to

assign the label that was surrounding the empty voxel with the highest percentages. The two

neuroradiologists confirmed both the process of the segmentation in the initial sequence as

well as the process of the adjustment of each tissue fused together in the reference T1 and the

post-processed label after filling the unlabeled space with an interactive process. Another limi-

tation is based on the Nyquist phenomenon. Specifically, we employed a knowledge-based seg-

mentation for tissues difficult-to-identify on the MRI, such as the adrenal glands (since

resampling the spatial image resolution to 0.5 mm × 0.5 mm × 0.5 mm is insufficient for detec-

tion and delineation). The Nyquist phenomenon, therefore, reflects limitations imposed by the

original spatial resolution of the scanned images. Finally, segmentation of small tissue struc-

tures, such as the upper extremities vessels, was challenging due to unavoidable scan data limi-

tations. Despite this need for knowledge-based segmentation, however, our final adjusted and

confirmed results all fell within appropriate published literature values (Table 4).

Pilot use case for MRI RF safety simulation

Surface mesh extraction. Several open-source tools were initially attempted to generate

meshes, such as iso2mesh [109], and Quality Multi-Domain Meshing with No Gap

(QMDMNG) tool developed by UT Austin [110], which were not suitable to cope with the

whole-body high-resolution anatomical model. A specially developed algorithm in Sim4Life is
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a tool to extract surface meshes, which are topologically conformal and high-quality triangu-

lated elements [16]. The mesh processing routine in Sim4Life was introduced during the devel-

opment of “Virtual Population 3.0” [21] that we were able to take full advantage of a dedicated

mesh generation tool. Before processing the mesh, the extensive amount of manual refine-

ments was needed to clean up noise, segmentation artifacts, and dealing with unwanted holes

at the segmentation stage, which was the essential requirement to produce smoothed unstruc-

tured tetrahedral mesh surface with anatomical fidelity [16]. More details of the discussion

about alternative surface mesh extraction techniques can be found in Makarov et al. [17].

Pilot use case for MRI RF safety simulation. SARhead, SARwb, and 10gSAR in 1.5T

reported in this study with MARTIN and Nina without an implant were consistent with that

of the Baby model developed by Helmholtz Zentrum München [29] reported in 2015 by Malik

et al. [111], which was a valuable reference to compare the simulation setup and use of dielec-

tric properties conversion. The MRI labeling guidelines of commercial VNS (Cyberonics,

Houston, TX) [42] suggest their VNS product only to be used in the condition of localized RF

filed exposure above or outside of the C7 and T8 vertebrae where the VNS leads, and the

implantable pulse generator (IPG) is usually located. However, this level was only investigated

in local Tx/Rx coil, which showed that with specific pathways of the leads and different coil

geometry, there is a chance to increase the heating [112]. Such various scenarios of simulation

require a large amount of calculation time due to a dense simulation grid on an elongated

active implant device. For this reason, device response from a lab-measurement can be incor-

porated into the simulated incident tangential E-field results (without the device) to estimate

the power deposition in multiple potential lead trajectory scenarios, which is called Tier-3

analysis proposed on ISO/TS 10974 (The example of the use of our MARTIN model in Tier-3

analysis is shown in S1 Fig in S1 File). The scope of our simulation did not account for inter-

subject variabilities such as body size, shape, gender, and ages. According to the FDA recog-

nized standard, MRI guidelines for active implants TS 10974:2018, further simulations and

measurements are needed such as the different trajectory of implant lead, using various voxel

models, and studying different dimension of the body RF transmit coil [83], which is particu-

larly important in children who have more space to move in an MRI. The 10gSAR safety mar-

gin of 1.5 was suggested by Garrec et al. [113] to account for the inter-subject variability in

MRI RF safety assessment to guarantee that there is a chance of less than 1% of exceeding the

corresponding RF exposure limit. However, the safety study presented here was only a set of

simulations examples meant to illustrate how the model may be used to follow the guidelines

for active implants TS 10974:2018. Thus, the authors do not imply the safety of the VNS device

for MRI given that, as discussed above, the safety study was only an example and would be oth-

erwise incomplete.

We have introduced MARTIN, a detailed whole-body model for a male 29-month-old

child, using the new automated segmentation tools for specific brain structures, as well as a

manual segmentation performed by expert segmentors. Our model has been extensively vali-

dated, and the manuscript suggests how to perform MRI safety simulations on an AIMD by

following the latest guidelines from the International Organization for Standardization. The

model will be available on the Analogue Brain Imaging Laboratory (ABILAB) at the Athinoula

A. Martinos Center for Biomedical Imaging website.
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