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Abstract. After synthesis on membrane-bound ribo- 
somes, the variant surface glycoprotein (VSG) of 
Trypanosoma brucei is modified by: (a) removal of an 
N-terminal signal sequence, (b) addition of N-linked 
oligosaccharides, and (c) replacement of a C-terminal 
hydrophobic peptide with a complex glycolipid that 
serves as a membrane anchor. Based on pulse-chase 
experiments with the variant ILTat-l.3, we now report 
the kinetics of three subsequent processing reactions. 
These are: (a) conversion of newly synthesized 56/58- 
kD polypeptides to mature 59-kD VSG, (b) transport 
to the cell surface, and (c) transport to a site where 
VSG is susceptible to endogenous membrane-bound 
phospholipase C. We found that the t~ of all three of 
these processes is ,o15 min. The comparable kinetics 

of these processes is compatible with the hypotheses 
that transport of VSG from the site of maturation to 
the cell surface is rapid and that VSG may not reach a 
phospholipase C-containing membrane until it arrives 
on the cell surface. Neither tunicamycin nor monensin 
blocks transport of VSG, but monensin completely in- 
hibits conversion of 58-kD VSG to the mature 59-kD 
form. In the presence of tunicamycin, VSG is synthe- 
sized as a 54-kD polypeptide that is subsequently 
processed to a form with a slightly higher Mr. This 
tunicamycin-resistant processing suggests that 
modifications unrelated to N-linked oligosaccharides 
occur. Surprisingly, the rate of VSG transport is re- 
duced, but not abolished, by dropping the chase tem- 
perature to as low as IO°C. 

T 
HE variant surface glycoprotein (VSG) 1 of the proto- 
zoan Trypanosoma brucei forms a coat covering the 
entire external surface of the cell. By replacing this 

coat with another, composed of a different VSG, the parasite 
evades the immune response of its mammalian host. This 
process of antigenic variation depends on the concerted 
repression of one VSG gene and expression of another within 
an individual organism (10, 11, 20, 22, 53). 

VSGs have apparent molecular masses of '~60,000 D and 
~107 of these molecules form the surface coat (17). The an- 
tigenic specificity of a given trypanosome variant is a func- 
tion of the amino acid sequence of its VSG. Sequence data 
reveal enormous heterogeneity among VSGs in different var- 
iants (1, 9, 13, 39, 41, 44). 

VSGs are anchored in the plasma membrane by an unusual 
glycolipid moiety. This glycolipid contains glycerol (21), 
myristate (23), phosphate (2, 3, 14), and inositol (25) in the 
form of dimyristyl-phosphatidylinositol (25). Also asso- 
ciated with this structure, in unknown linkages, are man- 

1. Abbreviations used in this paper: BBS, Bicine-buffered saline; CRD, 
cross-reacting determinant; mfVSG, membrane form of variant surface gly- 
coprotein; NP--40, Nonidet P-40; PSG, phosphate/saline/glucose; PNGase 
F, Peptide-N-glycosidase F; sBSA, succinyl bovine serum albumin; Sulfo- 
SMPB, sulfo succinimidyl 4-(p-maleimidophenyl) butryate; sVSG, soluble 
form of variant surface glyeoprotein; TEN buffer, 150 mM NaCI, 5 mM 
EDtrA, and 50 mM Tris-HCl (pH 7.5); VSG, variant surface glyeopro~ein. 

nose, glucosamine, galactose (29, 30, 32), and ethanolamine 
(31). The glycolipid is attached to the VSG by an amide link- 
age between the ct-carboxyl of the polypeptide and the 
ethanolamine of the glycolipid (31). 

VSG can be isolated in two forms (14, 15). Membrane- 
form VSG (mfVSG), an amphiphilic protein, contains the in- 
tact glycolipid. Soluble VSG (sVSG), a hydrophilic protein, 
lacks dimyristyl glycerol (24, 34). Upon disruption of try- 
panosomes by nondenaturing techniques, mfVSG is con- 
verted to sVSG by an endogenous membrane-bound (14, 15, 
16) phospholipase C (24, 34). Disruption of trypanosomes 
under conditions that inactivate the lipase preserves VSG in 
the membrane form. 

mfVSG and sVSG can be distinguished immunochemi- 
cally. There is an immunologicaUy cross-reacting deter- 
minant (CRD) found on all VSGs (5, 18) that resides in the 
carbohydrate portion of the glycolipid (6, 29, 30, 32). 
Anti-CRD antibodies react only with sVSG (14), presumably 
because dimyristyl glycerol masks this epitope on mfVSG. 

After synthesis on membrane-bound polysomes (38), 
VSGs undergo several co- and posttranslational modifica- 
tions. An amino-terminal signal sequence is removed (8, 42) 
and one or more aspargine-linked oligosaccharides are 
added (29, 30, 32). In some cases, these oligosaccharides 
may be subsequently processed (4, 43). Another modifica- 
tion, which occurs immediately after synthesis of VSG (4, 
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26), involves the removal of a carboxyl-terminal hydropho- 
bic peptide of 17 or 23 amino acid residues (7, 8, 44) and the 
attachment of the glycolipid to the new carboxyl-terminus of 
the molecule. 

We report here the kinetics of three processes that occur 
in the posttranslational life of the ILTat-l.3 VSG. First, we 
determined the kinetics of the changes in Mr of newly syn- 
thesized VSG. These changes are attributed mainly to the 
processing of N-linked oligosaccharides, but are also due, 
in part, to novel processing event(s) that are unrelated to 
N-linked sugars. Second, we determined the kinetics of 
transport of VSG to the cell surface, a process that requires 
40-60 min (43, 49). Third, we determined the kinetics of 
transport to a membrane compartment in which conversion 
of mfVSG to sVSG by membrane-bound phospholipase C 
can occur in situ. Finally, we determined the effects of 
tunicamycin (an inhibitor of N-linked glycosylation [52]), 
monensin (an inhibitor of some intracelhlar transport path- 
ways [51]), and low temperature on these three processes. 

Materials and Methods 

Trypanosomes, VSG Purification, and Production 
of Antibodies 
The source of the cloned ILTat-l.3 variant of Z brucei, the growth and isola- 
tion of trypanosomes, the purification of VSG, and the production of 
affinity-purified anti-VSG and anti-CRD antibodies have been described 
previously (4). 

Metabolic Labeling and Lysis of Trypanosomes 
Trypanosomes were washed once in Bicine-buffered saline (BBS) (50 mM 
Bicine, 70 mM glucose, 50 mM NaC1, and 5 mM KC1 [pH 8.0]) containing 
1 mg/ml bovine serum albumin (BSA) (BBS/BSA). After centrifugation 
(2,500 rpm, 10 min, 4°C) in a Sorvall HB-4 rotor (E. I. DuPont de Ne- 
mours & Co., Inc., Sorvall Instntments Div., Newton, CT), the cells were 
resuspended at 5 X 10 7 cells/ml in RPMI-1640 medium without methio- 
nine (Gibco Laboratories, Grand Island, NY), supplemented with 10% 
heat-inactivated fetal calf serum and 25 mM Hepes (pH 7.4). After preincu- 
bation (15 min, 37°C), [35S]methionine (Amersham Corp., Arlington 
Heights, IL; 1,000 Ci/mmol) was added to a final concentration of 100 
FtCi/ml. Chase was initiated by diluting labeled cells 1:10 into prewarmed 
medium containing nonradioactive methionine (lU lag/ml). When chases 
were performed at reduced temperatures, the chase medium was preequi- 
librated accordingly. 

In inhibitor experiments, cells were preincubated with tunicamycin 
(Calbiochem-Behring Corp., La Joila, CA; 200 ng/ml) or monensin 
(Calbiochem-Behring Corp.; 10 -7 M). The inhibitors were included in the 
chase medium at the same concentrations. A tunicamycin stock (20 ~tg/ml 
in 25 mM NaOH) and a monensin stock (10 -3 M in ethanol) were stored 
at -20°C. On the day of use, monensin was diluted in medium to a 
10 -5 M working stock. 

At intervals during the chase period, aliquots of cell suspension (200 or 
400 txl) were added to 1.0 mi ice cold BBS/BSA and centrifuged in a 
microfuge (Beckman Instruments, Inc.; model B) (30 s, 22°C). Pellets were 
resuspended at 5 × 107 cells/rrd in 150 mM NaCi, 5 mM EDTA, and 
50 mM Tris-HCl (pH 7.5) (TEN buffer) containing 1% Nonidet P-40 (NP- 
40). Then, to convert mfVSG to sVSG by the endogenous phospholipase C, 
the lysates were incubated at 37°C for 5 min. Lysates were then diluted to 
2 x 10 ~ cell equivalents/ml with ice cold TEN buffer containing 1% NP-40 
and used for immunoprecipitation with anti-VSG. Iodoacetamide (5 raM), 
leupeptin (1 lag/ml), and N a-p-tosyllysine chloromethyl ketone (0.1 raM) 
were included in the lysis buffer to minimize proteolysis. 

Cross-linking of Surface VSG 
This procedure is a modification of that described by Strickler and Patton 
(49). At intervals during the chase, 200-~tl aliquots of cell suspension were 
added to 1.0 ml of 57 mM Na2HPO,, 3 mM NaH2PO4, 44 mM NaCI, and 

56 mM glucose (pH 8.0) (37) containing 1.0 mg/ml phosphate/saline/glu- 
cose/succinyl-BSA (PSG/sBSA). The BSA, which was included to maintain 
trypanosome viability, was succinylated to block free amino groups that 
might react with the cross-linking reagent. Cells were centrifuged in a 
microfuge (30 s, 220C), washed once in PSG/sBSA and resuspended in 
100 Ixl PSG/sBSA. The membrane-impermeable cross-linking reagent, 
Sulfo-SMPB (sulfosuccinimidyl 4-Lo-maleimidophenyl]butyrate; 2 Ixl, 20 
mM in dimethyl sulfoxide, Pierce Chemical Co., Rockford, IL) was added 
and the cells were incubated for 15 min at 0*C. After quenching by the addi- 
tion of 1.0 ml of 50 mM glycylglycine, 70 mM glucose, 50 mM NaCI, and 
5 mM KCI (pH 8.0) containing 1.0 mg/ml BSA, the cells were centrifuged 
and lysed as described in the previous section. All buffers were at 0°C. 
Mock cross-linkings were done using dimethyl sulfoxide alone. Labeled 
VSG polypeptides were analyzed by immunoprecipitation with anti-VSG. 

sBSA was prepared in a reaction (20 nil) containing 20 mg/ml BSA and 
0.5 M NaHCO3 (pH 9.0). Succinic anhydride (400 mg) was added five 
times, at 10-min intervals, at room temperature. The pH was maintained at 
9.0 by the manual addition of 4 M NaOH. The sBSA was dialyzed against 
10 mM NH~HCO3 and lyophilized. 

In Situ Conversion of mfVSG to sVSG 
At intervals during the chase, aliquots of cell suspension (400 pl) were 
added to 1.0 ml ice cold BBS/BSA and centrifuged in a microfuge (30 s, 
22°C). The pellets were resuspended in H20 (180 I~1) to lyse the cells. Af- 
ter 5 rain at 0°C, 10× TEN buffer (20 ltl) was added and the iysates were 
incubated for 5 rain at 37°C. During this incubation, susceptible mfVSG 
is converted to sVSG. TEN buffer containing 5% SDS was then added 
(50 txl) and the lysates were boiled for 10 rain. Samples were then diluted 
with 1.0 ml TEN buffer containing 2.5% Triton X-100 and incubated for 15 
rain at 0°C to allow formation of mixed micelles. Protease inhibitors, as de- 
scribed above, were included in all iysis solutions. Labeled VSG polypep- 
tides were analyzed by immunoprecipitation with anti-CRD. 

Immunoprecipitation and SDS Gel Electrophoresis 
Lysates of [3SS]methionine-labeled trypanosomes (106 cell equivalents in 
500-625 t~1) were treated overnight at 0°C with saturating amounts of 
anti-VSG or anti-CRD in microfuge tubes. Protein A-Sepharose (Pharma- 
cia Fine Chemicals, Piscataway, NJ; 50 1~1 of an 8% suspension [wt/vol] in 
TEN buffer containing 0.5 % NP-40, 1% BSA, and 0.02 % sodium azide) was 
added and the samples were agitated at 4°C for 1 h. The beads were cen- 
trifuged and washed as follows: twice in TEN buffer containing 0.5 % NP-40 
and 5 mg/ml BSA; twice in TEN buffer containing 0.5% NP-40 and 2.5 M 
KCI; twice in TEN buffer containing 0.5 % NP-40; and once in TEN buffer. 
2 x SDS sample buffer (30 ltl, 2 × = 100 mM Tris HC1, [pH 6.8] 2 % SDS, 
80 mM dithiothreitol, 20% glycerol, and 0.1% bromphenol blue) was added 
and the samples were boiled for 2 rain. 

The samples were loaded on 17-cm, 7.5-15% linear gradient, SDS-poly- 
acrylamide gels (36) and were run overnight at a constant voltage of 100 V. 
Polyacrylamide stacking gels were 3 % for samples containing cross-linked 
VSG and 5% in all other cases. Gels were stained with Coomassie Blue, 
impregnated with EN3HANCE (New England Nuclear, Boston, MA) and 
fluorographed using Kodak XAR-5 film. Molecular mass markers (Sig- 
ma Chemical Co., St. Louis, MO) were myosin, 205 kD; 13-galactosidase, 
116 kD; phosphorylase B, 97 kD; BSA, 66 kD; ovalbumin, 45 kD; glyceral- 
dehyde-3-phosphate dehydrogenase, 36 kD; carbonic anhydrase, 29 kD; 
soybean trypsin inhibitor, 20 kD; and a-lactalbumin, 14 kD. 

Peptide-N-Glycosidase Treatment 
Immunoprecipitated VSG was eluted from Protein A-Sepbarose beads with 
boiling 1% SDS (200 lal) and precipitated with acetone (1.2 rnl, -20°C, 
16 h) using 15 pg cytochrome c as carrier. The samples were collected by 
centrifugation (10,000 rpm, 20 rain, 4°C, Sorvall HB-4 rotor) and dried un- 
der vacuum. After boiling 3 min in TEN buffer (pH 8.6) containing 0.3% 
SDS and 2.0% 2-mercaptocthanol (15 gl) the samples were diluted with 
TEN buffer (pH 8.6) containing 3 % NP-40 (30 gl). The following protease 
inhibitors were included in both buffers: leupeptin (2 gg/rni), antipain (2 
pg/ml), chymostatin (1 p,g/ml), pepstatin (1 gg/ml), N a-p-tosyllysine chlo- 
romethyl ketone (0.1 mM), trasylol (10 U/ml), benzamidine (10 pg/ml), and 
1,10 phenanthroline (5 mM). Paptide-N-glycosidase F (PNGase F; 1 gl in 
2.5 raM EDTA [pH 7.4] containing 50% glycerol; prepared according to 
Tarentino et al. [50] and generously donated by Dr. Nancy Dahms, 
Washington University, St. Louis, MO) was added. This amount of enzyme 
will deglycosylate 30 pg a~-acid glycoprotein or 75 gg ovalbumin in an 
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18-h incubation (Dahms, N ., unpublished observations) . After incubation
overnight at 37°C, HZO (1.55 ul) was added and the samples were acetone
precipitated and centrifuged as described above . The precipitates were solu-
bilized in 1X SDS sample buffer (40 gl) .

Results

Posttranslational Processing of VSG

In the few minutes after biosynthesis ofthe VSG polypeptide,
several different forms appear that can be distinguished on
SDS gels. These forms probably differ in Winked glycosy-
lation (4, also see Discussion in this paper) . As shown in Fig.
1, a doublet of polypeptides (56 and 58 kD) was present im-
mediately after a pulse-labeling with [s5S]methionine (Fig .
1 A, lane 1) . After initiation of a chase, the 56-kD species
disappeared, leaving the 58-kD polypeptide as the predomi-

Figure 1. Processing of ILTat-1 .3 VSG . Trypanosomes were pulse-
labeled 2 min with [35 S]methionine and then chased . At intervals
after initiation of the chase, samples were lysed and treated with
antiVSG. The immunoprecipitates were analyzed by SDS-PAGE
and fluorography. (A) Fluorograph of a gel containing immu-
noprecipitated VSG. Lanes 1-8 show labeled VSG polypeptides
from cells sampled at 2, 5, 10, 15, 20, 25, 30, and 45 min . Sample
times are relative to the time of initiation of labeling and all lanes
contain V,cell equivalents . The scale on the left shows apparent
M, in kilodaltons . (B) Kinetics of VSG processing . The absor-
bance of the 56-, 58-, and 59-kD VSG bands in each lane of the
fluorograph shown in A was quantitated using a Loats Associates,
Inc. (Westminster, MD) video densitometry system . The fluoro-
graph was taken using preflashed Kodak XAR-5 film . The data are
presented as the fraction of the total absorbance present in the ma-
ture 59-kD VSG band (") . The total radioactivity in VSG at each
time was determined by solubilizing the excised bands in 600 pl
perchloric acid (23%) and hydrogen peroxide (20%) at 90°C, and
counting in 20 ml ofLiquiscint (National Diagnostics, Somerville,
NJ) . Each measurement was corrected for background radioactiv-
ity by subtracting the cpm detected in an equivalent unlabeled por-
tion of each lane . The data are presented as cpm/VSG band ( " ) .
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nant form (lane 2) . Thereafter, the 58-kD species was
processed to the mature 59-kD protein (lanes 3-8) .
We made two quantitative analyses of these data . First,

densitometry of the fluorograph allowed calculation of the
fraction of the total immunoprecipitable polypeptide in the
form of mature 59-kD VSG. The apparent tv, for processing
to the mature form was -15 min (Fig . 1 B) . Second, excision
ofthe VSG bands from the gel and measurement ofthe incor-
porated radioactivity revealed that the total VSG-specific ra-
dioactivity decreased slowly during the chase period (Fig . 1
B) . Typically, a 10-30% decrease was observed in 45-60-
minpulse-chase experiments. Trypanosomes remained fully
viable during the culture period, suggesting that this de-
crease could represent some form of VSG turnover .
We investigated the effects of tunicamycin on posttransla-

tional processing, as previous studies have indicated that this
drug blocks N-linked glycosylation of VSG (4, 26, 43, 45,
48) . In the presence of this inhibitor, newly synthesized VSG
appeared on SDS gels as a single 54-kD species (Fig . 2,
lanes 2 and 7) . During the chase period, this polypeptide
shifted to a slightly higher M, form (Fig . 2 A, lanes 3-6) .
This small shift in mobility was reproducible in separate ex-
periments (e.g ., Fig. 3, lanes 3 and 4) . Although the kinetics

Figure 2 . Effects oftunicamycin and monensin on VSG processing.
Trypanosomes, treated with either tunicamycin or monensin, were
pulse-labeled 2 min with [35 S]methionine and then chased . Ali-
quots were analyzed as in Fig. 1 . (A) Fluorograph of a gel contain-
ing labeled VSG from tunicamycin-treated cells . Lanes 1 and 8, im-
munoprecipitated VSG from untreated trypanosomes that were
pulse-labeled for 2 min, chased, and sampled at 2 and 60 min,
respectively. Lanes 2 and 7, immunoprecipitated VSG from drug-
treated cells sampled at 2 min . Lanes 3-6, immunoprecipitated
VSG from drug-treated cells sampled at 15, 30, 45, and 60 min,
respectively. The bands below 54 kD were not detected in other ex-
periments and are probably due to minor proteolysis . (B) Fluoro-
graph of a gel containing labeled VSG from monensin-treated
trypanosomes . Cells were sampled from pulse-chase mixtures at
2 min (lanes 1 and 2), 15 min (lanes 3 and 4), 30 min (lanes 5 and
6), 45 min (lanes 7 and 8), and 60 min (lanes 9 and 10) . The gel
contains immunoprecipitated VSG from drug-treated (lanes 2, 4, 6,
8, and 10) and untreated (lanes 1, 3, 5, 7, and 9) trypanosomes .
Sample times in both panels are relative to the initiation of the
2-min labeling period and all lanes contain 106 cell equivalents .
Scales refer to apparent M, .
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Figure 3. PNGase treatment of VSG. 35S-labeled VSG polypep- 
tides were immunoprecipitated with anti-VSG from cells that were 
labeled for 2 min (lanes 1-3) and chased for 58 min (lanes 4-6) 
in the presence (lanes 3 and 4) or absence (lanes 1, 2, 5, and 6) 
of tunicamycin. Labeled VSG polypeptides were eluted from Pro- 
tein A-beads and treated with PNGase F as described in Materials 
and Methods (lanes 2 and 5). Eluted controls were either mock- 
treated (lanes I and 6) or untreated (lanes 3 and 4). A fluorograph 
of an SDS gel containing 106 cell equivalents/lane is shown. Scale 
refers to apparent M~. 

of this increase could not be accurately quantitated, this 
tunicamycin-resistant processing appeared to occur with 
roughly the same kinetics as the conversion of 58-kD VSG 
to 59-kD VSG shown in Fig. 1 A. 

We wished to determine whether the tunicamycin-resistant 
processing of VSG occurred in the absence of drug or 
whether it was an artifact of inhibition. We treated im- 
munoprecipitated VSG polypeptides from a pulse-chase cul- 
ture with PNGase F, an enzyme that removes N-linked 
oligosaccharides (50). As shown in Fig. 3, PNGase F con- 
verted newly synthesized 56- and 58-kD VSG (lane 1 ) to a 
lower Mr form (54 kD, lane 2) that comigrated with newly 
synthesized VSG from tunicamycin-treated cells (lane 3). 
Similarly, PNGase F converted mature 59-kD VSG (lane 6) 
to a lower Mr form (lane 5) that comigrated with VSG from 
cells chased 58 min in the presence of tunicamycin (lane 4). 
These results suggest that the tunicamycin-resistant process- 
ing occurs in normal cells and contributes, at least in part, 
to the conversion of 58-kD VSG to 59-kD VSG. 

We have also examined the effect of monensin, a monova- 
lent cationophore, on VSG processing. We detected the dou- 
blet of newly synthesized VSG polypeptides (56 kD and 58 
kD) in the presence or absence of 10 -7 M monensin (Fig. 2 
B, compare lanes I and 2) and the drug had no effect on the 
disappearance of the 56-kD form (Fig. 2 B, compare lanes 
3 and 4). However, during the subsequent chase period, 
VSG was not processed to the mature 59-kD species in the 
presence of 10 -7 M monensin (Fig. 2 B, lanes 5-I0). This 
concentration of monensin had minimal effects on the viabil- 
ity, morphology, and motility of trypanosomes, even in 2-h 
cultures, and had little effect on the incorporation of [35S]- 
methionine into hot TCA-insoluble material (80-90% of 
controls). Higher concentrations of drug (5 × 10-7-10 -6 M) 
had deleterious effects on the physical characteristics of 
trypanosomes and lowered incorporation of [35S]methionine 
to 10-20% of the control levels. 

Figure 4. Transport of VSG to the cell surface. Trypanosomes were 
pulse-labeled 2 min with [35S]methionine and chased. Aliquots 
were removed and exposed to Sulfo-SMPB. Cross-linked cells were 
lysed and treated with anti-VSG. (A) Fluorograph of a gel containing 
immunoprecipitated VSG from a cross-linking experiment. Lanes 
1 and 12, immunoprecipitated VSG from untreated trypanosomes 
sampled at 2 and 60 min, respectively. Lanes 2 and// ,  immu- 
noprecipitated VSG from mock-treated trypanosomes sampled at 2 
and 45 min, respectively. Lanes 3-10, immunoprecipitated VSG 
from cross-linked trypanosomes sampled at 2, 5, 10, 15, 20, 25, 30, 
and 45 min, respectively. S, location of the gel slot. L interface of 
the stacking and running gels. (B) Coomassie Blue stain of the gel 
shown in A. Only the region of the gel containing VSG monomer 
is presented. HC, immunoglobulin heavy chain. (C) identical to A 
except that lanes 2-//contain immunoprecipitated VSG from cells 
that were pulsed and chased in the presence of tunicamycin. Only 
the region of the gel containing monomer VSG is shown. (D) Identi- 
cal to C except that the cells were pulsed and chased in the presence 
of monensin. Sample times in all panels are relative to the initiation 
of labeling and all lanes contain 106 cell equivalents. Scales at left 
indicate Mr. Scale at right (A) indicates positions expected for 
oligomers of VSG. 
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Transport of  VSG to the Cell Surface 

To interpret the kinetics of VSG processing it was necessary 
to know the time of VSG transit to the cell surface. There- 
fore, we developed an assay to distinguish internal VSG from 
external VSG based on the accessibility of surface VSG to 
Sulfo-SMPB, a membrane-impermeant protein cross-linker. 
We then determined the time of transit to the surface in a 
pulse-chase experiment with [3SS]methionine. After treat- 
ing aliquots of labeled cell suspension with Sulfo-SMPB un- 
der conditions (0°C, 15 rain) where further processing or 
transport is inhibited, we lysed the cells and analyzed 
anti-VSG immunoprecipitates by SDS-PAGE. 

Control experiments are presented in Fig. 4, A and B. In- 
ternal [3sS]VSG, present after a 2-min pulse, was resistant 
to cross-linking and was detected predominantly as mono- 
mer in the fluorograph (Fig. 4 A, lane 3). External [35S]- 
VSG, present at the end of the chase period, was sensitive 
to cross-linking and was detected predominantly as high 
Mr oligomers (Fig. 4 A, lane 10). Two observations indicate 
that cross-linking of surface VSG is very efficient. First, no 
monomer VSG was detected by Coomassie Blue staining in 
the lanes containing cross-linked samples (Fig. 4 B, compare 
lanes 3-8 with lanes 2 and 11). Second, all cross-linked VSG 
was detected as oligomers of six or greater (Fig. 4 A, lane 
10) and most was retained at the top of the running or stack- 
ing gels. Greater than 90% of the trypanosomes remained 
viable, as assessed by motility, after the cross-linking proce- 
dure. However, cross-linked cells appeared constrained in 
flagellar motion, as if cross-linking added rigidity to the cell 
surface. 

Newly synthesized VSG, which is resistant to cross- 
linking (Fig. 4 A, lane 3), was rapidly transported to the sur- 
face, as indicated by the disappearance of monomer VSG 
during the chase period (Fig. 4 A, lanes 4-10). The internal 
VSG population contained predominantly precursor VSG 
species (56 and 58 kD). Very little mature VSG (59 kD) was 
detected as monomer. The rate of transport was determined 
by excising the monomer VSG band(s) and quantitating the 
decrease in radiolabeled monomer as a function of time 
(Fig. 5). The apparent t,~ for transport to the surface was 
,x,14 min. 

We also studied the effects of tunicamycin and monensin 
on transport. Fig. 4 C shows that VSG was transported to the 
cell surface efficiently in the presence of tunicamycin; the ap- 
parent t,~ for transport was the same as untreated controls 
(Fig. 5). Interestingly, no increase in Mr (compare with Fig. 
2 A) was detected in the internal monomer VSG during the 
chase period, suggesting that the tunicamycin-insensitive 
processing occurs at about the same time as arrival at the 
plasma membrane. Fig. 4 D shows a similar experiment with 
monensin. This drug also had no effect on the rate of trans- 
port of VSG to the cell surface (Fig. 5). 

Transport of VSG to a Phospholipase C-containing 
Membrane Compartment 

The glycolipid on newly synthesized VSG is resistant to hy- 
drolysis by the endogenous membrane-bound phospholipase 
C when trypanosomes are lysed hypotonically (4, 26). These 
molecules are not converted from mfVSG to sVSG and re- 
main membrane-bound, whereas mature VSG on the surface 

1' 
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Figure 5. Kinetics of VSG transport to the cell surface. The radioac- 
tivity in the monomer VSG bands in the gels shown in Fig. 4, A, 
C, and D was quantitated as described in the legend to Fig. 1. The 
radioactivity detected in the 2- and 45-min mock-treated samples 
(lanes 2 and//)  were averaged and taken as the value for total la- 
beled VSG. The radioactivity detected in the cross-linked samples 
(lanes 3-10) was normalized as a fraction of average total labeled 
VSG. The data are presented as the fraction of the total VSG at the 
cell surface as a function of time for untreated (1), tunicamycin- 
treated ( • ) ,  and monensin-treated (x) trypanosomes. 

of the same cells is rapidly converted and released (19). The 
resistance to hydrolysis of the newly synthesized molecules 
is not due to an altered glycolipid structure, as this moiety 
is readily hydrolyzed if trypanosomes are solubilized in non- 
ionic detergent. These facts imply that newly synthesized 
VSG resides in a membrane compartment that lacks the 
phospholipase C activity (4). We therefore determined how 
long it takes VSG to reach a membrane compartment where 
conversion of mfVSG to sVSG can occur in situ during hypo- 
tonic lysis. In situ conversion implies that the lipase and VSG 
are colocalized in the same membrane, although it is possi- 
ble that VSG resides in a distinct membrane site and only be- 
comes accessible to enzyme during hypotonic lysis. 

Our assay for this process takes advantage of the specific 
reactivity of anti-CRD antibodies with sVSG but not mfVSG 
(14). Cells from pulse-chase cultures were lysed hypotoni- 
cally and incubated at 37°C to facilitate conversion of suscep- 
tible mfVSG molecules to sVSG. After boiling in SDS, Tri- 
ton X-100 was added to form mixed micelles and the sVSG 
was specifically immunoprecipitated with anti-CRD. 

As Fig. 6 A shows, no labeled VSG was inununoprecipi- 
tated from cells that have been pulse-labeled with [35S]me- 
thionine for 2 min, confirming that newly synthesized VSG 
is indeed resistant to in situ conversion (lane 2). During the 
chase period, the labeled VSG rapidly became susceptible to 
in situ conversion, as indicated by the increasing amount of 
immunoprecipitated VSG detected in lanes 3-9. It is impor- 
tant to note that only mature 59-kD VSG was detected in the 
converted VSG population. We measured the radioactivity in 
the labeled VSG bands and Fig. 7 shows the kinetics of trans- 
port to a membrane compartment where in situ conversion 
can occur. The apparent t,~ for this process was ~14 min. 

We also investigated the effects of tunicamycin and monen- 
sin on in situ conversion. Neither inhibitor had any detect- 
able effects on this process (Figs. 6, B and C, and 7). It should 
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Figure 6. Transport of VSG to a phospholipase C-containing com- 
partment. Trypanosomes were pulse-labeled 2 min with pS]me- 
thionine and chased. Aliquots of cells were sampled, lysed hypo- 
tonically, and treated to allow in situ conversion of mfVSG to sVSG. 
(A) Fluorograph of a gel showing immunoprecipitated VSG from 
an in situ conversion experiment. Lanes 1 and 10 contain VSG 
precipitated with anti-VSG from control NP-40 lysates of trypano- 
somes that were sampled at 2 and 45 min, respectively. Lanes 2-9 
contain VSG precipitated with anti-CRD from hypotonic lysates of 
trypanosomes sampled at 2, 5, 10, 15, 20, 25, 30, and 45 min, 
respectively. (B) Identical to A except that the cells were pulsed and 
chased in the presence of tunicamycin. (C) Identical to A except that 
the cells were pulsed and chased in the presence of monensin. Sam- 
ple times in all panels are relative to the initiation of labeling and 
all lanes contain 106 cell equivalents. Scales indicate apparent Mr 
in kD. 

be noted, however, that only the higher Mr form of VSG 
synthesized in the presence of tunicamycin was detected 
in the converted fraction (Fig. 6 B, compare lanes 4-9 with 
lane 10). 

Processing and Transport of  VSG at Low Temperature 

Since the kinetics of the three posttranslational processing 
reactions are essentially identical (all have a t,~ of 14-15 
rain), no conclusions can be made concerning the order in 
which these events occur. In other systems, low temperature 
has been used to block transport of membrane glycoproteins 
in a pre-Golgi compartment (15°C, [33, 47]) and in the trans- 
Golgi (20°C; [40, 47]). Therefore, in an attempt to separate 
these processes on a temporal basis we performed experi- 
ments in which cells were pulsed-labeled at 37°C and chased 
at 10-20°C. We then used our standard assays for transport 
to the surface and to a phospholipase C-containing mem- 
brane. 

Surprisingly, transport to the surface still occurred at tem- 
peratures as low as 10°C (Fig. 8 C). At 15°C, the rate for 
transport was reduced fourfold relative to transport at 37°C 
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Figure 7. Kinetics of transport of VSG to a phospholipase C-con- 
taining compartment. The radioactivity in the VSG bands in the 
gels shown in Fig. 6, A-C, was quantitated as described in the leg- 
end to Fig. 1. The radioactivities detected in the 2- and 45-min con- 
trol samples (lanes 1 and 10) were averaged and taken as the value 
for total labeled VSG. The radioactivity detected in the hypotoni- 
cally lysed samples (lanes 2-9) was normalized as a fraction of the 
average total labeled VSG. The data are presented as the fraction 
of VSG converted from mfVSG to sVSG as a function of time for 
untreated ( I ) ,  tunicamycin-treated ( • ) ,  and monensin-treated (x) 
trypanosomes. 

(t,~ = 60 min, Fig. 8 C). The amount of mature 59-kD 
VSG that was detected in the internal VSG pool, at 15°C, was 
increased slightly relative to the 37°C chase temperature 
(compare Figs. 4 A and 8 A). These data would be consistent 
with an internal site for processing of 58-kD VSG to 59-kD 
VSG. At the end ofa  2-h chase period at 15°C, ~80% of the 
VSG was on the surface (Fig. 8 C), but only slightly more 
than half was in the mature form (Fig. 8 A, lane 10). This 
result suggests that at 15°C some 58-kD VSG was trans- 
ported to the surface. 

The rate of transport of VSG to a phospholipase C-con- 
ruining membrane at 15°C was essentially the same as that 
for transport to the surface (Fig. 8 C). Compared with the 
37°C chase temperature (Fig. 6 A), an increased amount of 
58-kD VSG was sensitive to in situ conversion (Fig. 8 B). 

Discussion 

Newly synthesized VSG molecules of the ILTat-l.3 variant 
are detected as a 56-kD and 58-kD doublet (Fig. 1 A). The 
56-kD species disappears rapidly (<5 min) and probably is 
converted to the 58-kD species. It is likely, for several rea- 
sons, that these polypeptides represent singly and doubly 
N-glycosylated species, respectively. First, this variant has 
two Asn-X-Ser/Thr glycosylation sites (44). Second, in the 
presence of tunicamycin this VSG is synthesized as a 54-kD 
species (Fig. 2 A). Third, treatment of newly synthesized 
VSG with PNGase F yields a single species of the same elec- 
trophoretic mobility as VSG synthesized in the presence of 
tunicamycin (Fig. 3). Finally, proteolytic peptide maps of 
[3H]mannose-labeled 59-kD VSG yield three labeled pep- 
tides, one of which corresponds to the C-terminal glycolipid 
(data not shown). Since the 56- and 58-kD VSG molecules 
both have the carboxyl-terminal glycolipid (4) these data 
suggest that at least some N-linked glycosylation occurs 
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Figure 8. Intracellular transport of VSG at low temperature.
Trypanosomes were pulse-labeled for 2 min with [s 5 S]methionine
at 37°C and chased at 10-37°C . Aliquots were removed and ana-
lyzed for transport to the surface, as in Fig . 4, or for transport to
a phospholipase C-containing membrane compartment, as in Fig.
6. (A) Fluorograph ofa gel containing samples from a cross-linking
experiment . Cells were chased at 15°C . Lanes 1 and 10, im-
munoprecipitated VSG from mock-treated trypanosomes sampled
at 2 and 120 min, respectively . Lanes 2-9, immunoprecipitated
VSG from cross-linked trypanosomes sampled at 2, 15, 30, 45, 60,
80, 100, and 120 min, respectively. (B) Fluorograph of a gel con-
taining samples from an in situ conversion experiment. Cells were
chased at 15°C. Lanes 1 and 10 contain VSG precipitated with anti-
VSG from NP-40 lysates ofcells sampled at 2 and 120 min, respec-
tively. Lanes 2-9 contain VSG precipitated with anti-CRD from
hypotonic lysates of cells sampled at 2, 15, 30, 45, 60, 80, 100, and
120 min, respectively . (C) Graph showing the kinetics, at 10-37°C,
oftransport to the surface (") andto a phospholipase C-containing
membrane (13) . The data for 15°C are from A and B. Radioactivity
was determined as described inthe legends to Fig . 5 and 7. The data
are presented as the fraction of total VSG at the surface (") and
the fraction of VSG converted from mfVSG to sVSG (0) . Sample
times in all panels are relative to the initiation of labeling and all
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posttranslationally in this variant . Similar findings have been
reported in other trypanosome variants (26) .

After the addition of N-linked oligosaccharides, 58-kD
VSG is processed to the mature 59-kD species with an appar-
ent th of 15 min (Fig . 1) . VSG is also subsequently pro-
cessed to a slightly higher M, form in tunicamycin-treated
cells (Fig . 2 A) . This tunicamycin-resistant processing is not
artifactual since PNGase F treatment of56/58-kD and 59-kD
VSG yield single polypeptides that have the same elec-
trophoretic mobility as the low and high M* forms, respec-
tively, of VSG synthesized in tunicamycin-treated cells .
However, the tunicamycin-resistant increase in M, does not
appear to be large enough to account for the apparent 1-kD
increase in M* observed in untreated cells. Therefore, it is
likely that both the tunicamycin-resistant processing and the
processing of N-linked oligosaccharides contribute to the
conversion of 58-kD to 59-kD VSG.
The nature of the tunicamycin-resistant processing is not

known, but one possibility is that the carboxyl-terminal
glycolipid is modified. All the components of the glycolipid
appear to be in fixed molar ratios except galactose, which
varies among the variants that have been examined (32) . Per-
haps some or all of these residues are added after the
glycolipid is attached to the carboxyl-terminus.

In agreement with McConnell et al . (43), most of the VSG
synthesized in a 2-min pulse-labeling reaches the cell surface
within 45 min, as assessed by reactivity with a membrane-
impermeant cross-linker (Fig . 4) . Transport of newly synthe-
sized VSG to a phospholipase C-containing membrane com-
partment, as assessed by conversion from mfVSG to sVSG
during hypotonic lysis, also occurs within 45 min of synthe-
sis (Fig . 6) . All attempts to separate these transport pro-
cesses (i .e ., tunicamycin, monensin, and low temperature
chases) were unsuccessful . Remarkably, the apparent th for
both of these processes (-15 min, Fig . 5 and 7) is essentially
the same as that for processing to the mature 59-kD form .

It is not clear at what point in the secretory pathway that
VSG enters a phospholipase C-containing membrane .
Several observations suggest that this occurs at the plasma
membrane. First, in pulse-chase experiments at 37°C only
mature 59-kD VSG is detected in the sVSG fraction of hypo-
tonically lysed cells (Fig . 6 A) . Second, transport to a phos-
pholipase C-containing membrane has the same kinetics as
transport to the surface at both 37°C and 15 °C . Finally, phos-
pholipase C has been reported to be in theplasma membrane
(54) . Nevertheless, it is equally possible that colocalization
occurs at an internal site and that subsequent transport to the
surface is very rapid .

It is likely, however, that oligosaccharide processing oc-
curs internally since the appropriate glycosyltransferases are
found in the Golgi apparatus of all eukaryotes (35) . This
would be consistent with both the increased detection ofma-
ture 59-kD VSG in the internal VSG population at lowered
chase temperatures (Fig. 8) and the effects of monensin on
VSG processing (Fig. 2 B) . N-acetylglucosaminyl- and ga-
lactosyltransferase activities have been detected in trypano-
some microsomal and Golgi fractions (27, 46) . However,
glycosyltransferase activity has also been reported in the
plasma membrane of trypanosomes (12) and, while it seems

lanes contain 106 cell equivalents. Scales at the left of A and B in-
dicate apparent Mr .
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unlikely, this cannot be ruled out as a Site of oligosaccharide 
processing. 

We were surprised to find that pulse-labeled VSG is trans- 
ported to the surface during chases at temperatures as low 
as 10°C (Fig. 8). Continued transport at low temperature 
may be a function of the lipid composition of trypanosome 
membranes. In addition, VSG is anchored in membranes by 
the acyl chains of the carboxyl-terminal glycolipid and might 
be expected to have greater diffusional freedom than an em- 
bedded membrane protein. 

With these results we can propose a model of how ILTat-l.3 
VSG is synthesized, processed, and transported to the cell 
surface. Other VSGs may be expected to fit this model to 
varying degrees (e.g., one highly glycosylated VSG has been 
described whose rate of transport is greatly reduced by 
tunicamycin [26]). 

After the removal of the amino-terminal signal sequence, 
the first event in the processing of VSG is probably the 
cotranslational addition of N-linked oligosaccharides. How- 
ever, at least some core glycosylation appears to occur post- 
translationally. Removal of the carboxyl-terminal hydropho- 
bic peptide from the initial translation product and its 
replacement with the glycolipid anchoring group occurs im- 
mediately after synthesis of the polypeptide (4, 26) but be- 
fore the completion of N-linked glycosylation. This step 
must be posttranslational since the 23-residue carboxyl- 
terminal peptide is not long enough to span the endoplasmic 
reticulum membrane and the cleft of the large ribosomal 
subunit and still be in the form of a peptidyl-tRNA. The 
speed of carboxyl-terminal processing suggests that this 
event occurs in the endoplasmic reticulum and that the 
glycolipid may be attached en bloc in a concerted reaction 
with removal of the peptide (4). 

After these initial events, VSG is transported to an intra- 
cellular site where processing of the N-linked oligosaccha- 
rides and possibly the glycolipid occurs. Although not cer- 
tain, it seems likely that this site is in the Golgi complex. 
This localization would be consistent with the detection of 
VSG in a putative Golgi fraction of trypanosomes (28). 

Thereafter VSG would be rapidly transported to the 
plasma membrane and incorporated into the surface coat. It 
seems likely from the kinetic data presented here that VSG 
first enters a compartment containing phospholipase C when 
it arrives at the surface. However, the possibility that VSG 
first colocalizes with phospholipase C in an internal mem- 
brane compartment followed by rapid transit to the surface 
cannot be formally excluded. 
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