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Abstract: Freezing of gait (FOG) is a poorly understood heterogeneous gait disorder seen in patients 1

with parkinsonism which contributes to significant morbidity and social isolation. FOG is currently 2

measured with scales that are typically performed by movement disorders specialists (ie. MDS- 3

UPDRS), or through patient completed questionnaires (N-FOG-Q) both of which are inadequate in 4

addressing the heterogeneous nature of the disorder and are unsuitable for use in clinical trials The 5

purpose of this study was to devise a method to measure FOG objectively, hence improving our 6

ability to identify it and accurately evaluate new therapies. We trained interpretable deep learning 7

models with multi-task learning to simultaneously score FOG (cross-validated F1 score 97.6%), 8

identify medication state (OFF vs. ON levodopa; cross-validated F1 score 96.8%), and measure total 9

PD severity (MDS-UPDRS-III score prediction error ≤ 2.7 points) using kinematic data of a well- 10

characterized sample of N=57 patients during levodopa challenge tests. The proposed model was 11

able to identify kinematic features associated with each FOG severity level that were highly consistent 12

with the features that movement disorders specialists are trained to identify as characteristic of 13

freezing. In this work, we demonstrate that deep learning models’ capability to capture complex 14

movement patterns in kinematic data can automatically and objectively score FOG with high accuracy. 15

These models have the potential to discover novel kinematic biomarkers for FOG that can be used for 16

hypothesis generation and potentially as clinical trial outcome measures. 17

Keywords: Deep Learning; Motion Capture; Multi-task Learning; Parkinson’s Disease 18

1. Introduction 19

Parkinson’s Disease (PD) is a slowly progressive neurodegenerative disorder that 20

predominantly affects dopamine-producing neurons in the brain, and individuals with PD 21

exceed more than 10 million people worldwide [1,2]. One of the most disabling features of 22

PD and one of the greatest unmet needs is freezing of gait (FOG), which unfortunately is 23

not always clearly treatable medically and/or surgically. FOG is described as brief arrests 24

of stepping when initiating gait, turning, or walking straight ahead [3–5]. When a person 25

freezes, they feel like their feet are “glued” to the floor. FOG is a frequent cause of falls and 26

serious injuries, and represents a significant public health burden (∼86% of patients fall 27

each year) [6–8]. 28

One critical factor limiting our ability to treat FOG is that clinicians measure it relatively 29

coarsely, primarily with expert rater observations as part of the Movement Disorder Society- 30

Unified Parkinson’s Disease Rating Scale Part III (MDS-UPDRS-III) scale [9]. This scale 31

requires specially trained raters who have typically completed movement disorders training. 32

In addition, despite being resource-intensive, FOG is only quantified with a single item 33
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Table 1. Clinical and demographic features of study participants.

PD-FOG PD-NoFOG PP-FOG

N 35 17 5
Age, y 69 ± 7 67 ± 12 66 ± 6
Sex, M/F 30/5 11/6 2/3
Disease duration, y 10.5 ± 6.7 6.0 ± 3.6 6.0 ± 3.3
LED, mg 1429 ± 673 833 ± 303 1258 ± 640
MDS-UPDRS-III (OFF) 34.0 ± 10.6 30.8 ± 13.2 39.4 ± 7.8
MDS-UPDRS-III (ON) 20.7 ± 8.7 18.4 ± 14.5 31.6 ± 9.0
NFOG-Q 20.1 ± 4.9 0.0 ± 0.0 17.8 ± 7.5

on an ordinal scale from 0 to 4, which may be too insensitive to detect small beneficial 34

effects. The most established self-reporting scale used in research settings, the N-FOG-Q 35

is acknowledged to be insufficiently sensitive for clinical trial use [10]. Previous work 36

have shown that FOG may be associated with non-dopaminergic system changes [3,11,12], 37

which suggests the potential for new treatments beyond dopaminergic medications like 38

carbidopa-levodopa [4]. However, developing a novel drug that is effective in treating FOG 39

requires accurately quantifying FOG to increase the precision for clinical trials. 40

Multiple studies have proposed methods to phenotype and rate FOG from kinematic 41

data during walking. For example, those include capturing impaired gait patterns from 42

lower back motion [13], describing gait complexity as a topological nonlinear dynamics 43

system [14], or exploring combinations of sensor locations (shank, thigh, waist), axes 44

(orthogonal, mediolateral, and antero-posterior), window lengths, and features (statistical, 45

frequency, and time-series) to find the best setting that captures FOG characteristics. 46

Much of the prior work is characterized by a few substantial limitations [15], including 47

1) a small number of body-worn sensor locations, 2) small sample sizes with mostly 48

early-stage PD patients lacking of severe FOG cases, 3) little consensus on proposed 49

methods across studies, and 4) a relative paucity of studies conducted in the ON- and OFF- 50

medication states, which is necessary to develop technology that will work over the entire 51

medication cycle. 52

More importantly, most prior studies rely on hand-crafted features for identifying 53

FOG, which may neglect important latent features within the data. For example, relative 54

power in a “freeze band” of accelerometry or other signals [16–18], peak detection or 55

similar methods applied to body segment motion [19,20], cycle-to-cycle variation in gait 56

parameters [21], or a combination of the above were used in a support vector machine 57

or other shallow machine learning models [22]. Due to the variability and complexity of 58

FOG behavior, it is unlikely that manually designed spectral features will capture all the 59

characteristics of FOG phenotypes. The popular “freeze band” analysis cannot capture 60

pure akinetic freezing, which does not present with tremulousness. 61

Here, we use a deep learning approach to capture complex patterns in kinematic data 62

and automatically score FOG, as well as identifying medication state and measure total 63

MDS-UPDRS-III score during a rigorous levodopa challenge paradigm [3]. We analyzed 64

over 30 hours of 3D motion capture data of 57 patients with varying PD disease duration 65

and FOG severity, including 5 patients with primary progressive FOG, a distinct condition 66

in which FOG presents without parkinsonian features [5]. This dataset is among the largest 67

samples seen in the FOG literature (in which the average sample size was recently estimated 68

as 18 ± 15 [15]). To our knowledge, this work is the first application of interpretable deep 69

learning to solve such a multi-task problem in PD. 70

2. Materials and Methods 71

We trained an interpretable deep learning model on whole-body 3D kinematic data 72

taken from behavioral motor tasks in N=57 patients with and without FOG. Clinical, 73
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Figure 1. Motion capture recording during timed-up-and-go testing. Left: clinical motion capture
laboratory. Right: example of kinematic marker data. Participants were instructed to rise from the
stool, walk to the taped box, and return three times during each test.

imaging, and cerebrospinal fluid analysis results from patients in this sample have been 74

reported previously [3,23]. 75

2.1. Behavioral testing 76

2.1.1. Study participants 77

Although this was an observational study for which registration was not required, it 78

was registered through clinicaltrials.gov (NCT02387281). Participants were recruited from 79

the Emory Movement Disorders Clinic and provided written informed consent according 80

to procedures approved by Emory University IRB. The inclusion criteria included: Age 81

≥ 18 years; PD diagnosis according to United Kingdom Brain Bank criteria [24]; Hoehn 82

& Yahr stage I-IV in the OFF state; ability to sign a consent document and willing to 83

participate in all aspects of the study. Participants with FOG were additionally required 84

to have FOG noted in medical history and confirmed visually by examiner. Exclusion 85

criteria included: vascular parkinsonism and drug-induced parkinsonism as well as the 86

presence of cerebrovascular disease or extensive white matter disease; prior treatment with 87

medications that cause parkinsonism; neurological or orthopedic disorders interfering with 88

gait; dementia or other medical problems precluding completion of the study protocol. 89

Demographic and clinical characteristics of study participants are presented in Table 1. 90

2.1.2. Levodopa challenge paradigm 91

Each participant was assessed twice using an identical testing protocol: first, in the 92

practically defined “OFF” state > 12 hours after the last intake of all antiparkinsonian 93

medications, and second, after a levodopa equivalent dose of ∼150% of the typical morn- 94

ing dose sufficient to elicit a full “ON” state. Additional details of the levodopa testing 95

procedure have been presented previously [3]. In each state, they were assessed with the 96

MDS-UPDRS-III motor exam [9] and with timed-up-and-go (TUG) tests in the motion cap- 97

ture laboratory [25] in normal and cognitive dual-task conditions [26], with three replicates 98

each. Patients were instructed to turn left on all TUG tests, consistent with our clinical 99

testing paradigm. Performance was scored in person, and scores were confirmed from 100

video if necessary. 101

2.1.3. Motion capture 102

TUG tests were recorded using 3D optical motion capture (Motion Analysis Corpo- 103

ration, Santa Rosa, CA). The motion capture facility is located in our clinical center and 104

measures 5.8m × 9.0m with a capture area of 3.0m × 4.6m, and is equipped with 14 Osprey 105

cameras with a resolution of 640 × 480 running at 120 Hz. During the testing session, 106

patients wore tight-fitting clothes and were instrumented with reflective adhesive markers 107

as recommended by the motion capture system manufacturer, configured as a superset 108

of the Helen-Hayes kinematic marker set [27], incorporating additional markers on the 109

hands. An example of the kinematic marker data is shown in Figure 1. Prior to analysis, all 110
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Figure 2. Overall model architecture. The recorded motion capture sequence is segmented into
4-second analysis windows, which are first processed with the Adaptive Trimming (AT) model.
AT model, which uses a 4-layer temporal convolutional network (TCN), predicts the start and end
index of the core motion segment that is most relevant for the prediction task. The core motion
segment is processed with a 4-layer adaptive temporal-spatial graphical convolutional network
(AGCN), which automatically learns the attention map for the most relevant joint and limb motion
for the prediction task. The feature representation from the final layer of AGCN is processed with
temporal average pooling (TAP) to summarize temporal information, which is then used to predict
medication state, FOG score, and MDS-UPDRS-III total score (excluding FOG score) at the same time.
Specifically for regressing the MDS-UPDRS-III total score (excluding FOG score), Gaussian Mixture
Model (GMM)-based regressor is used to take account of the non-Gaussian distribution of the target
values.

kinematic data were projected to a hip-centered coordinate system and normalized to zero 111

mean and unit standard deviation. 112

2.2. Modeling 113

2.2.1. Model Overview 114

Our proposed model is an attention-based adaptive graphical convolutional network 115

(AGCN, [28]) with adaptive trimming [29]. The overall model architecture is shown in 116

Figure 2. We process the 3D motion capture data following a common deep learning- 117

based human activity recognition paradigm [30,31]. Motion capture data from each testing 118

sequence is comprised of three channels (x, anterior/posterior; y, lateral; z, vertical) for 119

each of 60 kinematic markers, for a total of 180 independent channels. The data from each 120

sequence is segmented into analysis windows of 4 seconds, N × C × T, where N = 60, 121

C = 3, and T = 480 for 120 Hz signals, with 1 second intervals. A 4-second analysis 122

window is chosen to capture a sufficient duration of FOG episodes while patients are 123

walking [32]. 124

Each 4-second analysis window is labeled with medication state (OFF/ON), FOG 125

score (0, 1, 2, 3, or 4, from MDS-UPDRS-III item 3.11), and MDS-UPDRS-III total score, 126

excluding the FOG score. The proposed model is trained to predict the labels for each 127

analysis window based on the 3D kinematic data. 128

For extracting kinematic features from each 4-second window, the proposed model 129

considers two aspects: 1) the core motion segment, which corresponds to the most relevant 130

section of time within each window, and 2) the most relevant kinematic marker (joint) 131

and edge between markers (bone) for the given multiple prediction tasks. The model 132

uses adaptive trimming (AT) to identify the core motion segment within each 4-second 133

analysis window and trims the given input signal for further analysis [29]. The trimmed 134

core motion segment is processed to automatically identify the most relevant joint and 135

limb parts for making predictions by using the AGCN model [28]. The AGCN model 136

extracts feature representation by treating a given core motion sequence of 60 markers as a 137

graphical model representing a human skeleton, where each node is marker position (joint) 138
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and the edge is connectivity between markers (bone) of ongoing kinematic sequence. The 139

AGCN automatically learns the most important joint and bone motions across all samples 140

(domain-dependent attention weights) and specific to given samples (input-specific atten- 141

tion weights) for predicting medication state, FOG score, and MDS-UPDRS-III total score, 142

excluding FOG score. 143

2.2.2. Trimming Core Motion Segment 144

Adaptive Trimming (AT) enables the model to identify core motion segments and to 145

flexibly trim the signal that is most useful for specific prediction tasks of interest. From a 146

previous study, AT was very effective at detecting gym exercise classification task [29]. In 147

this work, the AT is fully trained with a given kinematics dataset to predict the start and 148

end time of the core motion segment from a 4-second analysis window, X ∈ RN×C×T . 149

c = sigmoid(Fcenter(Fat(X))) (1)

w = exp(Fwidth(Fat(X))) (2)

Fat is a four-layer convolutional network for extracting feature to predict core motion 150

locations. Fcenter and Fwidth are two-layer fully connected models to predict center location, 151

0 < c < 1 and width of core motion segment, 0 < w < 1, which are further processed to 152

derive start, s, and end, e, indices of given window, where 0 < s, e < T. 153

s = T × sigmoid(c − w
2
) (3)

e = T × sigmoid(c +
w
2
) (4)

XC = X[s : e] = Fcrop(X, s, e) (5)

= Fsampler(Fgrid_gen(X), s, e) (6)

The cropping operation adapts grid generator, Fgrid_gen, and sampler, Fsampler that is 154

used in spatial transformer network (STN) [33] to learn differentiable geometric manip- 155

ulator function for cropping 2D images for the most salient object in the scene for image 156

recognition. For AT, Fgrid_gen generates 1D temporal grid with detected start, s, and end, e, 157

indices of core motion signals and the temporal segment, X[s : e] ∈ RN×C×T′
is sampled 158

with Fsampler, where T′ = e − s + 1. This cropping operation resembles an interpolation 159

process, which makes the whole AT model differential that can be trained with gradient 160

back-propagation operation. 161

2.2.3. Adaptive Graph Convolution 162

The trimmed core motion segment is represented as temporal graphical sequence, 163

G = (V, E), where the node set, V = {vti|t = 1, · · · , T′, i = 1 · · · }, includes markers (joints) 164

in a skeleton sequence. The edge set is composed of two subsets, in which the first edge 165

subset is the intra-skeleton connectivity (limbs) ES = {vtivtj|(i, j) ∈ H}, where H is the 166

set of connected joints defined by motion capture system, and second edge subset is the 167

inter-frame edges, which connect the same joints in consecutive frames EF = {vtiv(t+1)i}. 168

Given a temporal-spatial graph representation of motion segment, we first encode 169

spatial dimension by using an AGCN [28] with Kv kernel size, which is defined as follows, 170

fout =
Kv

∑
k

Wk fin(Ak + Bk + Ck) (7)

where, fin ∈ RCin×T′×N and fout ∈ RCout×T′×N are input and output feature map and 171

Wk ∈ RCout×Cin×1×1 is weight vector of the 1× 1 convolution operation. Ak = Λ− 1
2 (Āk)Λ

− 1
2

k 172

is a normalized N × N adjacency matrix of defined skeleton structure from our motion 173
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capture system, where Āk is a binary N × N adjacency matrix indicating the connectivity 174

between the joints and Λii
k = ∑j(Āij

k ) + α is the normalized diagonal matrix using α = 0.001 175

to avoid empty rows. 176

The attention maps of each node (joint) and edge (limb) are encoded in Bk and Ck, 177

which are learned fully data-driven manner. Bk ∈ RN×N is an attention graph that encodes 178

the underlining node and limb importance considering the entire samples of the task 179

domain. Bk is fixed once the parameters are trained and used for the inference. Ck is an 180

input-dependent attention graph to determine the strength of the connection between any 181

two nodes in a given input graph sequence. Specifically, we applied embedded Gaussian 182

Affinity [34] to calculate self-similarity between two nodes, vi and vj in a given input feature 183

map, fin. 184

Cij
k = f (vi, vj) =

eθk(vi)
Tϕk(vj)

∑N
j=1 eθk(vi)T(ϕk(vj))

(8)

Compared to Ak and Bk, Ck can flexibly attend to more important joint and limb motions 185

according to changing inputs at inference time. Combining Ak (predefined skeletal con- 186

nectivity), Bk (domain-specific connectivity), and Ck (input-specific connectivity) helps 187

the model to fully adjust the graphical structure of the input sample to only focus on 188

the motion signals that are useful for jointly predicting medication state, FOG score, and 189

MDS-UPDRS-III total score excluding FOG score. Additionally, we did not restrict the 190

learned Bk and Ck to be left and right body symmetric to take into account the potential for 191

asymmetric symptoms [35,36]. 192

To further encode temporal dimension, Kt × 1 temporal convolution is applied to spa- 193

tial feature, fout, extracted from the above mentioned attention-based graph convolution 194

model, thereby, deriving spatial-temporal graphical representation, f ST
out = convKt×1( fout). 195

In this study, we use a four-layer temporal-spatial graphical convolutional network (TGCN) 196

with 64 feature maps to encode core motion in the given 4-second analysis window. Tem- 197

poral Average Pooling (TAP) [37] is applied to the output of the last layer to summarize the 198

feature across the temporal axis. 199

2.2.4. Multi-task Prediction 200

The feature representation from the last TGCN layer is used to simultaneously predict 201

medication state, FOG score, and MDS-UPDRS-III total score excluding FOG score. i) 202

Medication state is a binary classification problem, either OFF or ON state. The feature 203

representation is processed with two-layer fully connected model and a two-way softmax 204

classifier, which is trained with binary cross-entropy loss. ii) FOG score has 5 levels, from 0 205

(absent) to 4 (severe) FOG. For FOG score prediction, the feature representation is processed 206

with two-layer fully connected model and five-way softmax classifier, which is trained 207

with multi-class cross-entropy loss. iii) MDS-UPDRS-III total score excluding FOG score is 208

a positive integer ranging between 0 to 120. Before the model training, we apply Z-score 209

normalization to marginalize the impact of outliers to bias the model prediction behaviors. 210

To additionally consider the non-Gaussian distribution of the MDS-UPDRS-III total score 211

excluding FOG score, we processed the feature representation with Gaussian Mixture 212

Model (GMM) regression model [38]. 213

p(y|x) =
m

∑
i=1

αi(x)N (µi(x), σ2
i (x)) (9)

where x ∈ RD is feature representation from the last TGCN layer, α = so f tmax( fα(x)) is 214

mixing coefficients for Gaussian distributions and µ = fµ(x) and σ = exp( fσ(x)) are mean 215

and standard deviation of each Gaussian distribution. For projection functions, fα, fµ, fσ, 216

two-layer fully connected models were used. In our experiment, the naive regression 217

with a two-layer fully connected model and mean square error having a single Gaussian 218

distribution assumption did not converge when training. 219
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Table 2. Summary of timed-up-and-go testing sessions stratified by medication state and FOG score.

Medication FOG Score
state 0 1 2 3 4

OFF 21 15 9 8 7
ON 38 11 7 3 1

3. Experiment Setting 220

3.1. Model Hyperparameter, Training and Evaluation 221

i) AT: Temporal kernel size and feature map were 3 × 1 and 64, respectively, for all 222

four layers of the temporal convolutional model, Fat. Max pooling with × 1
2 was used at 223

each output layer for aggregating temporal dimension. For predicting center location and 224

width size of core motion segment, Fcenter and Fwidth, two-layer fully connected layer model 225

was used with 128 units and ReLU activation function [39]. ii) AGCN: Four layers of the 226

temporal graphical convolutional model were used, and kernel sizes of Kv = 3 and Kt = 5, 227

respectively, for graphical and temporal convolution. Across all layers and convolutions, 228

we used 64 feature maps, ReLU activation function, and max pooling with × 1
2 to aggregate 229

along the temporal dimension. iii) Multi-task Prediction: For two-layer fully connected 230

models to predict medication state, FOG score, and GMM regression parameters, we used 231

256 and 128 units with ReLU activation function. 232

For the training model, we used a learning rate fixed at 1× 10−3 with Adam optimizer 233

and used a batch size of 16. Model training was stopped when no decrease in loss is 234

observed from the validation set, which model is also used for evaluating the test set. 235

For evaluating the proposed method, we used 10-fold cross-validation. At each fold, 236

50%, 20%, and 30% of the dataset was used for the training, validation, and testing sets, 237

respectively. We avoided placing adjacent analysis windows in different folds to avoid 238

pairwise similarity biasing the cross-validation results [40]. 239

3.2. Performance Metrics 240

For performance metrics, we used binary F1 score and mean F1 score for medication 241

state and FOG score prediction, respectively, which is widely used for evaluating prediction 242

performance in the presence of label imbalance. As shown in Table 2, most participants had 243

FOG scores ≤ 2 for both OFF and ON medication states. The mean F1 score is an average 244

of per-class F1 score, which is the harmonic mean of precision and recall of each class. 245

Precisionc =
TPc

TPc + FPc (10)

Recallc =
TPc

TPc + FNc (11)

F1 scorec = 2 × Precisionc × Recallc

Precisionc + Recallc (12)

Mean F1 score =
1
C

C

∑
c

F1 scorec (13)

where C is the number of classes and C = 5 for FOG Score classification. For a class c, TPc
246

is a true positive that represents the total of successfully classified class windows, FPc is 247

a false positive that represents the total misclassified class windows, and FNc is a false 248

negative that represents the total misclassified non-class windows. 249

For evaluating the regression performance for MDS-UPDRS-III total score excluding 250

FOG score, we used root mean square error (RMSE). 251

3.3. Comparison with Baseline Models 252

We compared the proposed model to: i) shallow models with hand-crafted features, 253

and ii) deep learning models including convolutional networks and graphical convolutional 254

networks. We compared classifier performance across models using 95% Wilson score 255
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confidence intervals [41] for Medication State and FOG Score and using standard normal 256

approximation based 95 % confidence intervals for MDS-UPDRS-III. 257

Shallow Baseline Models. The first baseline models we considered were shallow models, 258

such as Random Forest (RF) and Support Vector Machine (SVM) with radial basis function 259

(RBF) kernel, with FOG-related hand-crafted features. Following previous work [13,42, 260

43], we extracted various time, frequency, and distribution features, including freezing 261

index [44], variance, sample entropy [45], central frequency, dominant frequency, and 262

wavelet mean [46] features from the acceleration signals at multiple on-body locations. We 263

used second-order Savitsky-Golay differentiation to derive acceleration traces from joint 264

marker kinematics. 265

To investigate whether the lateralization of parkinsonian symptoms would impact 266

model performance, We iterated RF and SVM models using markers from the left side 267

of the body only (RF-L, SVM-L) and using markers from both sides (RF-LR, SVM-LR). 268

We focused on lower body parts and independently trained RF and SVM for each task 269

separately, following previous work [13,42]. 270

Deep Baseline Models. We also compared the proposed model to several deep learning 271

models for processing human skeleton time-series, including Temporal convolutional 272

network (TCN) [47], Graphical convolutional network (GCN) [48], GCN with attention 273

model (AGCN) [28], and AGCN with Adaptive Trimming (AT+AGCN). We used identical 274

hyperparameters for model architecture and training wherever possible in order to make the 275

fairest possible comparisons between deep learning models. All models were 4-layer with 276

64 feature maps and × 1
2 max pooling. For deep learning models, and for the classification 277

and regression, we used two-layer fully connected layer with 256 and 128 units with ReLU 278

activation functions. 279

3.4. Comparison with Single-Task Prediction 280

Since the proposed model is constrained to learn features relevant to three simulta- 281

neous prediction tasks, we reasoned that the identified features might be sub-optimal for 282

single task prediction, leading to decreased performance. Therefore, we re-trained the deep 283

learning models (with the exception of AT+AGCN+GMM) on the FOG score prediction 284

task only and assessed changes in performance. We did not include the AT+AGCN+GMM 285

model in this analysis as without the MDS-UPDRS-III prediction task it is identical to the 286

AT+AGCN model. 287

3.5. Model Interpretability 288

We considered it critical to assess the clinical relevance of features identified by the 289

model as relevant to medication state, FOG score, or total MDS-UPDRS-III score. These 290

included individual kinematic markers (often referred to as "joints" in the computer vi- 291

sion literature) and segments ("limbs") with high attention scores, and kinematic marker 292

trajectories with high relevance to particular labels. 293

To derive overall model attention to individual segments or limbs, we aggregated 294

attention maps across all samples in the dataset by averaging the learned attention maps 295

and graphical structure over all M samples: 296

EA =
1

M × K

M

∑
i

Kv

∑
k
(Ak + Bk + Ci

k) ∈ RN×N (14)

where Ak, Bk, and Ck(xi) are the normalized N × N adjacency matrix of predefined skele- 297

ton structure, the domain-wise N × N attention map, and the input-dependent N × N 298

attention map at each kernel, respectively. The attention weights for joints and segments 299

are then defined as the diagonal components Ejj
A and off-diagonal components Eij,j ̸=i

A of EA, 300

respectively. 301
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Table 3. Prediction performance of the proposed model (AT+AGCN+GMM) and comparison to
baseline models. Performance metrics are presented as mean ± 95% confidence interval. Deep
learning models are indicated by italics. Abbreviations are described in text. aTotal score with FOG
item (3.11) subtracted. †P<0.05, improvement in RF vs. SVM. ‡P<0.05, improvement in -LR vs.
-L. ∗P<0.05, improvement in deep learning models vs preceding row. §P<0.05, improvement in
multi-task vs. single task prediction.

Medication State FOG score MDS-UPDRS-IIIa

Model (F1) (F1) (RMSE)

SVM-L 0.540 ± 0.016 0.429 ± 0.026 9.346 ± 0.138
RF-L 0.594 ± 0.012† 0.553 ± 0.038† 9.189 ± 0.301

SVM-LR 0.616 ± 0.017‡ 0.608 ± 0.031‡ 8.714 ± 0.101‡

RF-LR 0.657 ± 0.019†,‡ 0.684 ± 0.040†,‡ 7.918 ± 0.427†,‡

TCN [47] 0.875 ± 0.017∗ 0.851 ± 0.020∗,§ 4.551 ± 0.276∗

GCN [48] 0.913 ± 0.015∗ 0.929 ± 0.021∗,§ 4.023 ± 0.373∗

AGCN [28] 0.949 ± 0.010∗ 0.948 ± 0.018∗,§ 3.703 ± 0.300∗

AT+AGCN 0.955 ± 0.021 0.955 ± 0.026§ 3.555 ± 0.394∗

AT+AGCN+GMM 0.975 ± 0.018 0.967 ± 0.022 2.753 ± 0.440∗

To identify individual kinematic marker trajectories and core motion segments with 302

high relevance to particular labels, we visualized individual analysis windows and core 303

motion segments that the model predicted with high confidence, as measured by the 304

entropy of the class prediction distribution. We visualized these data and discussed 305

the interpretation with clinician experts within our project team, within the movement 306

disorders group at our center, and at a regional forum in the Atlanta area hosted by the 307

study sponsor in order to assess whether the identified features were consistent with the 308

features that movement disorders specialists are trained to identify as characteristics of 309

freezing. 310

3.6. Model Performance and Potential Bias 311

After evaluating the proposed model against other candidate models, we assessed 312

the potential for bias in model performance associated with participant demographics. 313

After computing individual F1 score for each participant, we compared model performance 314

across age and sex with linear models. Linear models used FOG study group (PD-FOG, 315

PD-NoFOG, PP-FOG), dichotomized age, and sex as predictors of individual F1 score. 316

Statistical significance was assessed with Wald tests at P=0.05. 317

4. Results 318

4.1. Overall Model Perfomance 319

Here, we report the overall prediction performance of the proposed model (AT+AGCN+GMM320

in Table 3), compared with the performance of baseline models for predicting medication 321

state, FOG score, and MDS-UPDRS-III total score excluding FOG item. In general, the 322

proposed model’s performance was very high for both classification and regression tasks: 323

Medication State, 97.6% cross-validated F1 score; FOG Score, 96.8% cross-validated F1 score; 324

and MDS-UPDRS-III, 2.7 point RMSE, which is within the minimal clinically-important 325

difference [49] for the instrument. In particular, the addition of the GMM regression compo- 326

nent — which learns non-Gaussian distributions flexibly — to the second-best performing 327

model architecture (AT+AGCN) significantly improved MDS-UPDRS-III performance. 328

Performance of all models is summarized numerically in Table 3. 329

The prediction performance of the proposed model on MDS-UPDRS-III score exclud- 330

ing FOG item is shown in Figure 3. The overall RMSE was 2.7 ± 0.4 points. As expected, 331

overall, ON medication sessions have lower and OFF medication sessions have higher 332

MDS-UPDRS-III total scores, as indicated by the higher prevalence of red points to the 333

left of the plot and the higher prevalence of blue points to the right of the plot. We noted 334
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Figure 3. Scatter plot comparing clinician-rated versus model-estimated MDS-UPDRS-III total score,
excluding the FOG item (3.11). Unity line is shown for reference. Each dot represents a single 4-second
analysis window. Colors are used to represent the FOG item scores corresponding to each analysis
window, with darker colors indicating more severe FOG in the OFF (blue) and ON (red) medication
states.

that the model tended to overestimate lower scores and under-estimate higher scores, as 335

indicated by datapoints in the upper left and lower right. 336

4.2. Comparison to Baseline Models 337

For comparison to the previous state-of-the-art models in FOG analysis, we started 338

analysis with shallow models (RF and SVM) using only lower body parts. We tested the 339

use of left only and both left and right lower body parts (RF-LR and SVM-LR). Using 340

both sides of body significantly improved performance on all three tasks; increasing F1 341

score by 12% and 33% for Medication State and FOG Score, respectively, and decreasing 342

MDS-UPDRS-III RMSE by 10%. Among the shallow models (RF-LR and SVM-LR), RF 343

significantly outperformed SVM, increasing F1 score by 7% and 13% for Medication State 344

and FOG Score, respectively, and decreasing MDS-UPDRS-III RMSE by 9%, presumably 345

due to its ability to learn non-linear decision boundaries. 346

Deep learning models also substantially outperformed shallow ML models, providing 347

evidence that learning FOG representations that capture complex patterns may be more 348

effective than using existing hand-crafted FOG features. Compared to the best performing 349

shallow model (RF-LR), the TCN model, which mainly captures temporal patterns of each 350

joint movement sequence, improved F1 score by 33% and 24% for Medication State and 351

FOG Score, respectively, and decreased MDS-UPDRS-III RMSE by 43%. 352

Among the deep learning models, we also noted significant performance improve- 353

ments in F1 scores among graph-based models vs. the more traditional TCN, as graph-based 354

models can additionally capture positional relations between joints with a graphical data 355

structure defined as a human skeleton. The simplest graph-based model significantly 356

outperformed the TCN on all three tasks (4%, 9%, and 11% improvements on medication 357

state, FOG score, and MDS-UPDRS-III, respectively). Further significant improvements 358

were noted with the addition of attention mechanisms which enable the model to adap- 359

tively concentrate its representation powers for the most relevant joint depending on the 360

given input (4%, 2%, and 8%). The additions of adaptive trimming and the Gaussian 361

mixture model prediction did not significantly improve F1 scores, but significantly reduced 362

MDS-UPDRS-III RMSE (4% and 23%, respectively). We speculate that the flexibility of the 363

GMM model stabilized the gradient backpropagated from the regression branch to help 364

find a more effective feature representation for all tasks. 365
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Figure 4. Kinematic markers (referred to as "joints" in pose estimation literature, red) and segments
(referred to as "limbs" in pose estimation literature, (blue) with the top 10 attention weights in the
prediction tasks.

4.3. Comparison to Single-Task Prediction 366

All four deep learning models tested showed significantly improved performance 367

on FOG score prediction when trained on the multi-task problem (medication state, FOG 368

score, and MDS-UPDRS-III) rather the single task problem (FOG Score only). When the 369

models were trained on the single task problem, the TCN, GCN, AGCN, AT+AGCN 370

demonstrated F1 scores of 0.825 ± 0.016, 0.892 ± 0.033, 0.903 ± 0.047, and 0.925 ± 0.012, 371

respectively, a 3.8% decrease in performance on average compared to the multi-task problem. 372

We speculate that additional information provided to the models by predicting medication 373

states and MDS-UPDRS-III total scores helped to learn representations that are more 374

targeted and personalized to discriminate detailed differences in FOG phenotypes in 375

varying PD conditions, which eventually helped improve overall FOG score classification 376

performance. 377

4.4. Model Interpretability 378

4.4.1. Most Relevant Joints and Limbs 379

We visualized markers and segments with the top ten largest attention weights to 380

assess which body parts were most salient to the prediction task (Figure 4). Attention 381

weights were concentrated on the head, chest, waist, hands, and (particularly left) legs. We 382

suggest that the attention paid to markers on essentially all body segments reflects the fact 383

that FOG is a full-body phenomenon, and suggests that the model may be attending to 384

en-bloc turns [50] — which tend to be maintained across medication states [51] — or other 385

elements of impaired intersegmental coordination. We noted that in particular, the model 386

attended closely to segments on the left foot, which had been suggested previously by a 387

clinical expert on our team as relevant to FOG in this testing condition, which requires left 388

turns. Interestingly, the model also attended to the fingers and elbows. Although these 389

body parts are not typically attended to during clinical FOG examination, patients with 390

FOG can also freeze during upper limb movements [52], leaving open the possibility that 391

the model was attending to hand movements characteristic of freezing. 392

4.4.2. Most Relevant Motion Segments 393

We also visualized patterns of left heel movement that were predicted as relevant to 394

particular medication states and FOG scores with high confidence. Figure 5 shows the 395
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Figure 5. Examples of detected core motion segments of left heel motions from the adaptive trimming
model for different medication states and FOG scores. The horizontal and vertical axes of plots are
in seconds and millimeters, respectively, with the vertical axis indicating the height of the left heel
marker above the laboratory floor. All plots depict four seconds of recorded movement. Core motion
segments detected by the adaptive trimming model are depicted in blue.

detected core motion segments of left heel movements from the adaptive trimming model 396

during the timed-up-and-go trials of patients with ON and OFF medication states and 397

different FOG scores. In general, the adaptive trimming model automatically captured 398

approximately a single step cycle within each 4 second analysis window with movement 399

patterns especially related to FOG. 400

The identified kinematic associated with detected core segments were highly con- 401

sistent with the features that movement disorders specialists are trained to identify as 402

characteristics of freezing. This analysis shows that the model focuses on periods with 403

regular gait activity for epochs corresponding to FOG scores of 0 and 1, and periods of 404

interrupted gait activity or pure akinesia for epochs with higher scores. For the samples 405

with a FOG score of 0 (first column), the model considered normal stepping gait and used a 406

walking cycle motion for making predictions. For the samples with a FOG score of 1 (second 407

column), the models detected decreasing step length from the motion automatically. As the 408

FOG score became higher, the model tended to detect more FOG-related gait motions. For 409

the samples with a FOG score of 2 (third column), the model detected onset of gait signal 410

related to festination (tendency to speed up in parallel with a loss of normal amplitude of 411

repetitive movements) [53]. For the samples with FOG score of 3 and 4 (fourth and fifth 412

columns), the model detected freezing gait, akinesia, and trembling signals as core motion 413

signal that is relevant for predicting FOG scores. 414

4.5. Classifier Performance and Potential Bias 415

After computing individual F1 score for each participant, we compared model perfor- 416

mance across study and demographic groups to assess potential bias. Linear models found 417

no significant differences in F1 score across study groups or sex, but found significantly 418

decreased performance (reduction in F1 score of 17%, P<0.01) among older participants 419

(age ≥ 69 years) compared to younger participants. 420

5. Discussion and Conclusion 421

In our experiment, we designed a deep neural network model to simultaneously 422

predict levodopa medication state (ON/OFF), FOG score (0-4), and MDS-UPDRS-III total 423

score (less FOG score) from full-body kinematics data of 57 patients, including 5 patients 424

with atypical parkinsonism, assessed with TUG tests in the off and on medication state. As 425

compared to formal clinical assessments by a movement disorders specialist, our AGCN 426

model classified levodopa medication state and FOG score with 96.4% and 96.2% F1 scores 427

respectively, and regressed MDS-UPDRS-III total score with root mean square error (RMSE) 428

of 2.7 points. 429
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To the best of our knowledge, this is the first work that applies an interpretable deep 430

learning model with full-body kinematics for classifying FOG. This model detects time 431

segments having characteristic movements of FOG during walking, e.g. small shuffling 432

steps, akinesia, and tremulousness. Additional findings demonstrated that FOG is not 433

limited to the lower extremity, and also significantly involves movements in the upper body, 434

further supporting that FOG requires phenotyping using whole-body kinematics. Findings 435

from our analysis may lead to novel hypotheses to define more granular FOG phenotypes, 436

or potentially to technologies that enable continuous monitoring of FOG severity in order 437

to test new therapies with improved precision. 438

Overall, while the current study uses 3D kinematic data, we believe that the underlying 439

approach will generalize to motion estimates obtained through pose estimation or body- 440

worn sensors, enabling future applications in clinical and home settings with 2D video. The 441

patterns of body motion recorded here result from fundamental principles of physics and 442

biomechanics, which are likely to hold regardless of the method used to measure motion. 443

For example, the laws of motion and principles of energy conservation apply regardless 444

of whether motion is measured using 3D kinematic data, pose estimation, or body-worn 445

sensors. This is likely why it is feasible to estimate virtual IMU signals from video data [29]. 446

The study has three main limitations. First, we did not attempt to identify freezing of 447

gait (FOG) at the millisecond level, which would be necessary for use in assistive technology. 448

Second, we did not attempt to measure FOG severity as a continuous outcome, which 449

could increase precision in clinical trials. Finally, the study sample was predominantly 450

white and had fewer females than would be representative of the Parkinson’s disease (PD) 451

population [54], so the generalizability of the results to the entire PD population may be 452

limited. 453

One primary contribution of this work is the application of deep learning to the 454

problem of scoring FOG, which has primarily been examined with hand-crafted and 455

engineered features such as spectral power in a prespecified “freeze band” [16] calculated 456

from a prespecified set of body segments. Indeed, despite the typical notion that FOG is an 457

interruption of walking — leg movements — our results indicate that scoring FOG with 458

high accuracy may require attention to body parts across the body, including the hands 459

and head. We believe that adopting a data-driven approach with explainable deep learning 460

models represents an important way forward in modeling kinematics from walking and 461

turning motions of parkinsonian patients. 462

We hope that using deep learning to discover data-driven kinematic features will lead 463

to the development of a more fine-grained and objective FOG severity scales, which could 464

provide valuable information to clinicians and researchers, help to improve diagnosis, 465

treatment, and overall management of FOG (cf. [55]). 466
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Appendix A Wilson Score Interval 493

Binomial proportion confidence interval calculates the outcome of series of Bernoulli
trials to estimate the confidence interval for the probability of success. Wilson score
interval is a asymmetric approximation of binomial confidence interval, which tackles
two problems that rises when using naive symmetric normal approximated confidence
interval [56], which are overshoot and zero width intervals [41]. Moreover, wilson score
interval is robust with small samples and skewed observations as in our dataset (Table 2),
which is common in human behavior analysis problems [29,57]. Wilson score interval can
be calculated as follows:

p ≈ 1

1 + z2

n

(
p̂ +

z2

2n

)
± z

1 + z2

n

√
p̂(1 − p̂)

n
+

z2

4n2 (A1)

where p̂ is the success probability and n is the number of experiments. For 95% confidence 494

interval, z = 1.96. 495
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