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Abstract

Understanding the spatial and temporal patterns of mortality rates in a highly heterogeneous

metropolis, is a matter of public policy interest. In this context, there is no, to the best of our

knowledge, previous studies that correlate both spatio-temporal and age-specific mortality

rates in Mexico City. Spatio-temporal Kriging modeling was used over five age-specific mor-

tality rates (from the years 2000 to 2016 in Mexico City), to gain both spatial (borough and

neighborhood) and temporal (year and trimester) data level description. Mortality age-spe-

cific patterns have been modeled using multilevel modeling for longitudinal data. Posterior

tests were carried out to compare mortality averages between geo-spatial locations. Mortal-

ity correlation extends in all study groups for as long as 12 years and as far as 13.27 km.

The highest mortality rate takes place in the Cuauhtémoc borough, the commercial, touristic

and cultural core downtown of Mexico City. On the contrary, Tlalpan borough is the one with

the lowest mortality rates in all the study groups. Post-productive mortality is the first age-

specific cause of death, followed by infant, productive, pre-school and scholar groups. The

combinations of spatio-temporal Kriging estimation and time-evolution linear mixed-effect

models, allowed us to unveil relevant time and location trends that may be useful for public

policy planning in Mexico City.

Introduction

Identifying trends in Metropolitan Mortality (MM) is a challenging problem nowadays. Sys-

tematic approaches to discriminate the relevance of social, economic, demographic, educa-

tional, environmental or criminal factors in MM are matters of intense current research [1–3].

MM can be differentiated from rural mortality since the causes and risk factors are substan-

tially different [3]. To develop a useful model that may explain the evolution in time and space
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of MM, is crucial to have a comprehensive information regarding the aforementioned factors.

However, missing data is a common problem in developing and emerging countries, particu-

larly for small-scale spatial and temporal level measurements. Diverse limitations and

restricted access to public health data to collect information at the neighborhood and monthly

level, lead to the modifiable areal unit problem (MAUP). It implies that a bias is generated

affecting statistical hypothesis testing due to the combination of two or more spatial scales. To

address this problem there have been several alternatives such as: correct the variance-covari-

ance matrix using samples from individual-level data; focus on local spatial regression rather

than global regression; design areal units to maximize a particular statistical result; developing

statistics that change across scales in a predictable way; Bayesian hierarchical models as a gen-

eral methodology for combining aggregated and individual-level data, or, using simulated

data.

One of the most useful variables to explain MM is the age group, since the causes associated

to risk factors, disease incidence and other several related variables are substantially different

between such groups. Seminal works regarding age-specific MM can be found elsewhere [4–

6]. Often, these age groups are separated into non-overlapping sets as follows:

1. Infant (x< 1 years old)

2. Pre-school (1� x< 4 years old)

3. School (4� x< 14 years old)

4. Productive (14� x< 64 years old)

5. Post-productive (x� 64 years old)

In this work, we refer to the productive group as the economically productive population.

Post-productive group is referred as economically dependent from the productive population.

In addition, age-specific mortality can be influenced by social determinants at the individual

level and at national or state level [7, 8]. Individual mortality is influenced by personal-level

characteristics such as genetics, socioeconomic status and education [9].

However, there is growing evidence that collective or regional disadvantages can also be

good predictors of individual mortality and population level mortality [1, 10]. Example of

these regional disparities can be classified into social, demographic and environmental factors.

In a recent study, Gavourova and Toth (2019) described how environmental factors influence

changes in preventable mortality and how they impact differ from district to district in Slova-

kia [2]. In another context, individual and regional characteristics have been simultaneously

analyzed for cardiovascular disease, to elucidate the effects of their interaction with air pollu-

tion, psychosocial stress, adverse childhood experiences and neighborhood deprivation index

[11, 12].

Regarding the description of spatial mortality trends, two main approaches are used: i) All-

cause or ii) Cause-specific mortality studies. In the first case, spatial and temporal variability

have been measured, using different levels of granularity [13–17]. For cause-specific mortality

several models have been developed for diseases such as cancer, diabetes, hypertension,

chronic obstructive pulmonary disease, cardiovascular disease, hepatitis C and HIV/AIDS [6,

14, 17–26]. As an example of cause-specific mortality, Dwyer-Lindgren, et al. (2017), studied

the variations in life expectancy, mortality rates and years of life lost from 152 causes of death

at the county and neighborhood levels by age group and sex. They mainly conclude that

county level estimations mask important local differences (between neighborhoods) [15, 27].

Studies with these characteristics have been performed in developed countries which generally

have large, accessible and almost complete databases, thus, there is no MAUP.
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In developing and emerging countries, it has been described an exacerbated problem in

health disparities due to poverty, environmental threats, inadequate access to health care and

educational inequalities that may lead to higher mortality rates [4]. In most cases, the con-

ducted studies about mortality rates and other health outcomes rely on data that is not docu-

mented or incomplete. The last can be due to the lack of economic resources from public

institutions or data restrictions for research purposes.

Mexico City, is one of the most populated cities worldwide. Its economy, employment rates

and health services have improved over the last decades. Unfortunately, these resources are

unevenly distributed, mainly affecting three risk groups: children, the elderly and the poor

[28]. To worsen this situation, exposure to environmental risk factors derived from urbaniza-

tion has increased, with its associated negative health effects gaining attention in recent years

[29–32].

To set some context of mortality causes and trends in Mexico City, in a recent study,

Aburto et al. (2018) analyzed lifespan and preventable mortality for Mexico City and the other

31 states of the country. They described changes in age groups. Particularly, they reported an

increase in Diabetes and heart diseased-related mortality rates [33]. Furthermore, beyond dis-

eased related mortality causes, an important number of deaths in Mexico City corresponds to

homicides. Aburto et al. conducted different studies for the periods 2000-2010 and 2005-2015

regarding the impact of homicides in life expectancy and lifespan inequality. The authors

reported an increase in homicide mortality that surpassed positive outcomes from health care

reforms oriented to promote life expectancy at the national level [34, 35].

Regarding health outcomes, Gómez-Dantés, et al. (2016) report the leading risk factors for

children and adults, supporting the fact that public health reforms and interventions should

vary according to the specific risk factor for each age group. To give some examples of the lat-

ter, diarrhoeal diseases, undernutrition and poor sanitation were the leading risk factors for

children, meanwhile for adults, chronic diseases and violence resulted the highest risk factors

[36].

Despite the above mentioned previous background, at the borough and smaller scales,

health, socioeconomic, educational or environmental disparities for Mexico City have not

been formally quantified. In general, quality of life indexes of the urban and rural blocks are

drastically different. However, these differences may be larger between urban neighborhoods

than between rural and urban blocks.

Recently, new estimations suggested a high degree of social backwardness (term coined to

refer to the lack of advancement of a group relative to the average) [37]. In Mexico City, health

disparities such as illness and mortality rates can vary between close neighborhoods, just a few

blocks apart, within the same borough. Taking this into account, assessment of health out-

comes such as MM, using borough as a measurement unit, may result inadequate. A similar

behavior arises from considering the temporal component: coarse-grained measurements may

mask the variant behavior of MM. Once again, the MAUP is a matter to take into consider-

ation at both spatial and temporal scales.

It is known that temporal variations in environmental factors (air pollutants for example)

and socioeconomic variations (socio-economic level among boroughs and neighborhoods)

can lead to biased results when not having measurements at the appropriate scales. Thus, there

is an urgent need to count on fine-grained data in order to better interpret spatio-temporal

correlations in health outcomes. To the best of our knowledge, there is no previous report in

which time lapses for measurements were taken into smaller scales than in a year’s time. Nev-

ertheless, both spatio-temporal data are available in Mexico City for MM. These data include,

at the borough level, information for general mortality, age, gender and other descriptive vari-

ables from 2000 to 2016 in a year basis.
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In this work, using available data for Mexico City, a two-level spatial and temporal descrip-

tion for MM was analyzed using geo-statistical interpolation. In this context, the spatial com-

ponent is tackled at borough and neighborhood scale, whereas the time scale was used in a

year and trimester levels. Thus, using a multilevel modeling for longitudinal data provides a

finer description of these phenomena that may result in a more accurate spatio-temporal

explanation of MM in Mexico City. This in turn may allow to better capture the multi-scale

complexity of mortality patterns in large urban areas such as Mexico City aiming at improving

integrative policy designs.

Materials and methods

Regarding the data collection in Mexico, the National Institute of Statistics, Geography

(INEGI, Instituto Nacional de Estadı́stica y Geografı́a) [38], each ten years develops a country-

level census of population. In that national survey, economic, demographic and social data of

all citizens in Mexico are collected and stored in a public database. Hence, INEGI provides the

core of socioeconomic and demographic data, used as input for those databases that we used

in this work. In addition, the mortality data was obtained from the Secretariat of Health in

Mexico City (Secretarı́a de Salud de la Ciudad de México: SEDESA) [39]. Detailed description

of both databases can be found in the following subsections.

Study area

The study area is the capital of Mexico, Mexico City which was known as the Federal District

(Distrito Federal) until 2016 (Fig 1A). Mexico City belongs to the Valley of Mexico Metropoli-

tan Area, the biggest metropolis in the central region of the country. The city is divided into 16

administrative boroughs (municipalities) and 2, 097 neighborhoods, according to the geo-spa-

tial information, i.e., polygon shapefiles, obtained from the Geostatistic framework, December

2018 (Marco Geoestadı́stico, Diciembre 2018) [40].

The neighborhood polygons were combined by borough identifiers to create the corre-

sponding borough regions (Fig 1B), in order to have a multilevel hierarchical description of

Mexico city. Borough centroids, were obtained using rgeos R package [41] (Fig 1C). In addi-

tion, neighborhood centroids were obtained by gCentroid or gPointOnSurface for convex or

concave polygons respectively. All maps were created using R-software libraries: sf [42],

rgeos [41], raster [43], geosphere [44], spacetime [45], sp [46], rgdal [47],

ggplot2 [48], cowplot [49], gridExtra [50] and ggspatial [51].

Mortality database

A mortality database was created from available open data obtained at the Secretariat of Health

in Mexico City (Secretarı́a de Salud de la Ciudad de México: SEDESA) [39]. The database com-

prehends a 16 borough, age-specific mortality rates follow up complete records, from the year

2000 up to 2016 and can be downloaded from [52].

The age-specific groups include the following five non-overlapping age descriptors:

1. Infant (x< 1 years old)

2. Pre-school (1� x< 4 years old)

3. School (4� x< 14 years old)

4. Productive (14� x< 64 years old)

5. Post-productive (x� 64 years old)
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In this work, we refer to the productive group as the economically productive population.

Post-productive group is referred as economically dependent from the productive popula-

tion. The mortality rates are expressed, in all cases, per 1, 000 inhabitants, but the Infant

rate, which was calculated per 1, 000 liveborn according to the data obtained from INEGI

Fig 1. Mexico City study area. A) The map of Mexico shows the location of Mexico City (in red), formerly known as Distrito Federal, one of the 32

states of Mexico which is located in the central area. B) Borough level description of the 16 cases (in numbers) corresponding to: 1. Álvaro Obregón, 2.

Azcapotzalco, 3. Benito Juárez, 4. Coyoacán, 5. Cuajimalpa de Morelos, 6. Cuauhtémoc, 7. Gustavo A. Madero, 8. Iztacalco, 9. Iztapalapa, 10. La

Magdalena Contreras, 11. Miguel Hidalgo, 12. Milpa Alta, 13. Tláhuac, 14. Tlalpan, 15. Venustiano Carranza and 16. Xochimilco. C) Neighborhood

level description. Blue lines describe borough limits, whereas white lines at neighborhood areas (in gray). Red dots depict borough calculated centroids.

In panels A and B, the scale bar and north arrow are also included. Notice that some boroughs have a dense neighborhood description in comparison.

https://doi.org/10.1371/journal.pone.0244384.g001
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and the Mexican National Population Council (Consejo Nacional de Población, CONAPO)

[38, 52].

A five year time-step borough level evolution descriptive panel for every age-specific group

is presented in Fig 2. Rows stand for age-specific mortality rate, and columns for a summarized

time period (year) as reported by SEDESA. Naturally, with the available data at hand, the only

alternative to visually explore the spatial data component, is to homogeneously color each bor-

ough with a single mortality rate for the reported year. Fortunately, there is discontinuity

among boroughs, i.e., adjacent neighbor at using borough as area unit. Unfortunately, in this

representation, neither time evolution nor spatial mortality age-specific rates are represented.

To overcome this drawback, a visual description at borough level is presented in Fig 3. It

can be seen that there are different age-specific time evolution patterns (linear trend, in blue),

such as a decreasing mortality rate for Infant and Post-productive groups, in contrast to the

increasing trend in the Productive case. Although the Cuauhtémoc borough (in green) is the

smallest one in terms of its neighborhoods (38 in total), it seems to overcome the mortality

rates for most age-specific cases in comparison to the rest of the boroughs. No apparent time-

dependent correlation can be observed for School and Pre-school, where several borough

vibrant mortality curves are presented.

Spatio-temporal interpolation

In order to have a more robust input dataset to analyze trends in MM, the measured variables

must have a temporal component as fine-grained as possible, since it is well known that several

risk factors associated with mortality have a cyclic behavior, grounded on temperature, air pol-

lution, seasonal pathogens or even individual social aspects [53–55]. Several studies on MM

have taken into account yearly data to associate certain variables with the response outcome

[10, 20–22]. Often, monthly data are not available for developing countries; in other cases, a

great number of missing data results very common.

In general, although different area-level health outcomes might share a variety of explana-

tory variables such as socioeconomic, pollution, delinquency levels, health access, among oth-

ers; by down scaling, spatio-temporal heterogeneity might arise [20, 21, 56–58]. To overcome

the MAUP, a variety of geo-statistical procedures have been implemented to estimate mortality

rates at different granularity levels. For instance, Population-Weighted Average, local and

global Empirical Bayes and Poisson Kriging have been used to estimate disease-specific mor-

tality rates from age-adjusted data. Accounting for spatial correlation patterns for low and

high frequency rates, Poisson Kriging have shown better results [59, 60]. Kriging methods

allow to estimate spatial risk considering heterogeneity among small areas from poorly

reported databases [61].

In this context, area-to-point (AtP) Kriging provides instantaneous estimation of the spatial

regression, which is valid for each time point, i.e., it is appropriate for a cross-sectional study,

nonetheless, we have both longitudinal and spatial data points. In addition, whenever a time-

wise progression estimate is needed, AtP falls short of considering spatio-temporal correlations

unless an appropriate time-regression procedure is considered, i.e., one compliant with Gauss-

Markov theorem. In this case, a sum-integrated joint method—minimizing error via least

squares regression—will give rise to a valid measure; formally a best linear unbiased estimator.

Doing this, it will however be formally equivalent to a joint (sumMetric) integrated spatio-

temporal estimator.

To overcome data scarcity, spatio-temporal Kriging has been used to jointly interpolate spa-

tial missing data at the county level as well as for temporal interpolation in mortality data [6,

13, 62]. Kriging estimates has been also used to describe changes in child mortality trends,
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Fig 2. Spatial age-specific mortality rates in Mexico City’s boroughs. Each row corresponds to a particular age-

specific mortality rate, i.e., Post-productive (x� 64 years old), Productive (14� x< 64 years old), School (4� x< 14

years old), Pre-school (1� x< 4 years old) and Infant (x< 1 years old). Each column stands for the selected years

2000, 2005, 2010 and 2015 from the total yearly available period 2000 to 2016. Mexico City boroughs are treated as a

the unit area and color coded according to the corresponding mortality rate, which make them comparable by row.

Interestingly, notice the different mortality rate ranges (color bars) depending on the age-specific group of analysis.

Polygon shapefiles files can be freely downloaded at INEGI’s website [40], whereas mortality data from SEDESA [52].

https://doi.org/10.1371/journal.pone.0244384.g002
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Fig 3. Temporal age-specific mortality rates in Mexico City’s boroughs. Each panel corresponds to an age-specific mortality rate,

i.e., Post-productive (x� 64 years old), Productive (14� x< 64 years old), School (4� x< 14 years old), Pre-school (1� x< 4 years

old) and Infant (x< 1 years old). All panels include complete age-specific mortality rates records by year from 2000 up to 2016 (in

colour points) from SEDESA [52]. Color points stand for one of the 16 boroughs in Mexico City longitudinal mortality rate data.

Borough data have been joined by their corresponding color dashed lines, whereas complete age-specific panel has been modeled by a

linear regression (intercept and slope, blue line) with its respective standard deviation (grey area), to get a clear picture of the time

evolution pattern. Interestingly, as the years pass, the mortality rate time evolution seems to diminish for Infant and Post-productive

groups, whereas the Productive age-specific counterpart tends to increase.

https://doi.org/10.1371/journal.pone.0244384.g003
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evaluating between-countries and within-country sources of variation [5]. However, in current

literature, a standard spatio-temporal methodology that properly addresses heterogeneity and

data scarcity, has not been reported yet. The spatio-temporal description of the mortality data-

base used in this work has been constructed on a yearly basis at the borough level.

Although, both spatial and temporal description levels can be accurate for open data sum-

marized statistics, such description fails to represent the actual statistical metric unit, e.g., tri-

mester measurements at the neighborhood level. In addition, it is known that in this context,

data points have a spatio-temporal correlation which can be used to estimate values at unmea-

sured locations in space and time. Among the different geo-statistical interpolation methodo-

logical alternatives, the Kriging family provide unbiased estimates that minimize the variance-

covariance spatio-temporal structure using an appropriate variogram modeling to tackle the

MAUP [63]. Under this methodology, the choice of the variance-covariance spatio-temporal

structure is not trivial and requires prior knowledge. As far as the authors know, we could not

find in the literature reported mortality variance-covariance spatio-temporal structure. Thus,

we tackle this issue by parsimony principle using computational force, in order to find the

model structure with the least possible error among different mortality variance-covariance

spatio-temporal structure available at gstat [64, 65] library: metric, separable, pro-
ductSum, sumMetric and simpleSumMetric.

Briefly, a second data description level in both space and time, using neighborhood centroid

locations and a trimester time basis, was carried out using Global Ordinary Kriging, for each

age-specific mortality rate. All estimations were obtained using gstat R package implementa-

tion [64, 65]. Initial variogram parameter values were obtained from the complete mortality

empirical (s)patio-(t)emporal rates variogram matrix γ(s, t) (Table 1 in S1 File):

• Nugget: The median value of the first three empirical variogram matrix row/column means,

for the spatial or temporal initial guess respectively.

• Range: The spatial range is one third of the lagged maximum spatial value; for the temporal

case, it corresponds to the maximum value.

• Sill: The median value of the last five empirical variogram matrix row/column means, for

the spatial or temporal initial guess respectively.

• stAni: The spatio-temporal anisotropy was estimated using a linear model as implemented

in gstat R package [64, 65].

• Joint spatio-temporal initial values, are based on the mean of the independent spatial and

temporal values, respectively.

Using the initial variogram parameters, different spatial, temporal or joint covariance struc-

tures were tested to find the best parsimonious correlated data description, according to the

available implementations in gstat (metric, separable, productSum, sumMetric and simpleSum-
Metric) [64, 65]. All possible single, double or triple variogram combinations (Exponential,

Gaussian and Spherical) were tested according to the corresponding covariance structure.

Hence, computational power was used in order to find the best variance-covariance spatio-

temporal structure using the appropriate variogram in order to use the parsimony principle.

All covariance models were fitted using a quasi-Newton box constrained method, where only

the lower-bound was set to 0.001 for every parameter. The upper-bound was left to its default

value (infinite), i. e., no box constraint was imposed for the maximum value. The selection cri-

terion to choose a covariance structure model, was to minimize the weighted mean squared

error. Complete age-specific mortality tested covariance fitted model results can be found in

Table 2 in S1 File. Finally, the spatio-temporal mortality rate interpolation was obtained using
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all the available data points, under the best covariance model description, for the neighbor-

hood centroids at a trimester level, in the period 2000 to 2016. Under this configuration the

complete estimation root mean square error for the space-time Kriging data points was

8.16 × 10−10 (see Table 3 in S1 File for age-specific errors).

Time-evolution modeling

In the literature, there are many alternatives to assess the mortality time-evolution patterns

using different types of models such as multilevel modeling for longitudinal data, longitudinal

multilevel model, and longitudinal hierarchical linear model, among others. All of them target

the different ways to model the variance-covariance structure, taking advantage of the inter/

intra data structure and/or modifiable area unit.

Raudenbush & Bryk 1986 [66] took advantage of observed unit (individuals) when consid-

ering inter and intra school effects. Hence, their proposal can bee seen as a hierarchical or mul-

tilevel approach, where first, the within-group model is estimated by a separate regression

equation for each school (referenced as Eq 1 in the original work). Then, the between-group

model uses the regression coefficients as dependent output and try to model the within-school

structural relationships (Eq 2 in [66]). Finally, the Raudenbush & Bryk can be coupled into a

single equation by substitution of Eq 2 into Eq 1. The resulting equation allows to model the

error term with many degrees of freedoms associated with the studied variables of interest.

However, the model estimation itself is not explained in detail. On the other hand, Kwok

et al. 2008 [67] modeled variable time data points, but, they were focused on time correlation,

hence, they introduce first-order auto-regression structure (AR(1)) to model the variance-

covariance structure using SPSS (MIXED) and SAS (PROC MIXED) procedures. The two pre-

vious procedures are in essence, Linear Mixed-Effects Models. Recently, Anaya & Al-Delaimy

2017 [68] and Green et al. 2019 [69] did implement multilevel modeling for longitudinal data

using linear mixed-effects models with R software [70] using the lme4 package.

In order to assess the mortality contribution of the age-specific group, the spatial unit area

(borough or neighborhood) and polynomial time evolution, we used a linear mixed-effects

model to account for data constraints and lack of error independence using the definitions of

Eqs (1)–(4) [71]. The model was specified using Infostat software version 2018, which is an R

[70] front-end as follows [72]:

yijk ¼ mþ ai þ bj þ g� tk þ d� t2
k þ z� t3

k þ ai � bj þ a� g� tkþ

ai � d� t2
k þ ai � z� t3

k þ bj � g� tk þ bj � d� t2
k þ bj � z� t3

kþ

ai � bj � g� tk þ ai � bj � d� t2
kþ

ai � bj � z� t3
k þ εijk ð1Þ

εijk ¼ ltk
þ nijk ð2Þ

ltk
¼ �bjltk� 1

þ utk ð3Þ

varð�ijkÞ ¼ s2g2ðaiÞ ð4Þ

where, yijk is the mortality rate for the i-th age-specific mortality group (αi), at the j-th borough

or neighborhood level (βj), for the k-th time (tk); μ is the global mean; γ, δ, z are the
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corresponding third order time polynomial coefficients; in addition, the double and triple

complete fixed effects model interactions and the error term εijk were also specified. Indeed,

the error term εijk in Eq (1) is modeled in Eq (2) by a two-level model, to account for the lack

of independent errors; where, ltk
denotes the unobserved time effect and νijk is the idiosyn-

cratic error term. The correlated errors were tackled using a first order auto-regressive model

for time dependence as described by Eq (3), where �bj is the corresponding coefficient and utk

the individual effect. Finally, the heteroscedasticity in Eq (4) was modeled as a multiplicative

effect of the residual variance σ2 times the variance error function g(.) using a varIdent defini-

tion of the different age-specific mortality groups αi [72].

The model was fitted using the R language with the nlme package under restricted estima-

tion of the maximum likelihood [70, 73]. When possible, back-step model selection strategy

was applied to remove the least significant fixed-effect term, one at the time, until no difference

was found using a maximum likelihood test between competitor models. Type III sum of

squares was used to assess an Analysis of Variance (ANOVA) table for marginal hypothesis

tests for the fixed effects. Posterior Fisher’s Least Significance Difference (LSD) tests were

applied over statistical significant terms, using a multiple comparison Bonferroni p-value cor-

rection. When possible, bilateral test was used and Type I error was set to 0.05.

Results

Spatio-temporal variogram estimation

Regarding spatio-temporal age-specific mortality estimations, the initial guesses obtained

from the sample spatio-temporal variograms are shown in Table 1 in S1 File (see Material and

methods section). Depending on the age-specific mortality group, the initial guesses are differ-

ent for the nugget, range, sill and spatio-temporal anisotropy (stAni).

In this context, the nugget is the model intercept attributable to the smallest error measure-

ments or spatial sources of variation. Interestingly, these sources of variations are negligible

for Pre-school and School, in contrast to the other age-specific groups, with a wide range of

nugget values (0.01 − 21.31). In addition, the correlation extends between measurements, also

known as range, in all cases is exactly the same for all age-specific groups and last about 12

years for as far as 13.27 km.

The variogram values obtained at the range, a.k.a. the sill, is as close to the nugget for the

School and Pre-school age-specific groups, and departs from it at most to double its value for

Infant group. The anisotropy remains the same for Post-productive, School and Infant groups,

but differ for Productive and Pre-school counterparts. Final covariance model weighted mean

square error for all the tested variogram permutations can be found in Table 2 in S1 File.

It is worth to mention that the lowest error for the different covariance structure methods

included the metric case for School and Pre-school; sumMetric for Productive and Infant and

simpleSumMetric for Post-productive was the best one. Within these covariance models, there

was no apparent pattern in the winner variogram model tested permutation (temporal + spatial

+ joint). The Gaussian + Gaussian (Gau + Gau) was the winner’s choice of temporal and spa-

tial in the Post-productive age-specific group.

Moreover, Infant mortality also followed this pattern, with an additional Gau component

for the joint variogram. The Exponential + Gaussian (Exp + Gau) was the winning choice for

Productive mortality and Gau joint variogram. Indeed, this was a data-driven approach that

required to explore the complete permutation grid, in order to reach a parsimonious spatio-

temporal correlation model. A visual comparison of each winner covariance model and sample

variogram can be found in File 1 in S1 File. Finally, under these configurations the complete
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root mean square error estimation for the space-time Kriging data points was 8.16 × 10−10 (see

Table 3 in S1 File for age-specific errors).

Two-level mortality rate spatial description in Mexico City

Productive mortality rate. The spatio-temporal mortality description in Mexico City

starts at the raw data presented in Fig 2. Let us consider the whole picture, using, for example,

productive mortality rate as presented in Fig 4. Using the borough spatio-temporal granularity

Fig 4. Three levels of granularity for productive mortality rate in Mexico City. First one, productive mortality rate original data description at

borough level (panel A). Second one, productive mortality rate kriged data description at the neighborhood level is presented in panel B. In panel C, it

is presented a zoom-in at a second description level for Cuauhtémoc borough. Interestingly, this is the borough with the highest productive mortality

rate no matter the selected year (2000, 2005, 2010 or 2015), according to panel A and B (central borough in red). However, the mortality rate is not

homogeneous at the neighborhood level, as depicted by the kriged values presented in panel C for the different years. Polygon shapefiles files can be

freely downloaded at INEGI’s website [40].

https://doi.org/10.1371/journal.pone.0244384.g004
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top panel in Fig 4, there is a clear spatial pattern, no matter the selected year (2000, 2005, 2010

or 2015). It seems that there is a global maximum mortality rate value (hotspot) at Cuauhté-

moc borough (number six in Fig 1C). There, the mortality rate values radially decrease as long

as we depart from this location to the outer boundaries of Mexico City. Indeed, the decrease is

not homogeneous, i. e., it is dictated by a spatial anisotropy where the north and northeast

direction have a less marked decline in comparison to the south and south-west direction.

Moreover, at this temporal description, there is also an increment in the global maximum

rates as we move from 2000 to 2015, in agreement with the temporal patterns presented in Fig

3 for the Global case.

Moving towards a deeper data exploration, the spatio-temporal interpolation obtained by

Ordinary Kriging provides a productive mortality rate smooth surface (see neighborhood level

at Fig 4). For a fair comparison, the same time scale was used (years), whereas the spatial

description considered the neighborhood centroids grid. With this zoom-in, a more realistic

geographical-continuous mortality transitions can be observed, unlike the discrete phenomena

at borough level, for adjacent boroughs, presented at borough level in Fig 4. The latter reflects

a far less abrupt change in mortality rates from one borough to another, thus giving a continu-

ity between neighborhoods.

Furthermore, the productive mortality rates increase throughout neighborhoods and bor-

oughs consistently from 2000 to 2015 in both spatial-scales. Also, notice that the mortality rate

scale bar has also decreased from a maximum of 6 (at the borough level) into a 4.2 when we

move towards into the fine grain spatial description for this age-specific group.

If we zoom-in even further, we can see the neighborhoods at a single borough, e.g. Cuauh-

témoc borough Fig 4, where we can distinguish neighborhood level trends. Here, Cuauhtémoc

borough was selected, since it has the highest mortality rate. Although apparently impercepti-

ble, there are distinguishable differences in mortality values among Cuauhtémoc neighbor-

hoods. Similar differences are obtained for the rest of the boroughs as seen at borough level

description in Fig 4.

School mortality rate. Analogously to Fig 4, in Fig 5 we may observe the mortality rate

through 15 years in the school group in three different levels of granularity. As it can be appre-

ciated in the figure, mortality patterns in the school age are not homogeneously distributed in

the 16 boroughs of Mexico City. Instead, each borough has its own pattern.

Unlike the previous case regarding productive age, in the school group the spatial trend is

not clear. However, a visible and measurable decrease is observed from 2010 to 2015 in practi-

cally the whole city.

It is worth noticing that the scales in both figures are different. In Fig 4 the upper value for

mortality rate is close to 6, meanwhile for school age, the top value mortality rate is around 0.4.

The comparison between those different groups in Cuauhtémoc borough and its neighbor-

hoods is also remarkable. Meanwhile, for school group, 2015 is the year with the lowest mortal-

ity rate, that year was the highest for the productive age. Additionally, the differences in

mortality rate at the neighborhood level is more visible in the productive group than the

schoool one.

Similar two-level mortality rate spatial description in Mexico City can be found for the rest

of the age-specific groups (Infant, Pre-school and Post-productive) in Figs 1-3 in S2 File

respectively.

Time-evolution mortality rate modeling in Mexico City

So far, we have filled the spatio-temporal gaps for the missing data points for both scales within

the different mortality age-specific groups. Now, that we have overcome the summary time
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period for the mortality rate constraint, which is usually in a year base, we can study temporal/

seasonal trends within the temporal range (12 years). In addition, we can explore the between

mortality rate variability at borough level or even within its borough, a.k.a. neighborhood level

data description. The later is a must, in order to address the MAUP, as we are changing the

spatial scale, from several kilometers long (borough level), to a very different area unit scale at

neighborhood (couple of blocks), where the prior estimated spatial correlation range is as far

Fig 5. Three levels of granularity for school mortality rate in Mexico City. First, school mortality rate original data description is presented at

borough level (panel A). Second, school mortality rate kriged data description at the neighborhood level is presented at panel B. In panel C, it is

presented a zoom-in at the neighborhood level for the Cuauhtémoc borough. Interestingly, the school mortality rate for this borough increments from

the year 2000 to 2005, while it reduces from 2005 to 2015 according to panels A and B, whereas the city’s southeast area shows an increment from 2005

to 2015. However, the mortality rate is neither homogeneous nor constant at the neighborhood level, as depicted by the kriged values presented in panel

C. Polygon shapefiles files can be freely downloaded at INEGI’s website [40].

https://doi.org/10.1371/journal.pone.0244384.g005
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as 13.27 km. Finally, the mortality rate itself can be decomposed into both fixed-effects and

random variance-covariance structure contribution using Eqs (1)–(4), according to the data

level description as follows.

Borough level mortality rate contribution. Borough-level results are presented in

Table 1. The ANOVA results showed that the only non-significant effect at the borough level,

is the triple interaction that includes the time to the third power (p = 0.22). Hence, the mortal-

ity rate time-evolution pattern in Fig 3 can be parsimoniously captured by our methodological

proposal. In addition, the auto-correlation parameter had an impact not as high as one would

expect at borough level (ϕ = 0.12). On the other hand, the variance function did address the

different age-specific groups where Infant was the one with the highest value (11.59) followed

by Post-productive (10.34), Pre-school (0.85), Productive (0.82) and School (0.43).

To further explore the mortality behavior, posterior Fisher’s LSD tests results were obtained

over the age-specific, αi, Mexico City’s borough, βj, and double borough times age-specific

interaction terms αi × βj (Fig 6A–6C, respectively). The first remarkable result is the mortality

contribution to the main effects αi and βj. Mexico City’s model results evidence, for the time-

period studied, suggests that the age-specific term (αi) is the main responsible for the mortality

rate when compared to the spatial borough contribution (βj). Indeed, the mortality rate means

are definitely empowered by age-specific groups (upper bounded at 50 [x1000]) rather than

spatial borough locations, which is upper bounded at 17[x1000].

Secondly, the age-specific mortality rate groups do not overlap between each other, due to

the different Fisher’s LSD letters (A-E) in Fig 6A. Moreover, the Post-productive group (A)

outruns any other group, but also doubles its following competitor, the Infant group (B). Inter-

estingly, this trend also remains when we compare two consecutive groups, i.e., B vs. C, C vs D

and so on. In this age-specific context, the school is the group with letter E, i.e, is the one with

Table 1. Analysis of the variance at two spatial data description level.

Borough level neighborhood level

Model Term Degs. of freedom F-value p-value Degs. of freedom F-value p-value

μ 1 17634.638 <0.0001 1 281297.3649 <0.0001

αi 5 6981.1137 <0.0001 5 6929.1962 <0.0001

βj 15 8.3045 <0.0001 33 6.5863 <0.0001

t 1 7.9808 0.0048 1 714.5003 <0.0001

t 2 1 34.1072 <0.0001 1 248.0783 <0.0001

t3 1 33.6751 <0.0001 1 430.7367 <0.0001

αi × βj 75 20.0209 <0.0001 165 5.6587 <0.0001

βj × t 15 2.9735 0.0001 33 9.0428 <0.0001

βj × t 2 15 2.4779 0.0013 33 2.2043 <0.0001

βj × t3 15 1.9233 0.0177

αi × t 5 4.172 0.0009 5 69.3982 <0.0001

αi × t 2 5 7.2432 <0.0001 5 88.1181 <0.0001

αi × t3 5 7.4925 <0.0001 5 89.7661 <0.0001

αi × βj × t 75 1.7383 0.0001 165 4.9837 <0.0001

αi × βj × t 2 75 1.3908 0.0175

αi × βj × t3 75 1.1254 0.2224

Type III sum of squares was used to assess the model defined in Eqs (1)–(4), where, μ, is the global mean; αi the age-specific mortality term; βj the borough or

neighborhood term; t, t2 and t3 the third order time polynomial; and the double and triple interactions accordingly. These definitions were used at both spatial levels, i.

e., borough and neighborhood. In addition, fixed effects, back-step model selection was carried out from the maximal to the current model at the neighborhood level.

Empty cells correspond to discarded terms.

https://doi.org/10.1371/journal.pone.0244384.t001
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the least mortality rate. Interestingly, previous results could be, to some extend, the explana-

tion that models the Mexico’s actual population pyramid shape data [74]—pencil like figure,

i.e., long bar with sharp-pointed end.

Here, the Post-productive people are the most underrepresented group with a sharp-

pointed shape at the tip of the population pyramid, due to the high mortality rate evidence of

our borough level model results. Following this rationale, the second highest mortality rate

group is B (Infant), which could be probably the reason why the typical pyramid shape is bro-

ken into a uniform/bar shape shared by the Infant, Pre-school, School and Productive age-spe-

cific mortality groups, influenced by their low mortality rate.

Thirdly, taking into consideration Fisher’s LSD results for the 16 borough’s mortality rate

contribution βj (Fig 6B), it can be seen three important aspects: i) Among group letters from A

to I, Cuauhtémoc (A) and Tlalpan (I) are the boroughs with the highest and lowest model esti-

mated mean values respectively; ii) The LSD mortality rate group mean letters cluster up to

five boroughs per cluster, i.e., borough that share a single letter, are not statistically different

after Bonferroni multiple test correction (p> 0.05), thus, belong to the same cluster; iii) The

borough Fisher’s LSD cluster structure is correlated to spatial proximity.

Fig 6. Posterior mortality rate test results at borough level for Mexico City. Fisher’s Least Significant Difference (LSD) tests were performed over the

estimated age-specific mean mortality rate, according to model description in Eqs ((1)–(4)). In panels, Mexico City Fisher’s LSD test results for: A) Age-

specific mortality, B) Borough level, and, C) Borough × Age-specific interaction. The LSD group mean test results are presented as bar-plots with their

corresponding standard deviation bar and mean group letters (A, B, C . . .), where bars that share at least a single letter, are not statistically different

after Bonferroni multiple test correction (p> 0.05). Interestingly, mortality rates is mainly composed by age-specific contribution when compared to

Borough impact. In addition, Borough × Age-specific interaction retains the mortality age-specific rate pattern, but, it is modulated by the borough

contribution.

https://doi.org/10.1371/journal.pone.0244384.g006
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Fourthly, moving towards αi × βj group results (Fig 6C), i.e., age-specific times borough

model’s interaction LSD group means, it can be seen that the original and predominant age-

specific mortality rate contribution in panel A is modulated by the borough contribution of

panel B. Thus, if we average LSD group mean results in panel C, by age-specific groups, we

should return into panel’s A results. At this level, we are dealing at “between” borough mortal-

ity rate level description, where the number of Fisher’s LSD group letters has increased propor-

tional to the number of possible αi × βj levels.

Neighborhood level mortality rate contribution. In order to model “within” borough

mortality rate data description, we need to change our attention into another spatial scale

representation, a.k.a. neighborhood level. If we pick the borough with the highest mortality

rate (Cuauhtémoc), we found that the model presented in Eqs (1)–(4) is not well-suited for

this level description data. Hence, a model selection process was considered in order to obtain

the best parsimonious data description.

The current model results are presented in Table 1, where it can be seen that some cells are

empty due to terms discarded from the analysis. Interestingly, the third and second order time

triple interaction terms have been excluded from the analysis, in addition to the borough times

time to the third power. Hence, in this context the modeling complexity has been reduced, at

the expense of a higher autocorrelation (ϕ = 0.88) and different variance function parameters

and ranking, i. e., Productive (3.80), Post-productive (2.43), Pre-school (2.22), School (1.35)

and Infant (0.04).

The Cuauhtémoc borough results can be found in Fig 7. Its 38 neighborhoods were num-

bered according to the high mortality rate downwards (Fig 7A). This result is complemented

by Fig 7B, where the Fisher’s LSD means were used to describe the mortality rate landscape.

Interestingly, at the neighborhood level, there is also a radial mortality rate decay starting at

the central neighborhood with number one and the letter A, which correspond to Tabacalera

neighborhood. Conversely, the two neighborhoods with the lowest mortality rate (letter D) are

situated at the opposite borough extremes—south-west (Hipódromo de la Condesa) and

northeast (Valle Gómez) borders. Moreover, the age-specific mortality patterns have changed

from Post-productive and Infant mortality at the borough description in Fig 6A into Post-pro-

ductive and Pre-school as seen in Fig 7C. Moreover, the Fisher’s LSD test results in this bor-

ough, but at the neighborhood level, showed some regions with up to four possible over-

lapping letters (Fig 7D).

Taking about the different mortality rate model description, we have to keep in mind that

Fig 6 panel B “between borough” mortality rate data order of magnitude, is going to be fine

grained (“within borough”) modeled using the same framework depicted in Eqs (1)–(4). The

first result to be discussed is that, unlike borough level, neighborhood mortality rate data does

not cope with third order neighborhood interaction and the only triple significant interaction

has a linear time tendency for age-specific times neighborhood mortality, as shown in Table 1.

The second aspect, is the new insight of the mortality rate at the neighborhood level. Here,

the first mortality rate level description (at borough) leaves Cuauhtemoc’s borough near 15

[x1000]. Now, Fig 7 panels C and D, decomposed into a finer grain considering the same age-

specific groups, but, now Cuauhtemoc’s neighbors are included, respectively. At this data level

description, mortality age-specific groups within Cuauhtemoc are closer to each other (same

magnitude order, units) unlike borough level (one magnitude order, tenths). In addition,

between the neighborhood mortality rate is almost shared by all the 34 neighborhoods (above

7 and below 8), is we consider the shared letters of the LSD results in Fig 7 panel D. Finally, the

rest of the mortality rate contribution to sum up to 15 (Cuauhtemoc’s borough mortality

description), it is distributed upon the different neighborhood model terms of Eqs (1)–(4).
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Discussion

Understanding metropolitan mortality is not only relevant in terms of a mere descriptive sta-

tistical approach, but, to take into account variables that could determine, with the highest

accuracy, this crucial health outcome. This knowledge, in due time, could lead to the establish-

ment of appropriate public policies to improve citizen life quality in metropolitan areas.

In the aforementioned terms, by means of the development of a modeling approach, based

on a systematic interpolation of missing data, one may observe spatio-temporal dynamics of

mortality in the urban areas with higher precision. Kriging family methods have proven to be

useful to achieve this goal.

In this work we have demonstrated how the improvement of the granularity level at both

spatial and temporal definition, could explain some of the socio-demographic variables under-

lying the changes in mortality rates between boroughs. This task was achieved by statistically

Fig 7. Posterior neighborhood mortality test results zoom-in at Cuauhtémoc borough in Mexico City. A) Cuauhtémoc borough is divided into its

34 neighborhoods. Numbers are ordered from the highest (1) to the lowest (34) model estimated neighborhood fixed effect mortality mean according to

Eqs (1)–(4) description: 1. Tabacalera, 2. Centro, 3. Juárez, 4. Doctores, 5. Buenavista, 6. Guerrero, 7. San Rafael, 8. Roma Norte, 9. Obrera, 10.

Cuauhtémoc, 11. Santa Marı́a la Ribera, 12. Tránsito, 13. Centro Urbano Benito Juárez, 14. Esperanza, 15. Unidad Hab. Nonoalco Tlatelolco, 16.

Morelos, 17. Buenos Aires, 18. Atlampa, 19. Vista Alegre, 20. Algarı́n, 21. Paulino Navarro, 22. Roma Sur, 23. Ex-hipódromo de Peralvillo, 24. San

Simón Tolnáhuac, 25. Santa Marı́a Insurgentes, 26. Hipódromo, 27. Maza, 28. Ampl. Asturias, 29. Felipe Pescador, 30. Condesa, 31. Asturias, 32.

Peralvillo, 33. Valle Gómez and 34. Hipódromo de la Condesa. B) Neighborhoods are filled according to the Fisher’s Least Significant Difference (LSD)

group mean obtained at this level of representation. C) Age-specific Fisher’s LSD results within Cuauhtémoc borough. D) Fisher’s LSD neighborhood

contribution. In all cases, capital letters stand for Fisher’s LSD groups, where bars that share at least a single letter, are not statistically different after

Bonferroni multiple test correction (p> 0.05). Results are presented as ordered mean ± standard error estimation according to model description of

Eqs (1)–(4). Notice that at this data level decomposition, the LSD group means are at the same mortality rate order, i.e., the age-specific group mean

values are comparable to the different neighborhood contribution. In addition, age-specific mortality values do not overlap whereas, most of the

neighborhoods within this specific borough, share a common LSD group.

https://doi.org/10.1371/journal.pone.0244384.g007
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interpolating those data points into a fine-grained level. In what follows, we will comment on

the findings using spatio-temporal Kriging-based methods.

It can be easily noticed that Cuauhtémoc borough is the one with the highest mortality rate

in all age groups, but for pre-school –which ranks in third place– as depicted in Fig 3. This bor-

ough has several particularities that should be commented, in order to unveil some hints

towards plausible explanations, for the unique behavior observed there along time and space.

As observed in Fig 6C, Cuauhtémoc is the borough with the highest mortality mean value

in all age groups, but in Pre-school, which shares places with Cuajimalpa and Iztapalapa bor-

oughs. Except in that case, Cuauhtémoc has an outstanding mortality behavior over time. The

case is particularly dramatic in the productive age (14 to 64 years old).

In addition, in the Productive time-evolution pattern in Fig 3 can be observed the different

temporal behavior of Cuauhtémoc (solid green dashed line), compared to the rest of the bor-

oughs. Cuauhtémoc is the economic center of Mexico City. There, the executive and legislative

powers are placed, as well as the most important commerce hotspots. Indeed, Cuauhtémoc is

the most densely populated borough of Mexico City.

In economic terms, Cuauhtémoc concentrates 4.6% of the gross domestic product of the

entire country [75]. Around 5 million people pass through this borough every day, despite its

population oscillates only around 500, 000 inhabitants. This is the place in Mexico City with

the highest number of public transport stations. Cuauhtémoc also concentrates the largest

markets of informal commerce of the city (Tepito Market, in the Morelos neighborhood). The

high density and the flux of money and services may help to explain, to some extent, the differ-

ent behavior of the mortality rate in the productive age in this borough.

Another point to take into account when mortality rate in Cuauhtémoc is observed, lies on

high levels of insecurity for the aforementioned reasons regarding population density and eco-

nomic concentration. Additionally, the Drug War launched at the end of 2006 by former Presi-

dent Felipe Calderón, affected mortality rates in a large part of the country [76], being the

capital of the country also upset, in particular, the city downtown, Cuauhtémoc.

By taking into account the spatio-temporal Kriging, it has been possible to modeled mortal-

ity rates at the neighborhood level. With this spatio-temporal kriging model, the four places

with the highest mortality rates were Tabacalera, Centro, Juárez and Doctores neighborhoods,

part of Cuauhtémoc borough.

According to reports of the Executive Secretariat of the National System of Public Security

System (Secretariado Ejecutivo del Sistema Nacional de Seguridad Pública, SESNSP), Centro

is one of the most insecure boroughs of Mexico City and the homicide rate is the highest in the

city [77]. By integrating transit and other accident-related issues, with employment determi-

nants and crime-associated mortality, it may be possible to present an explanation for which

the productive age mortality presents a consistent increase in Cuauhtémoc, compared to the

rest of the boroughs.

Possible intrinsic biases due to possible errors in the registry must be taken into account.

For example, the record of a death is registered once a certificate of death has been provided.

In some cases, it could last days, depending on diverse factors. However, in the case of Mexico

City, that under-registry is extremely low since social and health services are guaranteed in

practically the whole area of the city.

The model presented here also has caveats, since it shows an interpolation of the coarse-

grained data at the borough level of description. For instance, according to the model, Tabaca-

lera is the neighborhood with the highest mortality rate, however, by looking at the data, the

homicide rate as an example is not as large as Centro or Morelos [77].

At this stage is not possible to disambiguate whether these inconsistencies are due to the

interpolating strategy or indeed reflect different causes of death, such as the ones related to
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environmental factors like air pollution and other contaminants. Despite this caveat, the

model shows a radial decrease of mortality in Mexico City, starting from Cuauhtémoc down-

town, similar to the general behavior observed at the borough level (Fig 2).

It is relevant to notice that some of the caveats and limitations just discussed are actually

instances of a well known issue known as the modifiable areal unit problem (MAUP). MAUP

states that a bias is generated affecting statistical hypothesis testing due to the combination of

two or more spatial scales on a given geostatistical analysis. The reason is that data aggregation
may become dependent on the choice of modifiable areal unit (MAU) used as a primary source

in the analysis. MAUP will in this case induces statistical biases that may lead to a form of eco-

logical fallacy. In the particular case we presented here, since Kriging analysis is a form of

regression, there are some ways to solve the MAUP or at least alleviate some of its conse-

quences. There are a number of methodological choices to do so. We decided to follow a

mixed approach by incorporating several of these as follows:

1. One of the alternatives is to correct the variance-covariance matrix using samples from indi-
vidual-level data
Indeed, to this first end, we have tackled the MAUP in a hierarchical manner:

• Spatio-temporal kriging itself was modeled first, selecting the best combination of spatio-

temporal variance-covariance structure (metric, separable, productSum, sumMetric and

simpleSumMetric) with the appropriate single, double or triple variogram combinations

(Exponential, Gaussian and Spherical), to minimize the weighted mean squared error (see

Tables 2 and 3 in S1 File). Once the complete variance-covariance has been fixed, the

neighborhood spatio-temporal grid was used to obtain the kriged values.

• Over the original data, at borough level, a linear mixed-effect model using the definitions

of Eqs (1)–(4). In these definitions, as in Kwok et al. 2008 [67], we did include a first-order

autoregression (AR(1)) structure. In addition, data heteroscedasticity was modeled as var
(εijk) = σ2 g2(αi), i.e., a multiplicative effect of the residual variance σ2 times the variance

error function g(.) using a varIdent definition for the different age-specific mortality

groups αi, as described in Material an Methods section.

• Over the kriged data, at the neighborhood level, also the model of Eqs (1)–(4) was fitted to

cope with the data, i.e. considering a different MAU to meet our needs.

2. A second way to correct for the MAUP is to focus on local spatial regression rather than
global regression

3. Here, we used a global regression for the kriging process, but, considering the best vari-

ance-covariance structure possible for our data, letting the model to adjust its contribution

instead of using a fixed local spatio-temporal regression. The RMSE for each mortality age-

specific group is presented in Table 3 in S1 File.

4. A third strategy to correct the MAUP bias is by resorting to design areal units to maximize a
particular statistical result. In this manuscript, we first:

• Maximized the model likelihood while minimizing the weighted mean squared error when

selecting the best spatio-temporal variance-covariance structure.

• Maximized the linear mixed-effect model likelihood for both borough and/or neighbor-

hood data level description.

Related approximations to solve the MAUP have been discussed in the specialized literature

for decades. For instance, Raudenbush & Bryk 1986 [66] took advantage of observed unit
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(individuals) when considering between and within group (in their case, schools) effects.

Hence, their proposal can bee seen as a hierarchical or multilevel approach, where first, the

within-group model is estimated by a separate regression equation for each school (referenced

as Eq 1 in the original work). Then, the between-group model uses the regression coefficients

as dependent output and try to model the within-school structural relationships (Eq 2 in [66]).

Finally, the Raudenbush & Bryk can be coupled into a single equation by substitution of Eq 2

into Eq 1. The resulting equation allows to model the error term with many degrees of freedom

associated with the studied variables of interest. However, the model estimation itself is not

explained in detail.

Kwok et al. 2008 [67] on the other hand, resort to modeling variable time data points (not

necessary at fixed intervals), unlike repeated-measurements Analysis of the Variance

(ANOVA) or ANOVA polynomial trend analysis. They propose to model the variance struc-

ture by means of linear growth models using multilevel models. They start with a simple ran-

dom intercept model and simple linear growth model, to show how the variance-covariance

structure can tackle within-class correlation. Then, they move to models with time-invariant

covariate and pseudo-R2 statistic to evaluate the model’s effectiveness. Finally, they present

how to model covariance structure for the within-individual random errors were, the proximal

autocorrelation in longitudinal data, was addressed using a first-order autoregression (AR(1))

structure.

Recent models by Anaya & Al-Delaimy 2017 [68] explicitly mention to use a “mixed effect
linear model with random effect estimation and repeated measurements” in their work. Addi-

tionally, the hierarchical linear model in [78] and the multilevel modeling of longitudinal data

in [79] were fitted using SPSS (MIXED) and SAS (PROC MIXED) procedures respectively. On

the other hand, Green et al. 2019 [69] used linear mixed-effect models with R software [70] by

means of lme4 package, to fit multilevel models with random intercepts for schools and ran-

dom intercepts and random slopes for time at the individual level since students are nested

within waves.

These and other methods approach the MAUP from different angles. It is clear, though,

that no definite nor one-size-fits-all solution to the problem has been found. Different prob-

lems and datasets will probably call for tailored analytical perspectives determined by their spe-

cific constraints. At the same time, further theoretical developments to the MAUP may shed

some light on what kind of features a generalistic approach may have. The spatio-temporal

representativeness problem (one of which instances have been discussed here) may need to be

re-visited whenever further advances on how to effectively tackle the MAUP are developed.

Conclusions

The granularity enhancement in mortality and health outcomes data will further improve its

usage in a variety of public policies, such as urban development, security, creation of health

centres, hospitals, public transport and even water re-usage. In these terms, efforts in gathering

data at the lowest possible source (time and space), are highly desirable for future works.

Finally, in order to build predictive models that allow to tailor public policy design, the spa-

tio-temporal dynamics of MM should incorporate socio-demographic, environmental, eco-

nomical factors and relevant covariates, as detailed as possible. Future directions include, but

are not limited to, utilizing environmental data, such as air pollution, quality of water, disposi-

tion of water supplies among others. Some of the above mentioned variables are actually avail-

able as open data resources. The ultimate understanding of MM by using the data presented

here, as well as environmental and other risk factors, will help in the searching for the

improvement of life quality of the metropolitan areas in Mexico City.
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