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Abstract: Optimal sensor network deployment in built environments for tracking, surveillance, and
monitoring of dynamic phenomena is one of the most challenging issues in sensor network design and
applications (e.g., people movement). Most of the current methods for sensor network deployment
and optimization are empirical and they often result in important coverage gaps in the monitored
areas. To overcome these limitations, several optimization methods have been proposed in the recent
years. However, most of these methods oversimplify the environment and do not consider the
complexity of 3D architectural nature of the built environments specially for indoor applications (e.g.,
indoor navigation, evacuation, etc.). In this paper, we propose a novel local optimization algorithm
based on a 3D Voronoi diagram, which allows a clear definition of the proximity relations between
sensors in 3D indoor environments. This proposed structure is integrated with an IndoorGML model
to efficiently manage indoor environment components and their relations as well as the sensors in
the network. To evaluate the proposed method, we compared our results with the Genetic Algorithm
(GA) and the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) algorithms. The results
show that the proposed method achieved 98.86% coverage which is comparable to GA and CMA-ES
algorithms, while also being about six times more efficient.

Keywords: deployment; sensor network; indoor; 3D environment; 3D Voronoi structure

1. Introduction

Advances in sensor technologies increasingly allow efficient and on-the-fly tracking
and monitoring of diverse dynamic phenomena for different applications. These applica-
tions may include disaster management, traffic management, security surveillance, flood
monitoring, and real-time tracking for mobility applications [1]. For the efficient tracking
and monitoring of dynamic phenomena using a sensor network, different issues related to
sensor types, sensing models, connectivity, communication, location and coverage as well
as efficient assessment of real-time measurements need to be addressed.

Among these issues, optimal sensor placement is a prerequisite for efficient monitoring
and coverage in a given environment. Traditional methods for sensor network deployment
are mostly experimental and not efficient. Other optimization approaches are rarely context-
aware and they do not consider the complexity of the environment [2–5]. In addition, these
methods usually oversimplify sensor models (sensing fields). This is especially true for
the built indoor and outdoor environments where the presence of diverse features such as
buildings, walls, trees, floors, and stairs complexify not only the communication between
sensors but also their placement and optimization. In recent years, there have been some
efforts to improve sensor models and hence increase the quality of measurements obtained
from a sensor network. For instance, in [6], the deployment of wireless cameras has
been carried out by considering the quality of images related to light resources, distortion
phenomena in cameras, and coverage area, as well as a constraint regarding connectivity
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between cameras in indoor environments. However, several problems regarding the
optimal deployment of sensor networks in indoor environments remain. In fact, the
existing optimization methods for sensor network deployment and optimization do not
consider the complexity of 3D environments and their architectural design. It is also very
challenging to consider the presence of diverse obstacles in such environments in the
optimization process.

Most of the existing research works for sensor network optimization are based on
stochastic approaches which are generally very time-consuming and are not efficient.
In contrast to stochastic approaches, approaches based on local optimization methods,
Virtual Force [2] and Voronoi diagram [3], have demonstrated a better performance in this
regard. Virtual force approaches have a high number of parameters allowing the algorithm
to stick in the local optimums, whereas the Voronoi diagram is a spatial partitioning
method that helps to efficiently manage the proximity information between objects (sensors)
with minimum setting parameters [7]. Despite the aforementioned advantages, there
have been few works [4,8,9] based on these approaches for sensor placement in a 3D
indoor environment.

Hence, in this paper, we propose a 3D Voronoi-based optimization method for sensor
network (e.g., omnidirectional cameras) deployment in 3D complex indoor environments.
The proposed method benefits from the combination of a 3D Voronoi diagram with the 3D
vector environment model (IndoorGML) to efficiently manage both the indoor environment
and its components as well as the spatial distribution and relations between sensors in
the network. To illustrate the validity of the proposed method, three experiments were
conducted. The first experiment was designed to evaluate the efficiency of our proposed
algorithm for the placement of four omnidirectional cameras with unlimited sensing ranges.
Then, the sensitivity of the proposed method, with respect to limited sensing range and the
number of cameras, was investigated in the second and third experiments.

The remainder of this paper is organized as follows. In Section 2, recent studies on
sensor networks deployment issues are reviewed. Next, in Sections 3 and 4, we present
our optimization methods for sensor network deployment in an indoor environment that
considers both the outer (environmental) and inner (sensor) factors. Then, to illustrate
the strengths of the proposed 3D Voronoi-based approach for the deployment of a sensor
network in an indoor environment, a case study carried out in the Quebec City Convention
Center is presented in Section 5. Finally, in Section 6, the results are compared with
two stochastic optimization methods (Genetic algorithm (GA) and Covariance Matrix
Adaptation Evolution Strategy (CMA-ES)) and conclusions and future works are stated.

2. Related Works

Optimal deployment of a sensor network to enable an indoor environment for the
tracking and monitoring of its dynamics for applications such as mobility and navigation
activities is a challenging task [10,11]. Coverage problems in sensor networks have been
intensively studied in the last decade. Depending on the type of application, we may be
interested in the target or area-based coverage. This implies that in some sensor network
applications, monitoring target points such as buildings, doors, and corridors are desired,
while in other applications, the aim is the detection of mobile targets such as intruders [11].
Hence, covering the maximum number of target points by some level of certainty, instead of
the whole area, is the main objective in the target-based coverage problems [12]. However,
the presence of obstacles may complicate monitoring tasks and the achievement of such a
goal [13]. To overcome these limitations, some efforts have been made based on visibility
graphs by considering the presence of obstacles to compute the best coverage path between
sensors and targets [14].

In the area-based coverage problem, which is the focus of this paper, the objective is to
maximize the area covered by sensors. The quality of the coverage is expressed by the ratio
of the covered area to the whole area [5]. The area-based coverage calculation methods are
classified into: (1) raster-based methods [4,8,9], which are limited by the spatial resolution;
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and (2) the vector-based models [3,11,15–17]. These methods have been mostly applied for
2D spaces and rarely consider the presence of man-made objects in the environment.

In recent years, several methods (e.g., global or local, deterministic or stochastic) have
been proposed to optimize the configuration of sensors in a sensor network based on
the maximum coverage criteria [18]. Genetic Algorithm (GA) [19], Particle Swarm Opti-
mization (PSO) [20], Simulated Annealing (SA) [21], and Covariance Matrix Adaptation
Evolution Strategy (CMA-ES) [18] are examples of global optimization methods. In these
methods, an objective function for the whole network reconfiguration is used, whereas in
local algorithms such as Virtual force-based [2], VECtor-based, and Voronoi diagram-based
algorithms [3], reconfiguration of sensors is locally done with respect to the presence of
neighboring sensors and the local environmental context.

Global algorithms have been used for globally optimizing the configuration of sensor
networks. In these algorithms, for each optimization step, the cost function for each
solution must be estimated for the computation of the next generation of solutions. For
instance, in the GA algorithm, the cost function must be calculated for 100 solutions in
each iteration, if the number of iterations is 100, the number of cost function calculation is
10,000. If the time of cost function calculation is 3 s, the total time becomes 30,000 s. Hence,
global algorithms are highly time-consuming due to the high number of cost function (e.g.,
coverage) computations for sensor network optimization.

In contrast, in most of the local optimization algorithms, no cost function is used to
define the movement strategy of sensors within a network [22]. Indeed, these algorithms
attempt to maximize the network coverage according to the local spatial information on
the environment as well as the information related to the configuration of the neighboring
sensors. For instance, in Yaagoubi et al. [23], a Voronoi-based algorithm is used for the
deployment of a set of cameras by considering the information on the structure of the
environment. The results show that the optimal places for cameras are close to the edges of
Voronoi cells. In general, although these algorithms are fast and do not need to recalculate
the cost function as in global approaches, they have limitations in terms of the consideration
of constraints (e.g., none-deployable spaces), consideration of multi-objective optimization
goals, and complex sensing models of the sensors.

One of the key issues of all sensor deployment optimization algorithms is the accurate
estimation of an individual sensor coverage in a sensor network. The sensing model of
a sensor may be binary or probabilistic, omnidirectional, or directional. Precise sensing
model consideration has a significant impact on the quality of coverage estimation of a
sensor network. Most of the sensor coverage estimation methods use a raster representation
of the environment for optimization purposes [8], which limits their precision and efficiency.
This is because raster representations are constrained by their spatial resolution, and their
regular shapes resulting in redundant data for unoccupied areas (i.e., the unoccupied
pixels are considered in the storage volume of raster data). Moreover, raster-based 2D
models cannot be used for indoor environments to represent solid objects and columns. To
overcome these limitations, in [24] a sensor coverage estimation method has been proposed
based on the precise 3D vector-based representation of the environment, which can be used
for the estimation of the sensor network coverage in an indoor environment.

In addition to raster and vector representation, the voxel representation of the en-
vironment has been proposed for the deployment of a camera network to track a 3D
environment [25]. Each voxel value shows the presence or absence of an object in the
space. The maximum visibility of cameras was achieved by a cooperative algorithm which
splits the problem to several sub-problems [26]. Although the voxel representation has
the potential of modeling solid objects and is appropriate for indoor environments, the
visibility estimation is sensitive to the resolution of the voxels.

Concerning indoor versus outdoor environments in the sensor deployment problem,
the majority of research works have been developed for outdoor environments, and a
few research works have considered indoor environments for sensor deployment [6]. For
instance, in Konda and Conci’s [6], a set of cameras were deployed using the Genetic
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Algorithm as a global optimization algorithm to achieve the maximum coverage with
high-quality image output by considering the light resource and obstacles in the indoor
environment. Furthermore, a greedy sensor deployment optimization on the ceilings of a
building (in a simulation case) was conducted for monitoring the indoor area [27]. In this
study, some virtual obstacles were considered in the simulation and the floor surfaces were
chosen as the coverage area.

In summary, most of these methods oversimplify the sensing models for each sensor
(circle or spherical in the best case), as well as the environment (2D, without obstacles),
for achieving the maximization of coverage. Additionally, the majority of these works
were developed for outdoor environments, and only a few research works have considered
indoor environments for sensor deployment [6]. To address these challenges, we propose
a 3D Voronoi-based optimization method for sensor network deployment in 3D complex
indoor environments. This method is presented in the following sections.

3. Methodology

In recent years, several strategies have been developed for the local optimization of
sensor networks based on the Voronoi structure, which has demonstrated its potential es-
pecially for the efficient management of neighborhood information in sensor networks. For
example, Argany et al. [22] proposed a local optimization algorithm based on a 2D Voronoi
diagram where each sensor was moved towards the farthest vertex of its cell iteratively
to fill coverage holes in a sensor network in an outdoor environment. Doodman et al. [28]
proposed a Voronoi diagram-based approach to define movement strategy for sensors by
keeping them away from obstacles in the environment. These works had the advantage
of performing the optimization process more efficiently compared to global optimization
algorithms.

Given these advantages, here we propose a local context-aware optimization algorithm
based on 3D Voronoi diagrams for the deployment of a sensor network in an indoor
environment. In the proposed method, a 3D Voronoi diagram is used for the representation
of sensors positions and their topological relations within a sensor network distributed in
an indoor environment. A 3D Voronoi diagram also provides the necessary spatial structure
for the manipulation and management of the sensors’ positions and their movement for
optimization purposes. A 3D Voronoi diagram, for a set of points, partitions a 3D space
into polyhedral convex volumes called 3D Voronoi cells (Figure 1).
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A 3D Voronoi cell is calculated based upon the following definition:

VCi = {pi ∈ R : d(pi, Si) < d(pi, Sn)} (1)
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where, Si and Sn are the positions of sensor i and any other sensor n, respectively. VCi is a
3D Voronoi cell, pi is any point inside a VCi in a 3D space R, and d is the distance between
pi and any sensor Si.

For integrating context information from the 3D indoor environment in the optimiza-
tion process for a sensor network represented with a 3D Voronoi diagram, we considered
benefiting from the potential of the 3D IndoorGML data model proposed by the OGC. 3D
IndoorGML is an extension of CityGML (level of detail (LoD) 4) that provides semantic,
topological, and spatial information of objects and services [29]. IndoorGML is an open
standardized data model of the interior space of 3D buildings and is composed of a core
module, an appearance module, and a thematic module [30]. The main structure of In-
doorGML divides an indoor space into multi-spaces called cells. The intersection area
of two neighboring cells is called a boundary surface [30]. IndoorGML uses two dual
spaces to model indoor environments: (1) primal space, the geometric representation of
a cell space and a cell boundary space; and (2) dual space, the Node Relationship Graph
representation of cells and their boundary surfaces, which respectively correspond to nodes
and edges (Figure 2). IndoorGML is extended with the navigation core module that has
two classes, namely, navigable space and non-navigable space. The non-navigable space
represents the cells occupied by obstacles and walls. The navigable space includes all the
connection spaces (e.g., doors), anchor spaces (e.g., building exits), general spaces (e.g.,
rooms), and transition spaces (e.g., corridors). In contrast, CityGML includes boundary
surfaces, rooms, openings, and closure surfaces (e.g., the space between the kitchen and
the living room is a virtual surface called closure surface) [31]. IndoorGML has an external
reference that enables engines and data interpreters to link with CityGML to access the
semantic of the surfaces.
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Hence, we propose an integrated model for optimal sensor placement in an indoor
environment that combines IndoorGML classes to represent indoor environments and a 3D
Voronoi diagram for the representation of sensor positions and their proximity relations
in 3D indoor spaces. Hence, our proposed model is composed of three main components
including (1) the environment, (2) the sensor network, and (3) the optimization module
(Figure 3). The optimization algorithm uses the information of the indoor environment



Sensors 2021, 21, 8011 6 of 20

represented by IndoorGML and the neighborhood relations of sensors defined by a 3D
Voronoi diagram. The optimization module includes our iterative local optimization
algorithm. The information provided by the first two components will allow us to estimate,
at each iteration, the total coverage provided by the sensor network and decide on the
changes in the network in subsequent steps (i.e., individual sensor movement) to improve
the network total coverage value.
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doorGML and a 3D Voronoi diagram.

In the proposed integrated model, 3D Voronoi structure uses the information repre-
sented by IndoorGML to guide the optimization process. IndoorGML defines the indoor
environment structures with a set of cells and store them with their central points as nodes
and with links to define the cells connections. In addition, each cell is stored using a
surface geometry. This structure is used as the sensor deployable space. We also add
semantic information to the cells and surfaces described by the IndoorGML model to better
guide sensor placement. We use the 3D Voronoi structure together with this information
to manage sensors movement and the updated proximity information between sensors.
The cells in the IndoorGML model are divided into three main classes according to the
priority of the sensor deployment places for mobility activities. These include: (1) corridors;
(2) main halls; and (3) rooms. Surfaces are also classified for each cell into three classes:
ceilings; walls; floors; and obstacles. To calculate a sensor network coverage, individual
sensor position and coverage must be determined using the information provided through
the IndoorGML model.

In our study, the floor surface of each cell is aimed to be covered by the sensor network.
According to the sensors’ positions in the Voronoi structure and considering the presence of
various obstacles in the environment, the coverage estimation is calculated using a visibility
approach [24]. In this regard, the obstacles are defined as objects that obstruct the sensor’s
vision. For instance, Figure 4 shows the red surfaces as obstacles that reduce the covered
area of sensors in a non-convex area. Sensor deployable spaces are composed of the walls
and ceilings of each cell space.
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As mentioned, the sensor network optimization algorithm is included in the opti-
mization module. The iterative algorithm is developed for the maximization of the sensor
network coverage. In each iteration, an individual sensor is moved towards its new posi-
tion that aims at improving the total sensor network coverage. This movement is based on
a context-aware approach and is sensitive to the shape of the environment, the presence of
obstacles in the environment as well as the presence of other sensors in the vicinity of the
sensor being assessed.

As a movement strategy, each sensor is moved towards the farthest vertex of its 3D
Voronoi cell by adding a repulsive force to keep the sensor away from obstacles and keep
its position on the wall or ceiling. This strategy mainly allows for reducing the overlapping

coverage to maximize the coverage of the target areas. For example,
→
Vs1,v1 in Figure 5

illustrates the direction of the movement of S1 allowing its displacement from other sensors.

In Figure 5, Sensor 1 (S1) is moved to position MS1 in the direction of
→
Vs1,v1, and is then

projected on the nearest plane (position PS1). In the strategy, the sensor should be kept
away from the obstacle’s surfaces based on a defined distance.
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4. Formal Representation of the Proposed Optimization Algorithm

In this section, we formally present the pseudo-code of our proposed local optimiza-
tion method based on a 3D Voronoi diagram for sensor network deployment in complex
indoor environments (Algorithm 1). In this algorithm, we assume a network of omnidi-
rectional cameras for the coverage of the indoor environment. The objective of sensor
deployment is to maximize the covered areas to support applications such as indoor nav-
igation or security purposes. We also assume that sensors can be deployed mainly on
the walls and ceilings. Building floors are considered as target areas to be covered where
people’s activities are expected. In addition to sensor characteristics and neighborhoods,
information from the 3D indoor environment is used as context information for optimal
sensor network deployment. The presence of other objects embedded in the indoor envi-
ronment that may affect coverage information is also considered (e.g., presence of a column
or other permanent obstacles like walls in the environment).

Thus, in the proposed algorithm, first, we create a 3D Voronoi diagram using a
set of generating point (sensors S1, . . . , Sn). The 3D Voronoi diagram is obtained from
its dual Delaunay tetrahedralization (DT) which is calculated based on an incremental
construction approach [32]. The incremental method for the construction of a Delaunay
tetrahedralization consists of three main steps including initialization, point insertion and
the tetrahedralization optimization. The process starts with the definition of a universal
tetrahedron large enough to enclose all the generating points (sensors) in the 3D space.
Then, sensors are inserted one by one in the existing tetrahedralization using a search
function to find the tetrahedron that contains the newly inserted point. Then, the tetra-
hedralization is locally updated to make sure that all the tetrahedrons respect Delaunay
criterion which requires that the circumsphere of each tetrahedron is empty. Indeed, the
circumcentres of the final tetrahedrons are dually considered as the vertices of 3D Voronoi
polyhedrons. Hence, 3D Voronoi cells are generated by connecting all the circumcentres of
the neighboring tetrahedrons that share a given generating point.

In the next step, we initiate current coverage value [24] for each sensor in the network.
The coverage value of each sensor in a 3D space is estimated based on the method proposed
in following steps [24]. In this method, first, we eliminate the irrelevant surfaces for the
computation of the coverage of each sensor. These include: (1) elimination of the back-face
surfaces (e.g., surface O2 and O3 in Figure 6) in which the angle between the normal vector
of a back-face surface and the sensor direction is less than 90 degrees, (2) elimination of
the surfaces that lie on the back side of sensor deployable surface (especially for the walls),
and (3) elimination of the surfaces that lie outside the sensing distance (e.g., surface F1).
Next, we project the remaining surfaces on a perspective plane which is defined parallel to
the floor surface. Then, we overlay these surfaces in the projection plane (e.g., projected
surface of O1 = F2 and F), in order to find the visible part of the floor (surface F-F2 = F3)
covered by the sensor. Finally, we calculate the covered area by the given sensor on the
floor (F3).

Next, we establish a priority queue (PQ) for the management of sensor movement [22].
To do so, we compute the floor surfaces as coverage gain value for each sensor based on
their first movement. The value and orientation of this movement is defined based on the
information on local context as well as the sensor network configuration. Then, the sensor
movements are organized from maximum to minimum order according to the coverage
gain value (gsi) they produce. Hence, the first sensor in the list will have the priority to
move before the others.

As mentioned, the sensor movement strategy is the core element of the proposed
algorithm. The strategy for a sensor i (Si) to move to its new position (S′i) is based on the
neighborhood relations of the sensor defined by the 3D Voronoi diagram as well as the
configuration of the environment and the presence of the potential obstacles. The direction
of movement is towards the farthest vertex of its Voronoi cell. The amount of the movement
is defined by initial_step_size which is 80% of the vector’s length from the sensor to the
farthest vertex.
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Algorithm 1. Pseudo-code of the 3D Voronoi approach for sensor network optimization in an
indoor environment

input: n omnidirectional cameras Si(xi, yi, zi)
output: (Xi, Yi, Zi) optimal solution
objective: Maximizing the coverage of the camera network

1 Initialize: Random distribution of the cameras on deployment planes
2 (walls/ceilings) Compute initial sensor network coverage;
3 3D_Voronoi(Si,...,Sn);
4 step_size← initial_step_size;
5 for i← 1 to n do
6 S′ i ←Movement strategy(Si);
7 {
8 1- choose the farthest vertex in the same direction of path segments;
9 2- amount of movement is step_size * vector’s length;
10 3- project the movement vector on the nearest sensor deployed plane;
11 4- if the movement vector has an intersection with an obstacle, keep a given distance
12 between sensor and obstacle;
13 }
14 g’Si ← coverage (S1,...,S’i,...,Sn)-coverage (S1,...,Si,...,Sn);
15 PQ← add(g’Si,S’i);
16 end
17 PQ← Sort(PQ, highest gain);
18 K← 1;
19 while (not terminated condition) do
20 step_size← (initial_step_size) ∗ (Iteration − K)/Iteration;
21 S’u←PQ(1).S;
22 Su←S’u;
23 Update_3D_Voronoi(Si,...,Su...,Sn);
24 S’u ←Movement strategy(Su);
25 g’S’u ← coverage (S1,...,S’u,...,Sn)-coverage (S1,...,Su,...,Sn);
26 PQ← add(g’S’u,S’u);
27 for j← 1 to N_neighboringSu do
28 NS’i ←Movement strategy(NSj);
29 g’NSj ← coverage (S1,...,NS’j,...,Sn)-coverage (S1,...,NSj,...,Sn);
30 PQ← add(g’NSj,NS’j);
31 end
32 PQ←Sort(PQ, highest gain);
33 K←K + 1;
34 end

Following the initialization of the 3D Voronoi data structure and the PQ, the iterative
optimization process is defined using a while loop (Algorithm 1). In each iteration, we move
the sensor on the top of the PQ towards the farthest vertex of its Voronoi polyhedron. It
should be noted that for each sensor, the motion vector needs to be projected on the nearest
deployable surface. This is needed to make sure that the sensor has a support to be installed
in the 3D environment. Then, the selected sensor is moved in this direction towards its
new deployable position. The step size is decreased proportional to the maximum number
of iterations which can be defined by the user (e.g., Iteration = 1000). Indeed, the step size is
decreased to create a trade-off between exploration and exploitation in the search space.
This ensures the avoidance of divergence in the optimization process results [33]. The
sensor position with the highest gain coverage is updated in the while loop and the 3D
Voronoi diagram is updated to reflect the new configuration of the network. Next, the
updated coverage gains for the moved sensor (g’S’u) and its neighbors (g’NSj) are added
in the PQ and sorted based on the highest coverage gain among the sensor. In the case of
the presence of a permanent obstacle in the sensor movement direction, the sensor needs
to be kept away from the obstacle. For this purpose, we define a distance constraint to
avoid the obstruction of the sensor’s field of view. The while loop is stagnated with the
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terminated condition when the maximum coverage gain is less than a predefined coverage
gain threshold (ε) for 10 iterations in a row.
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5. Case Study
5.1. Model of the Indoor Environment and Sensors

For this research, Quebec City Convention Center was selected as the study area.
This building hosts many national and international events and conferences. Sensor
deployment with the goal of optimal coverage inside this building is a complex task
due to its complexities of structure. This four-story building includes many conference
rooms and corridors as well as several entrances, escalators, and elevators. This represents
many cells and surfaces (walls, ceilings, floors, and obstacles) with complex architectural
configurations and designs for the same floor; furthermore, the heights of the ceilings are
not uniformly designed, which makes sensor deployment more difficult. Geometrically, the
spaces of this building are discrete and non-convex. Traditionally, sensor deployment in
such a building is carried out with a trial-and-error method, which usually results in several
gaps in the network coverage. In addition, the presence of obstacles such as columns and
furniture inside the building complexifies the deployment process and hence is generally
neglected. Although the study area is a multi-floor building, for the sake of simplicity and
feasibility we only considered the 4th floor as the test area for this study. More specifically,
the study area included two main corridors and the main hall (generally used for exhibition
booths, poster installations, or as a dining area for participants).

To be able to integrate the indoor 3D model of this building with our proposed
deployment method, we first acquired a set of LiDAR 3D point clouds using a GeoSLAM
device. This device is designed mainly for indoor environment scanning (Figure 7a). Then,
we semi-automatically converted the obtained 3D point clouds into 3D vector model using
the Blender software (Figure 7b). This model was composed of a set of surfaces in a 3D
space. Using the Google SketchUp software, we semantically classified the 3D surfaces
into walls, ceilings, floors, and obstacles. Finally, with the IndoorGML standard, we
converted the classified 3D vector model into the IndoorGML model. In the next step, we
extracted the information on the 3D indoor environment from this model for our algorithm
based on the cell and geometry identifier. At the end, all surfaces composing our 3D
environment were extracted with geometric information, such as coordinates of the surface
limits, normal vectors, and semantic information including floor numbers, cell types (e.g.,
corridor, hall, and room), and the type of surface (e.g., walls, ceilings, floors, and obstacles).
This information actually helped us in defining the sensor deployable positions as well
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as for the estimation of the sensor network coverage (specifying the covered area) for the
defined environment.
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The 3D model of the indoor environment selected for this experiment was composed
of about 1000 surfaces, including walls and ceilings on which the sensors were deployed.
As depicted in the Figure 8, the management of these surfaces as well as their topological
relations in 3D space is much more complex compared to a simple 2D representation of the
environment. Sensor deployment cannot be easily accomplished in such an environment
because of the differences in the heights of ceilings and complexities of topology between
the walls and ceiling surfaces (Figure 8). In addition, there were many obstacles that compli-
cate sensor placement and the optimization process. In our case study, the 3D environment
included nine columns in the main hall. These columns were modeled as cylinders that
were themselves composed of many smaller surfaces. In addition, several non-convex
surfaces had to be managed inside the corridors and the main hall. These surfaces created a
large search space for the computation of maximum coverage for the optimization process.
Another time-consuming aspect was related to the use of the vector-based model for the
computation of coverage. Vector-based coverage computation demands more computation
effort; however, it results in more accurate coverage estimation. Raster or voxel-based
models may be simpler, but they may be less accurate for coverage estimation due to their
limited resolutions.

To implement the proposed sensor placement optimization algorithm, as a first ex-
periment, we considered omnidirectional cameras without the limitation of the viewing
distance and field angle. We defined the mathematical model of these cameras as a hemi-
sphere with an infinite radius. Information in an indoor environment, such as walls and
obstacles, limits the range of the sensing area and reduces the covered areas by these
cameras. We selected four cameras for the deployment implementation. These cameras
could only be placed on ceilings and walls (part of the walls with a height constraint from
the floors were considered for facilitating camera installation). The area of interest covered
by these cameras was considered to be the floors. In addition, we designed two other
experiments for sensitivity analysis regarding the number of sensors and sensing range. For
these experiments, we increased the number of cameras and limited their sensing range.
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5.2. Experimental Results and Discussions

For the first experiment, the proposed 3D Voronoi algorithm was implemented to
deploy four omnidirectional cameras with unlimited sensing range using the 3D vector
model presented in the previous section. The deployable areas of the cameras were
assumed to be on the ceiling and the walls with a distance of at least two meters from the
floor. Furthermore, several columns in the main hall were considered as obstacles and
their surfaces were identified in the model to consider their presence during the sensor
deployment optimization process. For the initialization step, four cameras were randomly
positioned on the central ceiling of the main hall (Figure 9).

Then, at each iteration, according to the algorithm’s process, the cameras moved along
the farthest points of each corresponding Voronoi cell, with the projection of their locations
to the nearest deployable surface. At each iteration, the camera with the most important
contribution to the improvement of global coverage was chosen to be moved to its new
position. Figure 10 shows the location of the cameras for four subsequent iterations. In this
figure, the colored-transparent areas show the 3D Voronoi cells of the cameras. The red
area indicates the area covered by the cameras and the blue points indicate the location of
the cameras.

With 50 iterations, the coverage of the camera network was improved to 98% of
the area. Figure 11 shows the convergence diagram of the 3D Voronoi approach for
this case study after 50 iterations. As can be seen, the camera network coverage after
20 iterations reached the converged state with an optimal coverage. Figure 12 illustrates
the final configuration of cameras with optimal coverage. This shows that our proposed
method could deploy the sensors not only on the ceilings but also on the walls to reach the
optimal coverage.
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5.3. Comparison and Validation

To show that our proposed algorithm reached an optimal coverage, we compared our
algorithm with the Genetic Algorithm (GA) and with the Covariance Matrix Adaptation
Evolution Strategy (CMA-ES) as two examples of global methods [34]. To implement
the GA and CMA-ES for the deployment of the same set of cameras on the ceilings
or walls, it was necessary to prepare the algorithms for the optimization process. For
this purpose, we first randomly generated the initial solutions for camera configurations
(solution (i) = {X1, X2, X3, X4, Y1, Y2, Y3, Y4, Z1, Z2, Z3, Z4}) within the 3D bounding box
of the environment. Then, to achieve the deployable position of the cameras, the cameras
were projected on the nearest wall or ceiling surface so that we could find the right solution
to calculate their coverage. In the next steps of the algorithms, the solutions were also
projected on the nearby surfaces.

The initial parameters of the GA including population size, offspring percentage, and
mutation percentage were selected with a trial and error method to 100%, 70%, and 20%,
respectively. In addition, the setting parameters of CMA-ES are population (λ), formation
of solutions means, and direction (σ) that were considered as 3 + 4 × [ln(n)] (n = 3 × (the
number of sensors)), λ/2, and 0.167, respectively.

To eliminate the random errors, the proposed 3D Voronoi approach, as well as the
GA and CMA-ES, were executed a hundred times. As seen in Figure 13, the 3D Voronoi
approach converged quickly to the optimal value. In addition, the final optimal coverage
value of the 3D Voronoi approach was greater than the coverage values of the GA and
CMA-ES algorithms.

According to Table 1, it can be concluded that the computational time of the 3D
Voronoi approach was six times less than the computational time of the GA and CMA-ES
algorithms. Moreover, the standard deviation values reported in Table 1 indicate that the
final coverage level of sensors in the 3D Voronoi algorithm was more robust than GA and
CMA-ES algorithms. This is because our approach based on a 3D Voronoi diagram is more
sensitive to the spatial information from the environment and sensor configuration. This
outcome of incorporating the physical information in the 3D algorithm makes the sensor
network deployment coverage improve over the physical space.
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Table 1. Results of 3D Voronoi, GA, and CMA-ES algorithms including coverage average (AVG-
coverage) and its standard deviation (SD-coverage).

Method AVG-Coverage (%) SD-Coverage (%) Time (s)

3D Voronoi 98.86 0.76 646.45
GA 98.1 1.64 3898.86

CMA-ES 98.45 1.82 3264.92

5.4. Sensitivity and Efficiency Analysis

To further evaluate the efficiency of the proposed 3D Voronoi approach with respect
to the sensing range and the number of cameras, we implemented several experiments
and present the obtained results in Tables 2 and 3. First, the comparison of algorithms was
carried out for each experiment with different sensing ranges including 30, 50, 70, and
90 m for deploying four cameras with an equal sensing range on the fourth floor of the
Convention Center building to assess the sensitivity of algorithms (3D Voronoi, GA, and
CMA-ES) to the sensing range of the cameras. Second, the selected number of cameras
was, respectively, 4, 6, 8, and 10 for each experiment to assess the efficiency of algorithms
based on the number of cameras. The average best coverage values, standard deviations,
and computation time were computed by the algorithms for each experiment. It should
be mentioned that we fixed the sensing range for assessing the number of sensors and
vice versa.

Table 2 shows the obtained results for the three algorithms for deploying four cameras
with different sensing ranges. The performance time for all of the experiments indicated
that the lowest computation cost belonged to the 3D Voronoi-based algorithm compared
to the GA and CMA-ES algorithms. Concerning the sensing range, the robustness was
augmented by increasing the sensing range in each experiment. For higher sensing ranges,
the algorithms performed better to reach higher optimum due to the efficiency of camera
sensing, except for GA where the coverage was slightly decreased for a sensing range of
90 m.

Regarding the number of cameras, several experiments were carried out for the
deployment of 4, 6, 8, and 10 cameras using the three mentioned algorithms. The results of
these experiments are shown in Table 3.
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Table 2. Results of 3D Voronoi, GA, and CMA-ES algorithms for four cameras.

Method Sensing Range AVG-Coverage (%) SD-Coverage (%) Time (s)

3D Voronoi

30 67.44 5.69 176.62
50 96.17 1.94 304.92
70 98.16 1.16 486.503
90 98.61 0.88 654.734

GA

30 70.42 6.74 2112.72
50 93.50 2.76 2663.72
70 98.19 2.32 3647.88
90 97.55 1.56 3820.56

CMA-ES

30 70.74 5.98 2089.38
50 94.68 2.20 2509.52
70 98.08 1.60 3511.1
90 98.52 1.21 3858.34

Table 3. Results of 3D Voronoi, GA, and CMA-ES algorithms for different numbers of cameras with
30 m sensing range.

Method Number of Cameras AVG-Coverage (%) SD-Coverage (%) Time (s)

3D Voronoi

4 67.44 5.69 176.62
6 86.48 5.07 263.02
8 95.42 2.01 369.82
10 98.08 1.90 494.09

GA

4 70.42 6.74 2112.72
6 78.93 6.32 3431.64
8 89.68 4.24 4114.16
10 86.70 2.89 6726.16

CMA-ES

4 70.74 5.98 2089.38
6 86.06 6.12 3252.98
8 86.48 3.45 4434.94
10 90.63 2.37 5867.38

Table 3 indicates that when the number of cameras increased, the robustness (based on
the standard variation in 100 runs (column 4)) of the algorithms also increased. However,
the robustness of GA and CMA-ES algorithms was lower than the proposed 3D Voronoi-
based algorithm. This is because the proposed algorithm better considers the spatial
structure of the environment. Increasing the number of cameras increased the coverage
value in all algorithms. Although the coverage value was improved for 3D Voronoi and
CMA-ES, there was an exception for GA in that it had higher coverage with 8 cameras than
with 10 cameras. We presume that this occurs because of the number of parameter settings
and the population size of GA, which are higher compared to the other algorithms. The
results show that our algorithm has better improved the coverage values when the number
of cameras was more than six cameras compared to GA and CMA-ES. Finally, the results
shown in Table 3 reveal that the computation costs of the algorithms were higher by the
increase in the number of cameras.

6. Conclusions and Future Works

Optimal deployment of a sensor network within a 3D indoor environment is a chal-
lenging task. Traditionally, sensor placement in such environments is done using a trial-
and-error method. More recently, a few optimization algorithms have been proposed
for the optimal deployment of sensor networks in indoor environments. However, these
algorithms generally oversimplify the environment complexities and are mostly developed
for 2D environments. In addition, they rarely consider the presence of obstacles embed-
ded in the environment. Furthermore, in these approaches, sensing models of individual
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sensors are also oversimplified. Our aim in this research was to propose a new algorithm
for the optimization of a sensor network in a 3D indoor environment that allows better
consideration of the spatial characteristics of the environment to support applications such
as mobility and security surveillance.

Here, we proposed a new local optimization algorithm based on a 3D Voronoi diagram
for optimal sensor deployment in an indoor environment. The proposed optimization
algorithm integrates the IndoorGML model as well as a 3D Voronoi diagram for the
representation of a 3D indoor environment as well as the distribution of the sensors
and their neighborhood relations respectively. The proposed solution includes a local
optimization algorithm that benefits from the 3D Voronoi data structure to define and
manage sensor movement for optimization purposes. It also allows better consideration of
the presence of obstacles (e.g., columns).

For the validation of the proposed algorithm, it was implemented and tested for three
sensor placement scenarios (camera network) in the Quebec Convention Center. The results
show that the camera network coverage reached almost 98% from the initial random state
using the 3D Voronoi approach. We also compared this method with the GA and CMA-ES
algorithms to evaluate the performance of this method and showed that the final coverage
value tends to an optimum value and is comparable with the results obtained from GA
and CMA-ES algorithms. The algorithm tended to perform even better when the number
of cameras is higher than eight for this experiment for the selected 3D indoor environment.
The results also reveal that for this case study, our proposed algorithm was more than
six times more efficient than the global optimization algorithms and achieved optimal
coverage with lower computational time.

For future research, we seek to extend the capacity of the algorithm for the deployment
of a multi-sensor network in an indoor environment including cameras and positioning
and tracking sensors for different applications related to mobility, security, and evacuation.
In addition to the environment and sensor network constraints, we will further integrate
application-related constraints in the optimization of the sensor network. For instance,
prioritizing sensor placement in areas where people more likely encounter problems in
their wayfinding and in their mobility tasks.
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