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Early life adversity (ELA), such as child maltreatment or child poverty, engenders problems

with emotional and behavioral regulation. In the quest to understand the neurobiological

sequelae andmechanisms of risk, the amygdala has been of major focus. While the basic

functions of this region make it a strong candidate for understanding the multiple mental

health issues common after ELA, extant literature is marked by profound inconsistencies,

with reports of larger, smaller, and no differences in regional volumes of this area. We

believe integrative models of stress neurodevelopment, grounded in “allostatic load,” will

help resolve inconsistencies in the impact of ELA on the amygdala. In this review, we

attempt to connect past research studies to new findings with animal models of cellular

and neurotransmitter mediators of stress buffering to extreme fear generalization onto

testable research and clinical concepts. Drawing on the greater impact of inescapability

over unpredictability in animal models, we propose a mechanism by which ELA

aggravates an exhaustive cycle of amygdala expansion and subsequent toxic-metabolic

damage. We connect this neurobiological sequela to psychosocial mal/adaptation after

ELA, bridging to behavioral studies of attachment, emotion processing, and social

functioning. Lastly, we conclude this review by proposing a multitude of future directions

in preclinical work and studies of humans that suffered ELA.

Keywords: amygdala, stress, neurodevelopment, brain, adversity, development, allostatic load

INTRODUCTION

The amygdala has been the focus of a great deal of attention in research aimed at understanding
the effects of Early Life Adversity (ELA). The fact that this evolutionarily ancient brain structure is
of interest is perhaps not surprising given this region’s essential role in socioemotional functioning
(Bachevalier et al., 1999; Amaral, 2002) and that forms of ELA (e.g., child abuse; child neglect)
engender problems with regulating the emotions and behaviors (Kessler et al., 2010). In this review,
we first discuss the basic functions and development of this brain region, noting why this area has
been a strong candidate for understanding the multiple mental health issues common after ELA.
We next explore past research focused on this brain region in human and preclinical models of
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ELA exposure and potential of an allostatic load model to
disentangle apparent inconsistencies in these findings. We then
extend this idea, pulling from parallel models put forth in
research studies focused on autism and neurodevelopment, and
integrating preclinical rodent and nonhuman primate findings,
to make specific hypotheses about human behavioral and clinical
correlates of specific cellular and neurotransmitter changes. We
finally close this document with proposals for future research
directions connected to these ideas.

DEFINING EARLY LIFE ADVERSITY AND
REVIEWING CONNECTIONS BETWEEN
ELA AND POOR MENTAL HEALTH

Surveying work on ELA, researchers have focused on different
samples exposed to adversity including child maltreatment
(e.g., physical or sexual abuse), extreme household dysfunction
(e.g., having a parent with a severe mental illness), and
poverty (alongside lower “social standing”). These and related
negative experiences have been referred to using different
umbrella terms, such as “early life stress,” “child trauma,” “toxic
stress,” “early adversity,” and “Adverse Childhood Experiences
(ACEs).” An important starting question is whether to lump
adversities together, think about specific experiences (e.g., early
social neglect or physical abuse), or examine potential shared
dimensions of ELAs. Initial research took a purely cumulative
exposure approach, summing up the total number of adversities
suffered, or looking at child trauma across different forms of
maltreatment (Felitti et al., 1998; Hanson et al., 2012a; Gorka
et al., 2014). This approach has high explanatory power and
can deal with the common pattern of co-occurrence between
many forms of adversity (Appel and Holden, 1998; Emery and
Laumann-Billings, 1998; Kellogg and Menard, 2003); however,
cumulative models provide less clarity about potential mediating
mechanisms. More recently, starting frameworks (Belsky et al.,
2012; McLaughlin et al., 2014a) argue for the difference between
dimensions of adversity (i.e., harshness vs. unpredictability;
deprivation vs. threat) to advance mechanistic understanding
of the impact of ELA. Moving forward, the field must strike a
balance between more mechanistic approaches and the reality
of the high co-occurrence of different ELAs, as well as the
low-base rates for an isolated form of adversity. In this space,
there are multiple reviews about this topic (e.g., McLaughlin
et al., 2020; Smith and Pollak, 2020) and we would direct
readers to those past publications for more in-depth discussion.
Here, we take a more broad and inclusive definition of ELA.
This is in keeping with many preclinical approaches and the
well-known ACEs study from the Centers for Disease Control
and Prevention. These experiences share some core elements
in that they can be psychosocial hazards, are severe deviations
from the expected environment, and activate stress responsive
physiology (as thoughtfully discussed by Nelson and Gabard-
Durnam, 2020).We, however, return to this issue in later sections
of this document.

While definitions are variable, clear from a large body
of research is that multiple forms of ELA are associated
with compromised development and long-term physical and

mental health challenges (Shonkoff et al., 2012). Across different
models and forms of ELA, a rigorous body of work has
established a strong connection between these experiences and
antisocial and aggressive behavior (or so-called “externalizing
psychopathology”). For example, greater disruptive behavior
and conduct problems have been found in victims of child
sexual abuse (Mallett and Schall, 2019), in individuals who
suffer physical abuse or neglect (Moylan et al., 2010; Muniz
et al., 2019), and in youth from households with lower income
(Votruba-Drzal, 2006; Evans and Cassells, 2014; Piotrowska
et al., 2015). Turning to depression, anxiety, and other forms
of “internalizing” psychopathology, similar patterns have been
noted, with major depressive disorder (MDD) being associated
with child maltreatment (Nanni et al., 2012; Björkenstam et al.,
2017) and to a lesser, though still significant, extent after exposure
to poverty (Letourneau et al., 2013; Peverill et al., 2020). ELAs are
often associated with a more severe and chronic course of MDD
(Chapman et al., 2004; Wiersma et al., 2009; McLaughlin et al.,
2011; Carr et al., 2013), as well as poorer response and remission
outcomes for the treatment of this disorder (Williams et al.,
2016). Examined collectively, research has consistently linked
ELA with a plethora of negative mental health outcomes, with
risk commonly increasing with each additional exposure (Felitti
et al., 1998). Understanding the potential mechanisms by which
ELA worsens mental health, as well as candidate mechanisms
of resilience and recovery, is critical to prevention, intervention,
and ultimately curative treatments.

THE AMYGDALA AS AN IMPORTANT
SOCIOEMOTIONAL HUB:
CONSIDERATION OF BASIC FUNCTIONS
AND NEURODEVELOPMENT

Situated in the anterior portion of the temporal lobe, the
amygdala is a complex of subcortical nuclei important for the
evaluation of the emotional significance of incoming stimuli
(Davis and Whalen, 2001). While the constituent amygdala
subnuclei each subserve different functions (described later in this
document), collectively the amygdala calculates the intensity of
response to positive and negative emotional stimuli (Ambroggi
et al., 2008; Fox et al., 2015). Because of its connections to
evaluative regions in frontal cortex, contextual information
from hippocampus, procedural and reward information from
striatum, and autonomic outputs to the hypothalamus and
ascending cholinergic nuclei, the amygdala can mediate adaptive
physiological (e.g., autonomic reactivity) and behavioral (e.g.,
reallocation of attentional resources) responses to varied
environmental and social challenges (Phelps, 2004; Hariri, 2009).
In line with these ideas and its involvement in fear learning,
meta-analyses of functional neuroimaging studies in humans find
the amygdala is activated by a number of negative emotions
(Lindquist et al., 2012), with direct stimulation of human
amygdala confirming the primacy of fear and anxiety (Lanteaume
et al., 2007).

Given these basic functions, research focused on different
forms of psychopathology have centered on the amygdala.
Various mood and anxiety disorders [e.g., MDD; generalized
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anxiety disorder (GAD); post-traumatic stress disorder (PTSD)]
and some samples with autism have shown greater amygdala
activation to facial displays of fear and anger (Etkin and Wager,
2007; Hamilton et al., 2012). Differences in amygdala structure
have also been noted in individuals with excessive socioemotional
responses ranging from autism (Nacewicz et al., 2006; Kim et al.,
2010), to MDD, to social phobia to PTSD (Karl et al., 2006;
Woon and Hedges, 2009). Examined collectively, these different
bodies of research underscore the amygdala as central to emotion
processing, with aberrant structure and activity in multiple forms
of psychopathology.

Thinking about the amygdala and neurodevelopment, it is
important to note that nuanced work has begun to illustrate
that the typical development of the amygdala is non-linear
in nature, similar to overall cortical development (Shaw
et al., 2006), with amygdala development continuing well into
adulthood. Substantial post-natal development may mean that
environmental experience has a greater potential to significantly
impact and influence neurodevelopment. The basic structural
architecture of the amygdala is well-established at birth, but
volumes increase significantly during infancy (Humphrey, 1968;
Ulfig et al., 2003). Though some cross-sectional reports suggest
a general decrease in volume during adolescence and in early
adulthood, longitudinal quantitative MRI work (Wierenga et al.,
2014), as well as analyses focused on amygdala histology
(Cunningham et al., 2002; Saul et al., 2014), suggest a more
complex pattern. This work indicates amygdala volumes relative
to brain volume continue to increase through adolescence,
reaching maximum volumes in the late teens or early twenties.
The exact age of these peaks is, however, dependent on the sex
and pubertal dynamics of an individual (Goddings et al., 2014).
Such trajectories fit with preclinical work finding active periods of
cell proliferation in these regions during adolescence (Saul et al.,
2014; Sorrells et al., 2019) and continued development in human
post-mortem studies (Avino et al., 2018)

In sum, research underscores that the amygdala is central
to emotion processing, and its abnormal structure and
predominantly excessive activity are common to different
forms of psychopathology. Furthermore, the amygdala displays
rapid structural growth early in life, with continued refinement
of this anatomy into adolescence and early adulthood. Variations
in outcomes, both behaviorally and neurally, may be due to
ELA impinging upon core developmental processes happening
at the specific time of stress exposure. These core functions
and neurodevelopmental trajectories are important bedrocks to
consider when thinking about the effects of ELA on amygdala
structure and potential critical periods for important affective
processes, such as the buffering against generalization of fear.

WHAT IS THE STATE-OF-SCIENCE OF
ADVERSITY’S IMPACT OF THE
AMYGDALA? WHAT MIGHT BE CAUSING
THESE INCONSISTENCIES?

Surveying preclinical research, as well as studies in human
samples, it is clear that stress exposure and exposure to adverse
experience impacts amygdala structure; however, the magnitude

and directionality of these effects has been challenging to
understand and to cohesively summate. In regards to preclinical
work, these studies, primarily conducted in late juvenile or early
adult rodents, has found exposure especially to restraint stress
leads to volumetric increases such as dendritic arborization in
amygdala nuclei (Vyas et al., 2002; Mitra et al., 2005; Cohen
et al., 2013); this is opposite the hippocampal changes where
dendritic retraction is typically seen after stress (Watanabe et al.,
1992; Magariños et al., 1996, 1997). Initial work in human
adults did not find alterations in amygdala structure in samples
exposed to ELA (Bremner et al., 1997; Cohen et al., 2006). A
recent study, however, noted larger amygdala volumes in adults
who were exposed to higher levels of cumulative stress during
childhood (Evans et al., 2016). This was in contrast to a large
study of non-demented older adults (N = 466) that found
participants who reported two or more early-life events had
significantly smaller amygdalae with increasing age (Gerritsen
et al., 2015). When adults had a history of ELA exposure
and comorbid psychopathology (such as PTSD or borderline
personality disorder), smaller amygdala volumes have typically
been reported in ELA-exposed samples (Driessen et al., 2000;
Schmahl et al., 2003; Weniger et al., 2008; Irle et al., 2009; Veer
et al., 2015; Souza-Queiroz et al., 2016). However, in a unique
sample of adolescents and adults with elevated risk for psychosis,
no associations between adversity and amygdala volumes were
found (LoPilato et al., 2019).

Structural neuroimaging in human pediatric populations
have, similarly, yielded mixed results. In children exposed to
neglect, research reports have noted larger amygdalae (Mehta
et al., 2009; Tottenham et al., 2010; Roth et al., 2018), as well as
no differences (Sheridan et al., 2012; McLaughlin et al., 2014b;
Hodel et al., 2015). Child poverty has been associated with larger
(Noble et al., 2012) and with smaller amygdalae (Luby et al., 2013;
Ellwood-Lowe et al., 2018). Smaller amygdalae (Edmiston et al.,
2011; McLaughlin et al., 2016), as well as no differences, have
been found in adolescents who experienced child maltreatment
(De Bellis et al., 1999, 2001, 2002; Carrion et al., 2001; Gold
et al., 2016). Similarly, exposure to community violence during
childhood was related to smaller amygdala volumes (Saxbe et al.,
2018; Weissman et al., 2020); however, related recent work did
not replicate this association in a similar sample (Butler et al.,
2018).

Our research group attempted to deal with some of these
inconsistencies by using a rigorous tracing protocol and focusing
on three different forms of ELA—child poverty, physical abuse,
and early social neglect—in a sample of youth ages 9–14. This
work also deployed rich measures of stress exposure, obtained
through semi-structured interviews with both youth and parents.
Interestingly, while reduced amygdala volumes were common to
all types of ELA and not statistically differentiable at our sample
size, the impact of low SES was greatest with physical abuse
slightly worse than institutional neglect (Hanson et al., 2015b). A
portion of these differences could reflect our finding that greater
cumulative stress exposure was associated with smaller amygdala
volumes. Recently, Herzog et al. (2020) tried to compare the
impact of different types of ELAs using cutting-edge statistical
methods (random forest regression) and found neglect during
childhood and adolescence was related to smaller amygdala
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volumes. However, work using latent class models to identify
classes of ELA (e.g., Family Instability; Direct Victimization) did
not find any associations between ELA type(s) and amygdala
volume (King et al., 2019). Future studies with large samples
that are equally matched on stress severity could potentially
differentiate unique contributions of ELA type.

Across these studies, one major limitation is that the
preponderance of this work has been cross-sectional in
nature. Such work can miss the complexity of neurobiological
trajectories, underscoring the importance of studying
development longitudinally (Shaw et al., 2006; Wierenga
et al., 2014). In regard to longitudinal samples, Whittle et al.
(2013) found childhoodmaltreatment was associated with slower
growth of the left amygdala, but these associations reversed if
participants presented with psychopathology. Mirroring some
of these patterns, VanTieghem et al. (2021) used an accelerated
longitudinal design to compare youth who previously suffered
early social neglect in institutional care and a comparison sample
without such ELA. Youth who suffered early social neglect had
a reduced growth rate of the amygdala, resulting in smaller
volumes by adolescence. Given the panoply of inconsistent
findings reviewed here, it will be important to judiciously
walk through potential sources of measurement error and
biological/physiological variance as the field continues to think
about connections between ELA and neurodevelopment.

Surveying the human neuroimaging studies focused on ELA,
there is a wide-range of variation in methodology, sampling
strategies, and conceptualizations of ELA and related stress.
Each of these areas likely interjects inaccuracies and biases in
reported results. At a basic level, volumetric quantification of
the amygdala is more complex, and potentially inaccurate, than
many may allude to. Volumetric amygdala measurement can be
performed using manual and automated protocols. A good deal
of the early structural imaging work employed manual tracing of
the amygdala; this methodology can often be more precise and
accurate, but is time-consuming and requires extensive expertise.
In our own work at the University of Wisconsin-Madison,
even with 8 months of training, 80–90% of undergraduate
trainees failed to reach spatial and numerical reliability on our
whole amygdala segmentation, and expert tracing still requires
at least 2 h per amygdala (e.g., Caldwell et al., 2015). This is
now amplified by a factor of six or more, as we hand-trace
individual subdivisions and subnuclei. Manual tracing can still
be problematic if poorly executed, evidenced by over constraint
(i.e., highly precise but insensitive to individual variation) or
simple drift in technique leading to high variability (e.g., low
intraclass correlation coefficients). For example, Cohen et al.
(2006) reported that the average amygdala volume for an
adversity-exposed group was 1.27 and 1.16mL (for the right and
left amygdala), while a non-adversity exposed group was 1.26
and 1.15mL (for the right and left amygdala). These groups were
not significantly different from one another. However, rarely
highlighted is that the error for these measures was actually
higher than the mean volumes (ELA group = 1.40 for right, 1.28
for the left; Comparison group = 1.43 for right, 1.36 for the
left). This suggests inconsistent and problematic hand-tracing,
and similar results (null or otherwise) with these patterns should

likely be greeted with skepticism. Moving away from hand-
tracing, there are now many commonly available automated
methods for amygdala volumetric quantification (e.g., Hanson
et al., 2012b; Buser et al., 2020; Liu et al., 2020). These approaches
represent a scalable and easy-to-deploy method to potentially
test relations between volumetric measures and psychological
variables of interest; such methods may be particularly important
given that structural MRI-datasets are exponentially increasing
in size (from 10 to 1,000 s). However, many approaches (i.e.,
Freesurfer) often yield unsatisfactory results with high-variability
and low-validity (Babalola et al., 2009; Morey et al., 2009;
Dewey et al., 2010; Hanson et al., 2012b). For example, we
found that automated segments of the amygdala generated by
Freesurfer had low bivariate correlations with volumes from
rigorous hand-tracing of the same structure (Left r = 0.563,
Right: r = 0.560; (Hanson et al., 2012b). Particularly damning,
in Hanson et al. (2015b), Freesurfer-estimated amygdala volumes
captured neither group differences nor individual differences in
cumulative life stress in a sizable sample of youth who suffered
different forms of ELA

For high-throughput studies, a new generation of automated
segmentation tools is required. In our recently published
approach (Liu et al., 2020), accurate amygdala acquisition
and segmentation required modifications in both a Multi-
Atlas model and a Convolutional Neural Network. Multi-Atlas
models match overall context, as cost is calculated across the
whole brain, but requires hyperbolic exaggeration of subtle
boundaries to distinguish the amygdala subnuclei. In contrast,
the neural network easily matches fine details, but requires
combination with a parallel network constraining the model on
a larger contextual scale. Either of these dual-scale approaches
is acceptable, but all segmentations require additional visual
quality checks.

Turning to issues with study designs, many investigations in
humans have had a large age range of participants (e.g., 5–15
years old in studies focused on pediatric populations); this is
particularly important to note given amygdala developmental
trajectories reviewed earlier. For example, LoPilato et al. (2019)
examined a large cohort of individuals, but the age range spanned
from 12 to 30 years of age. During this span, amygdala structure
is actually increasing in volume, hitting a peak volume, and
possibly shrinking again; mixing of age groups likely occludes
associations between ELA and volume. Connected to this, in
most work, age is simply added as a linear covariate to statistical
models. Research might think of alternative strategies for studies
where participants span multiple developmental epochs (or large
age ranges, i.e., individually fitting a quadratic term of age).
For instance, Merz et al. (2018) examine the interaction of
age and family income/poverty, one type of ELA, in a sizable
cohort of youth (N = 296). When these investigators examined
the full cohort, there were no significant effects detected. But,
looking at age X ELA interactions, these investigators found that
lower family income was significantly associated with smaller
amygdala volumes in adolescence (13–21 years old). However,
this relation was not seen for younger age children (3–12 years),
suggesting important neurodevelopmental associations may only
be revealed when considering ELA and developmental stage(s).
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FIGURE 1 | Combining across automated and manual methods for

quantifying the amygdala, here we depict amygdala volumetric differences for

ELA-exposed samples. Cohen’s d, with 95% confidence intervals (CIs) of

effects, are shown on the vertical axis, while the span in age is shown on the

horizontal axis. Longer boxes (on the horizontal axis) indicate studies with

larger age-ranges in their samples, while wider boxes (on the vertical axis)

depict studies where the effect size estimates and 95% CIs span a larger

numeric range. Study sample size is also depicted in this graphic with lighter

boxes being studies with smaller sample sizes and darker boxes representing

studies with a larger number of participants. Individual study data is available

online at: https://github.com/jlhanson5/

Hanson_Nacewicz_Frontiers_Amygdala_Review_Data.

We believe that these confusing results can be explained
by the inverted-U allostatic growth trajectory. High levels of
stress initially increase amygdala volume, but the most extreme
(or chronic) levels of adversity may result in smaller volumes.
Support for this idea comes from multiple avenues. First, cross-
sectional studies suggest complex associations between amygdala
structure, the intensity of ELA, and developmental consequences
of stress. For example, Mehta et al. (2009) found larger amygdalae
in children exposed to early social neglect; however, the duration
of early neglect (that these same children were exposed to)
was actually related to smaller amygdalae. Similarly, combat-
exposed adults with PTSD exhibited larger amygdalae compared
with their non-PTSD counterparts. But, in individuals with
a history of ELA and PTSD, smaller amygdala volumes were
actually found (Kuo et al., 2012). A recent multi-group study by
Morey et al. (2016) that examined maltreated youth with PTSD,
without PTSD, and non-maltreated healthy volunteers further
highlights this. Maltreated youth without PTSD demonstrated
larger amygdalae compared with maltreated youth with PTSD
and compared with non-maltreated control youth. However,
PTSD symptoms were correlated with amygdala volumes, with
greater symptomatology being related to smaller volumes.

This pattern is visibly evident looking across multiple studies
(Figure 1) considering age of the sample and the direction of
effect. For younger samples (<9 years of age), there is reasonable
data to show volumetric increases in the amygdala, but looking
at adult samples, there is the suggestion of smaller volumes. In
past meta-analyses, there has often been aggregation of different
studies but limited consideration of a non-linear trajectory.
This is perhaps why there has been conflicting results across
different meta-analyses. Taking amore thoughtful developmental

perspective supports this inverted-U pattern of alterations. For
example, recent longitudinal work (Whittle et al., 2013) suggest
a slowing of growth of the amygdala after ELA. Particularly
important to highlight, youth who suffered early social neglect,
one form of ELA, had a reduced growth rate of the amygdala,
resulting in smaller volumes by adolescence (VanTieghem et al.,
2021) and it is as-yet unknown if this represents a delay or a
missed critical period to learn fear and safety.

Looking at ELA as a form of allostasis raises many testable
questions. Consider the measurement and definition of ELA.
These concepts are notoriously difficult to measure and may
take many forms. For example, in samples exposed to poverty,
in addition to challenges with low income, there are often
greater residential neighborhood problems in impoverished
environments (Steptoe and Feldman, 2001). Higher crime,
inadequate neighborhood services, and transportation problems
may constitute sources of chronic stress. There are also more
daily “mundane” stressors in low SES environments and this
may contribute to greater rates of psychopathology (Kanner
et al., 1981; Almeida, 2005; Odgers and Jaffee, 2013). Indeed,
as Slavich (2019) noted the large preponderance of life stress
exposure work is “measuring only the superficial contours of this
complex construct.” There is a massive and significant variation
in severity, frequency, timing, and duration of adversity, and as
yet the relative weight of these against disruptions of parental
attachment is unknown. Each of these factors could likely be
introducing heterogeneity in the large body of findings we
reviewed above. As we discuss later in this document, it is
likely that different forms of ELA may share phenomenological
elements (e.g., experiences of threat; McLaughlin et al., 2014a).

“AMYGDALA ALLOSTASIS:” FOCUSING
ON EXCITATORY/INHIBITORY
NEUROCHEMISTRY AND CONSIDERING
BEHAVIORAL CONSEQUENCES
AFTER ELA

When considering the potential neurodevelopmental impact
of ELA, it is critical to realize that: (a) the amygdala is
not a unitary brain area, but rather heterogenous subnuclei
with unique functions and developmental trajectories (as
detailed in Figure 2); and (b) stress may exert non-linear
effects in concordance with McEwen’s notions of “allostatic
load.” Connected to heterogeneity, volumetric growth during
development varies across subnuclei, but is driven by an increase
in neurons of the basal nuclei and lateral nucleus. Other
subnuclei of the amygdala (i.e., the paralaminar region) gradually
loses putative newly generated/differentiated neurons, suggesting
a proliferative role (or migration pathway) akin to subventricular
zones of neighboring structures (Chareyron et al., 2012; Avino
et al., 2018; Jurkowski et al., 2020). Related to allostatic,
inverted-U patterns, allostatic load translates roughly to “a
new normal” and is the detrimental physiological consequence
caused by sustained excessive activation of stress-responsive
systems (Danese and McEwen, 2012); this is commonly caused
by chronic or repeated exposure to psychosocial stressors.
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FIGURE 2 | Functional roles of human amygdala subnuclei. A coronal view of T1-weighted structural MRI (left) showing amygdalae resting on the anteriormost

hippocampus and separated by the white matter of the alveus, and closeup of hand-segmented amygdala subnuclei (right). (1) While there is still debate about

whether the paralaminar region is a true nucleus vs. the subventricular region of other nuclei, it is the main zone of from which newborn neurons migrate into the basal

and lateral nuclei and houses dopamine-innervated GABAergic cells that gate activation of the basal and lateral nuclei. (2) The corticial nucleus and superficial nuclei

are closely linked to the olfactory system and in vomeronasal animals coordinate responses to pheromones. As such, these and the medial nucleus of the amygdala

contribute to latent drives such as recognition of conspecifics, maternal attachment, and sex-related differences and behaviors. (3) Basomedial nucleus is an

early-developing nucleus that bears some functional similarities to the adjacent superficial nuclei, e.g., changing serotonin receptor expression in studies of early

maternal separation, but also brings in information about safety cues from higher centers through direct innervation by infralimbic/BA25 projections. (4) The lateral

nucleus gathers information about threatening cues and contexts from highly processed sensory information and contextual information from hippocampus. It is the

largest nucleus in humans and most reliably enlarges in allostatic load, consistent with rodent studies showing dendritic expansion as fear generalizes. (5) The

Basolateral or simply Basal nucleus similarly expands volume and dendrites after inescapable stress, but it is also home of key “extinction cells” that integrate

information from other nuclei and prefrontal inputs and feeding forward inhibition to contextualize or extinguish threat responses and turn off dopamine from the VTA.

(6) The intercalated cell islands (ITCs) and about half the cells in the lateral division of the central nucleus (CeL) receive feedforward inhibition from basal nuclei or are

directly activated by the social bonding hormone oxytocin (CeL), to inhibit latent and previously learned fear responses. They receive heavy dopaminergic innervation

and send effectors to centromedial (CeM) and a similar lateral-to-medial inhibition of the ascending arousal signaling of the cholinergic basal nucleus of the stria

terminalis. About half the neurons are so-called “fear on” neurons that signal latent and previously-learned fears with some threat signals from innervation by the

paraventricular thalamus. (7) CeM sends long-range projections that tonically inhibit hypothalamic and brainstem autonomic centers until fear and safety signals

integrated by CeL shifts toward threat and inhibits these neurons.

With stress and ELA exposure, we specifically believe that
increases in cellular complexity in the amygdala (e.g., higher
dendritic branching; increased synaptogenesis) leads to excessive
excitation, untamable by inhibitory synapse growth, and this
cascades to excitotoxic damage and ultimately cell death
(schematized in Figure 3). Connecting these two elements, we
believe that basolateral portions of the amygdala largely encode
cues, contexts and behaviors mapping the boundary between
safety and known threats.

In regard to allostatic load of the amygdala and nearby
structures, recent preclinical work shows that neurogenesis
in hippocampus is highly constrained by the metabolic costs
of deviating from an optimal ratio of excitatory to inhibitory
neuronal firing (Wang et al., 2020). Considering metabolic
costs of excitation-inhibition ratios in the amygdala (Figures 2,
3), the basolateral portions are primarily excitatory with a
large concentration of glutamate (Glu) releasing neurons, but
under resting conditions an extensive network of inhibitory,
γ-aminobutyric acid (GABA) releasing neurons anchored in
the paralaminar zone largely silences the basolateral complex
(Quirk and Gehlert, 2003). Modulatory neurotransmitters
(Marowsky et al., 2005) relieve this inhibition, bringing online
the basal and lateral nuclei that compute the magnitude
of feed-forward fear and safety signals and set the degree

of fear generalization. Manipulating GABA in this region
modulates amygdala reactivity and reduces anxiety and
social behaviors (Sanders and Shekhar, 1995; Paulus et al.,
2005; Del-Ben et al., 2012). Multiple forms of affective
psychopathology are theorized to be related to excessive
Glu-GABA ratio in this region (Sanders and Shekhar, 1995;
Cortese and Phan, 2005; Pittenger et al., 2007; Tye et al., 2011).
The basolateral complex ultimately sends information
about conditioned and aversive stimuli to the centromedial
“output” nuclei (Duvarci and Pare, 2014) which, like
neighboring striatum, have among the highest density of
GABA synapses in the brain (Sutoo et al., 2000). Central
subnuclei integrate the ascending information with previously
learned fear and social hormonal signals to ultimately
trigger autonomic and behavioral fear responses through
brainstem projections.

With increasing levels of chronic stress (such as in ELA),
there is interruption of the normal excitation-inhibition balance
in the amygdala. This may occur through multiple pathways
and may explain a portion of the heterogeneity of structural
results seen previously. First, stress may cause higher excitability
in the basolateral amygdala, due to: increases in the number
of spontaneously firing neurons (Zhang and Rosenkranz, 2012),
enhanced excitatory synaptic drive (Padival et al., 2013),
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FIGURE 3 | Model of graded acceleration of amygdala volume relative to brain volume and regions of clarification needed in future studies of allostatic load in ELA. (1)

It has not been established whether a critical period exists during the first several months of parental attachment or after during which parental presence facilitates

overcoming adversity and an enduring sense of parent-cued safety. (2) As noted above, more evidence will be needed to clarify whether early enlargement or rate of

growth is quantitatively linked to degree of subjective adversity. (3) While certainly involving glucocorticoids, dendritic expansion and a shift toward excitation over

inhibition, the limits on peak volume and transition to shrinkage is poorly understood even in ASD. (4) These changes relative to control volumes must be further

couched in an understanding of typical brain development that likely peaks by the preteen years, thus even a shift earlier in life (5) of the same curve could manifest as

a distinct quadratic shape in proportion to severity of adversity. (6) Furthermore, the peak of typical amygdala development and influences on timing have not been

fully elucidated due to the challenges of longitudinal study. (7) Provided individuals are assessed after the quadratic peak, amygdala shrinkage quantitatively reflects

cumulative life adversity and better characterization of this pathophysiology may distinguish effective treatments from the natural course of disease. (8) Whether

inflammation in the form of reactive gliosis and excitotoxic death occur and can be prevented will require better longitudinal tools that track microsctructure and

neurochemistry longitudinally.

and the increased expression and activation of glutamatergic
N-methyl-D-aspartate (NMDA) receptors (triggering so called
“silent synapses”; Mozhui et al., 2010; Suvrathan et al., 2014;
Tzanoulinou et al., 2014b). In addition, preclinical work indicates
stress exposure can lead to GABAergic alterations. Stress during
the juvenile period is related to changes in GABA-A protein
expression (Jacobson-Pick and Richter-Levin, 2012; Tzanoulinou
et al., 2014a) and reduction in enzymes involved with synthesis
of GABA in the rodent amygdala (Tzanoulinou et al., 2014b).
Interestingly, adversity during the juvenile period may actually
result in an immature-like expression profile of the GABA-
A receptor subunit (Jacobson-Pick et al., 2008). This may be
compensatory, as stress leads to long lasting loss of tonic GABA-
A receptor currents in the projection neurons of lateral amygdala
(Liu et al., 2014). Finally, stress may cause alterations in cortisol,
cannabinoids, and neuropeptides, such as cholecystokinin and
neuropeptide Y (Shekhar et al., 2005); alterations in these
systems may further indirectly impact excitation-inhibition
balance in the amygdala (Hadad-Ophir et al., 2014; Radley et al.,
2015). Examined collectively, stress impacts both inhibition and
excitation in the amygdala through direct alterations in Glu and
GABA, as well as through indirect stress-induced changes in
hormonal and neuropeptide signaling. These multiple pathways
tilt the amygdala to a more excitable state, paralleling the human

findings of amygdala hyper-reactivity to emotional stimuli after
exposure to ELA.

At a larger scale, one sees a more overall excitable amygdala,
with increased dendritic spines in basolateral nuclei after
adversity (Vyas et al., 2002, 2003, 2004, 2006; Mitra et al., 2005).
Despite these neurobiological alterations, organisms exposed
to stress must still strive to maintain homeostasis, regulating
their physiological and behavioral responses to environmental
experiences. This hyper-excitable state of the amygdala, however,
has the potential to lead to wear and tear on the body and
brain (allostatic load and overload; McEwen, 1998; McEwen
et al., 2015). Thinking about these patterns, McEwen (2003, 2005)
noted parallels with brain alterations in humans during
initial episodes of major depression, where larger volumes
and increased functional activity of the amygdala have been
noted (Frodl et al., 2003). McEwen further suggested that
this hyperactivity might give way to eventual shrinkage, citing
reports of smaller amygdalae after repeated depressive episodes
(Sheline et al., 1999). Knitting together work in stress exposed
juvenile animals, one sees preliminary support for this idea.
Work from Rosenkranz et al. found repeated stress increases the
excitability of amygdala neurons (Hetzel and Rosenkranz, 2014),
but loss of spines in the amygdala after repeated stress during
early development (Padival et al., 2015). Particularly interesting,
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FIGURE 4 | Meta-analytic evidence for a transdiagnostic allostatic curve.

Manual hand-tracing studies of (A) amygdala volume differences in individuals

with autism (ASD) compared to those with autism. Effect size (hedges g) is

shown on the vertical axis, with age shown on the horizontal axis (error bars

indicate SD of age). Effect sizes are small volume corrected or corrected with

total brain volume or intracranial volume. Of note, these samples meet the

stricter DSM-IV represented by the smallest reported subgrouping by age. (B)

Overlaying with the less steep curve of right amygdala from ASD shows a

highly similar pattern of shrinkage that is at least as early as the onset seen

in ELA.

animals resilient to stress hadmarkers of reduced excitatory drive
from glutamatergic inputs in the amygdala.

This pattern of early overgrowth is mirrored in individuals
suffering their first episode of psychosis or affective psychosis
(combined bipolar and unipolar depression), suggesting a
common amygdala response in disorders of sustained distress
(Velakoulis et al., 2006). Breaking this down further, Suor
et al. (2020) recently showed that early overgrowth was evident
in a cross-section of individuals with GAD, social anxiety
(or both) and found that a component of social threat was
associated with amygdala enlargement. We believe this to be
a quantifiable transdiagnostic response to sustained evaluation
of social threat, but capturing sizable cohorts suffering their
first mood episode before treatment impedes our knowledge of
the early stages of the allostatic response. Similarly, emotional
overload during social situations is a hallmark of autism
spectrum disorders (ASD), which have extensive characterization
of degree of social impairment and, conveniently for scientific
study, amygdala hyperactivation is expected to start at birth.
In ASD, volumetric overgrowths have been reported early in
development, but smaller volumes have been noted later in life
(Nacewicz et al., 2006; Schumann and Amaral, 2006; Mosconi
et al., 2009; Kim et al., 2010) and the rate or degree of

early life overgrowth or later life shrinkage is associated with
quantitative social impairments. Connected to these ideas, we
show in Figure 4 an aggregration of studies in individuals
with autism, as well as ELA-exposed samples. We believe the
clear pattern of overgrowth and shrinkage in ASD lays the
groundwork for a dose-dependent acceleration of this pattern
in ELA, consistent with the studies described above showing
that adversity with psychopathology or more severe stress from
adversity is frequently associated with smaller volumes even on a
background of ELA-induced enlargement.

Returning to the case of high ELA exposure, early life
volumetric expansion of the amygdala is likely coupled with
higher functional reactivity and excitatory tone. Amygdala cells
may be able to maintain a moderately high-load state, and
individuals with this neurobiological phenotype may display
higher levels of depression, anxiety, or other affective illnesses.
In some, symptoms may not always reach clinical diagnostic
thresholds, or the individuals may be less impaired, albeit with
limited capacity to absorb another traumatic insult. In the case
of particularly extreme stress exposure, occurring for longer
durations of time, initial overgrowth and high metabolic strain
may give way to subsequent volumetric shrinkage. In a way,
the amygdala may reach a breaking point of over-excitation
that leads to smaller structural volumes, while higher functional
reactivity and excitatory tone are still present. This fits with
the smaller volumes typically noted in adult samples exposed
to stress, echoing rodent hippocampal models predicting that
high ratios of inhibitory neurons are metabolically more costly if
unable to reduce high firing rates of excitatory neurons (Wang
et al., 2020). As such, we predict that individuals with the largest
volumes in early childhood and smallest volumes after the first
decade of life will manifest highest levels of symptomatology,
likely presenting with one or more full-blown clinical diagnoses.

If amygdala volume after ELA does fit the allostatic
model, what does this tell us about mechanisms of human
psychopathology and treatment potential? What is lost when an
the amygdala shrinks but maintains a pathological hyperexcited
state? Our understanding of allostatic load grows out of a
literature on “learned helplessness,” essentially giving up in the
face of a challenge, a core construct in stress-induced depression
thought to bridge animal studies and major depressive disorder
induced by overwhelming stress (Maier and Seligman, 1976).
The key manipulation inducing learned helplessness was a
systematic series of alternating mild stressors each day, with
the key feature being unpredictability of the next day’s stress
[as reviewed by Maier and Watkins (2005)]. Sapolsky et al. had
identified “damage” to hippocampal neurons (atrophy and loss
of apical dendrites) in a case series of vervet monkeys that
appeared to die of health consequences of social stress (Uno et al.,
1989), but reproducing these with a reliable laboratory model of
behavioral stress was only achieved using repeated immobility
stress (also called “restraint stress”; Watanabe et al., 1992).
Head to head comparisons with repeated unpredictable stressors
showed immobility stress to cause greater dendritic loss in these
cells, despite one of the unpredictable stresses on the commonly-
used protocol being a single episode of immobility stress
(Nibuya et al., 1999). McEwen’s group showed antidepressant
treatment could reverse hippocampal changes and related spatial
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learning deficits (Conrad et al., 1996), but, more importantly, a
sensitization to fear learning was untouched by the treatment.
These investigators concluded “the results indicate a powerful
effect of repeated restraint stress on another brain region, possibly
the amygdala, which overrides any influence of the hippocampus”
(Conrad et al., 1999). Vyas et al. built on the sensitized fear
conditioning after stress and discovered increased dendritic
length, branching, and spines (spines typically represent high
fidelity excitatory synapses) throughout the amygdala (Vyas
et al., 2002, 2003). These researchers showed immobility stress
caused more than double the amygdala remodeling than did
unpredictable stress, and again in behavioral testing only the
immobility stress increased anxiety-like behavior (Vyas et al.,
2002). This research group followed this up with behavioral
analysis of these two conditions (Vyas et al., 2004) and showed
that 10 days of immobilization stress (2 h/a day) leads rodents
to reach a ceiling in anxiety-like behavior while 10 days of
unpredictable stress looks just like control. Besides showing an
opposite stress-induced remodeling than hippocampal neurons,
amygdala remodeling did not reverse 3 weeks after recovery from
stress (Vyas et al., 2004). Joining forces with McEwen, Mitra
et al. (Mitra et al., 2005) went on to show that even a single 2-
h episode of immobility stress induced a delayed expansion in
amygdala dendritic spines that paralleled a delayed development
of generalized fear. The above findings converge on increased
dendritic spines and/or branching on amygdala neurons as a
candidate physical mechanism for the generalization of fear itself,
which we discuss in more detail below.

However, to highlight the paradigm shift: the expectation
up to this point was that repeated unpredictable stress induced
the strongest behavioral change because of the inability to
prepare oneself for what comes next, but unpredictability
proved inferior to inescapability. Looking across these preclinical
models, we would therefore predict that the degree of perceived
“entrapment” will be a better predictor of amygdala enlargement
in individuals exposed to ELA. A systematic review by Taylor
et al. (2011) gathers extant evidence from behavioral studies
and human studies of depression, psychosis, caregiver burden,
chronic pain, anxiety, and traumatic stress that converges on
a construct of perceived inescapability that defeat/helplessness
contributes to and social support buffers against. Circling back
to the “lived experiences” of ELA, when there is not literal
entrapment, overwhelming health problems, legal problems, or
financial issues may be emblematic of daily life and a form of
figurative entrapment. This has potential major implications for
poor mental health. Surveying clinical work on self-injurious
behavior, elements of figurative entrapment played a role in 25–
30% of suicides from 2003 to 2008 (Logan, 2011). Pivoting back to
neurobiology, dendritic expansion may be a compensatory effort
to map environmental features to detect safety or avenues of escape,
but in these cases of entrapment, no safety can be achieved so
the amygdala churns away, reaching a terminal toxic-metabolic
shrinkage in the first decades of life.

A futile cycle attempting and failing to map unattainable
safety could explain increased amygdala volume and activity
after stress, while other limbic regions (hippocampus, PFC)
demonstrate atrophy. We believe research in rodents and

non-human primates suggest a testable model about the factors
driving this enlargement. AsMcEwen detailed inmultiple reports
about allostatic load, the body increases certain functions to meet
the demands of the stress, but long-term adaptation is costlier
than true homeostasis. Connected to this, Ghosh and Chattarji
(2015) examined recruitment of amygdala neurons specifically
in the lateral nucleus during fear conditioning, and discovered
not only that neurons tuned to a conditioned sound increased
their activity after pairing with an aversive stimulus (mild
shock), but also that neurons tuned to other sounds broadened
their tuning to now respond to the conditioned stimulus. In
other words, fear conditioning literally recruits a broader neural
network in the amygdala, shifting the balance toward regional
excitation. Importantly, a stronger aversive stimulus caused 30%
of neurons tested to broadly generalize and respond to nearly
any sound, a finding that could be recapitulated by artificially
increasing neuronal excitability in the amygdala. A month
later, Resnik and Paz (2015) published findings from electrical
recordings throughout the three nuclei of the basolateral complex
(basomedial, basolateral, and lateral, Figure 2) of macaques, and
demonstrated that fear conditioning in primates follows the
same pattern of not only strengthening neuronal signatures of
environmental cues (sounds) present during an aversive stimulus
(in this case a strongly aversive odor) and again broadening of
the tuning of neurons not previously responding to sounds in the
range of the conditioned stimulus. Just as in the rodent, the degree
of neuronal generalization matched the degree of behavioral fear
generalization. In short, primate and rodent amygdala expand the
neural signatures not just of cues indicating danger but recruit
more neurons to map the parameter space of similar cues. We
believe this is part of a natural mechanism to find the bounds of
danger and identify related signals of safety. In support of this,
Amir et al. (2015) demonstrate that ∼70% of primary neurons
and most interneurons in the rodent basolateral nucleus show a
graded decrease in firing as the animals leave the safety of their
nest and face a robotic predator, with 23% showing an opposite
firing rate proportional to danger (possibly the analog of the
minority of neurons that strengthened or generalized to cues).
Therefore, a subset of amygdala neurons representing danger or
generalized fear can drive recruitment of a broader population of
amygdala neurons that map relative degrees of known safety.

It is as yet unclear if there is an equivalent fear generalization
in primates proportional to the intensity of an aversive stimulus,
but this is likely the mechanism by which individuals suffering
ELA proportionally over-activate their amygdalae. We predict
that this metabolically costly effort to map the environmental
space surrounding an intense aversive event represents a key
function of the basolateral amygdala as defining the boundaries
of danger cues so that safety can be achieved. This is in line
with imaging findings and neural network modeling that suggest
greatest recruitment in situations of uncertain danger (Kim et al.,
2003; Herry et al., 2007). But what if danger is inescapable
in all conditions? If no associations with safety are found,
and a stimulus is sufficiently intense, perpetual generalized fear
responses may ultimately lead to overload and burnout of the
“safety mapping” neurons of the amygdala as it endlessly pursues
a spatiotemporal boundary to the threat.
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CONNECTING AMYGDALA
NEUROBIOLOGY TO DEVELOPMENTAL
MAL/ADAPTATION AFTER ELA

If amygdala allostatic adaptations do indeed map to attempts to
contextualize cues related to threat and vigilance, we believe there
are clear developmental translations and connections between
this neurobiological phenotype and the aberrant psychosocial
and behavioral processes commonly seen after adversity [for
a comprehensive review, see Cicchetti (2016)]. These include:
disruptions with attachment, emotion processing, and social
bonding. While allostatic load models have permeated aspects
of developmental psychology, it will be important to increase
crosstalk between these areas and to, as Cicchetti noted,
“examine the prior sequences of adaptation or maladaptation in
development that have contributed to a given outcome.”

Related to attachment, forming a secure early bond provides
an individual a base from which to explore and forge new
experiences. At the least, this “stable base” literally provides
a zone around a parent where “escape” through parental
intervention can overcome any threat. Interestingly, individuals
exposed to adversity often develop insecure attachment styles
[see Cyr et al. (2010), for a meta-analysis], eliminating or at
least destabilizing this zone of safety and leading to beliefs of
others as unavailable or untrustworthy. This is strongly seen
for individuals who have suffered maltreatment, but also for
other types of ELA, including low household income, having a
parent with a substance use issue, and lower maternal education.
These changes could have profound implications for behavioral
development, especially if individuals exposed to ELA believe
that their caregivers are not safe enough supports for them to
explore an environment. In the most extreme cases, infants with
disorganized attachments will actually show freezing behavior
toward caregivers. This strikingly parallels over-generalization
in preclinical fear-conditioning work (Mahan and Ressler,
2012). As these individuals continue to develop, this “unsafe”
representation may get expanded out to other individuals in their
environments. Thinking about the usefulness of this expanded
representation, if one is not sure of who signals safety and security
(and what behavior is appropriate to execute in a context), it
could be potentially “more adaptive” not to enact any behavior at
all. Thinking about attachment and ELA, a number of interesting
research findings may relate to aberrant contextual processing.
For example, physically abused infants display higher rates of
fearfulness, anger, and sadness during parent-infant interactions,
compared to age-matched non-maltreated peers (Cicchetti and
Ng, 2014). In contrast, neglected infants display blunted ranges
of emotional expression, often with an increased duration
of negative affect compared to non-maltreated infants. While
clearly phenomenologically different, the aberrant processing of
contextual safety could potentially explain each of these patterns.
Abused infants may be over-contextualizing the negative affect
that they experience with their mothers, while neglected infants
may be uncertain how and under what circumstances they should
be expressing positive emotions.

Moving forward in development and turning to emotion
processing, aberrant understanding of contextual cues may

connect to the alterations in threat sensitivity and hyper-vigilance
commonly reported after ELA. As an illustration, a good deal
of recent research, most notably by Pollak et al. (e.g., Pollak
et al., 2000; Pollak and Sinha, 2002; Pollak and Tolley-Schell,
2003) finds an increased sensitivity to anger-related cues after
abuse: with maltreated children perceiving angry faces as more
salient relative to other emotions, display broader perceptual
category boundaries for detecting anger, and require less visual
information to perceive angry facial expressions. Interestingly,
there is suggestive evidence that children exposed to poverty
display similar (though subtler) biases toward threat. Indeed,
children living in poverty tend to carefully monitor their
environment for danger andmaintain a low threshold for judging
situations as threatening (Chen and Matthews, 2003; Chen
and Paterson, 2006). Impoverished youth often exhibit larger
cardiovascular responses than higher SES youth when confronted
with ambiguous stimuli (Chen et al., 2004). These threat-bias
results clearly represent differences in emotion processing but
could also be seen as contextual over-generalization or lack of
safety learning. Children exposed to adversity may be sensitized
to threat, and then they believe threat (and fear) is the common
and dominant (and potentially “default”) emotion. In keeping
with classic social-information processing work by Dodge et al.
(1990), Dodge (1993), and Crick and Dodge (1994), if children
exposed to ELA over-contextualize threat and perceive the world
to be a hostile and unsafe place, they may respond with high-
levels of aggression and potentially retaliatory violence (Connell
and Goodman, 2002; Evans et al., 2008; Wilson et al., 2009; Jaffee,
2017; Peverill et al., 2020). The over-representation of subtle signs
of threat are likely represented in the synapses and dendritic
branching of the amygdala.

Connected to both attachment and emotion processing, those
exposed to ELA often have problems with peer relations across
multiple stages of development. Interestingly, different forms
of ELA (e.g., maltreatment) are related to either withdrawal
from or overt aggression toward peers. While many may
consider these divergent phenotypes, both may be appropriate
(and learned) responses to environmental entrapment and an
inability to map safety signals. Youth either fight, attempting
to escape perceived entrapment; or eventually surrender under
the belief that breaking free is not possible. Furthermore, ELA-
exposed youth often make errors in encoding social cues,
exhibit biases toward attributing hostile intent, generate more
aggressive responses, and positively evaluate aggression as an
appropriate response (Teisl and Cicchetti, 2008). Over time, this
may lead youth, especially who have suffered ELA and evince
amygdala volumetric shrinkage, to select and structure later
social interactions to recreate and validate familiar relationship
patterns as a means of reducing amygdala signals of uncertainty. If
the amygdala molecular machinery is also “burned out”, it may
be challenging to differentiate safety vs. threat. Indeed, adults
exposed to ELA report greater interpersonal sensitivity, paranoia,
and hostility (e.g., Liem and Boudewyn, 1999). Such patterns
are most consistently noted in previously maltreated samples,
but similar results have been reported in cumulative ELA (the
“ACEs”) with cumulative childhood trauma exposure by 16 years
of age relating to negative social/peer outcomes (e.g., poorer
quality of relationship with spouse/significant other and friends;
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Copeland et al., 2018). Additional research indicates adults that
suffer early social neglect are less likely to be married than their
non-neglected peers (e.g., Tieman et al., 2005), and report fewer
social supports and close confidants (Weiner and Kupermintz,
2001; Sigal et al., 2003). This suggests that overrepresentation of
threat may come at the cost of learned social safety and affiliation
mappings in networks connecting through the amygdala.

ENVIRONMENTAL MODERATION OF
SAFETY LEARNING: INFLUENCE OF
CAREGIVERS

While excitation-inhibition imbalances in the amygdala may
be a consequence of ELA, the potential neural embedding of
inescapability is not without counterweights. Breakthroughs in
the last two decades have identified specific “extinction cells”
in basolateral amygdala that receive inputs from portions of
the prefrontal cortex (Herry et al., 2008; Likhtik et al., 2008;
Strobel et al., 2015); in preclinical models, this includes cells
in infralimbic (IL) PFC, with signals from this portion of PFC
driving the Basomedial amygdala nucleus (sometimes termed
“accessory basal nucleus”) to inhibit fear by cues and contexts
known to confer safety (Adhikari et al., 2015; Bloodgood et al.,
2018). In primates, the evolutionary descendent of infralimbic
PFC, subgenual cingulate or Brodmann Area 25 (BA25), was
recently found to have a similarly heavy projection to the
basomedial nucleus in macaques (Kim et al., 2018). Direct
chemical overactivation broadly of BA25 in primates increases
sympathetic tone, fear sensitivity and amygdala activation
(Alexander et al., 2020), attesting to the ability of BA25 to also
signal threat (likely via the paraventricular thalamus) and that
broad overactivation favors fear over safety. Building on our
model that the basolateral amygdala is recruited to build a finer
mapping of the gradation from threat to safety, the BA25 signal
may dampen fear-responding to known threats if previously
learned escape mechanisms (e.g., stay away from the house when
parent is intoxicated) are available. Conveniently, co-activation of
infralimbic PFC and basolateral amygdala in rodents inhibits the
ventral tegmental area (VTA), reducing the key dopamine signal
that “unlocks” the basolateral complex (Marowsky et al., 2005;
Patton et al., 2013).

This raises the possibility of a protective circuit (Figure 5)
by which: (1) a novel stimulus triggers dopamine release
from the VTA, leading to (2) activation of prefrontal and
limbic regions including disinhibiting basolateral amygdala to
alter the scope of fear, (3) safety and threat information is
synthesized in subgenual BA25 and transmitted to primary cells
in basolateral amygdala, which (4) may conclude the threat
is manageable and deactivate the entire loop by turning off
the VTA. Alternatively, sustained responses favor centromedial
output nuclei, the site of greatest dopaminergic innervation in
the human amygdala (García-Amado and Prensa, 2013), likely
signaling innate and previously learned fears that flow through
a BA25->paraventricular thalamus->centromedial amygdala
circuit (Do-Monte et al., 2015; Penzo et al., 2015).

FIGURE 5 | Hypothesized loop by which a novel threat activates

alerting/approach related ventral tegmental area (VTA) which provides

dopaminergic innervation to prefrontal regions including the subgenual BA25

sends the resultant evaluation of situational safety through the uncinate

fasciculus (blue) to basal and lateral amygdala nuclei and simultaneous threat

signals through the paraventricular thalamus (PVT, purple) to the centromedial

amygdala effectors. Co-activation of BA25 and amygdala safety circuits

deactivates the VTA and cues encoding safety or escape are retained and

reinforced as reward. If no safety is achievable, chronic activation of BA25 and

amygdala including dopamine signals from the VTA lead to fear generalization

or sensitization and favor the PVT relay and latent fears. A transient response

or deactivation of dopamine appears to be a key manifestation of safety.

With this circuit in mind, we consider the groundbreaking
work of Regina Sullivan, who showed in a rat model that
there is a critical period during which associating a cue with
a natural threat (e.g., fox odor) can paradoxically produce
an appetitive response when conditioned in the presence of
mother (Moriceau and Sullivan, 2006). It is unknown, as
of yet, if there is an equivalent critical period in human
development during which facing threatening situations in
the safety of a parent causes reminders of the experience to
induce positive and even antidepressant-like responses later in
life (Rincón-Cortés et al., 2015). Sullivan’s group traced this
effect to a temporary drop in dopamine in the basolateral
complex when the mother was present (Barr et al., 2009). More
recently, her group found that developmental maturation of
the infralimbic cortex->amygdala pathway supplants this effect
(Robinson-Drummer et al., 2019), such that “social buffering” by
mother beyond the critical period induces a negative correlation
between amygdala and VTA activation, as measured with 2-
deoxyglucose metabolic mapping (Opendak et al., 2019). In
contrast, maternal maltreatment induced by resource scarcity
closes the window such that maternal presence no longer
deactivates amygdala within the critical period and at later ages
maternal presence (perhaps appropriately) no longer deactivates
the amygdala, nor does it produce the negative coupling of
basolateral amygdala and VTA that would indicate convergent
safety signals from BA25 and basomedial amygdala. While we
are far from understanding all the components of this response,
it builds on the model that the BA25-basolateral amygdala
pathway likely carries signals of relative safety from a threat in
the environment, consistent with human studies of structural
connectivity (Tromp et al., 2019). Another recent human study
suggests the major influence of parental warmth on subsequent
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brain function and psychopathology in preadolescence, when
this system comes online, is most evident in subgenual cingulate
(BA25) activation and functional connectivity with amygdala
(Butterfield et al., 2020). The neural substrate of positive parental
and environmental influences that prevent psychopathology is
likely BA25->basomedial amygdala circuit deactivation of VTA.

We can take this model one step further and consider how
social buffering could lower the excitation:inhibition ratio of
the amygdala so as not to rush experience-dependent plasticity
during development. Zhang et al. (2020) mapped representations
of aversive stimuli to a subtype of inhibitory cell in basolateral
amygdala (expressing RSPO2) and safety signaling to a subtype
expressing Dopamine Associated neuronal PhosphoProtein
(DARPP-32; as known as Ppp1r1b). They then showed that direct
reactivation in the absence of threat of the DARPP-32+ neurons
that comprise the extinction (safety) memory trace produced a
strong reward response in a contextual conditioning test. This
raises the possibility that healthy amygdala development involves
depositing layers of neurons, storing rewarding solutions to
previously survived experiences and exposures that inhibit broad
amygdala activation and fear generalization. It is not yet known
whether these neurons are direct recipients of BA25 innervation
or whether they differentially express dopamine receptors, but
we speculate that social buffering in humans likely requires
activation of the loop described above producing a pulse of
dopamine and then a drop in basolateral amygdala dopamine
and that this ultimately strengthens the DARPP-32 neurons in
the basolateral complex.

Feedforward safety signals likely reduce the average
excitation:inhibition ratio of the amygdala, permitting a slower
maturation throughout adolescence and possibly more DARPP-
32 cells that could activate positive affects in safe contexts. If an
environment offers few to no safety signals, this maturation is
accelerated according to the allostatic load model, progressing
more rapidly to dendritic outgrowth, higher excitation:inhibition
and an early allostatic peak that likely compresses stress buffering
periods. It is unknown, however if the lack of any parental
safety signals during this critical period, most exemplified by
institutional neglect, leads to amygdala shrinkage in the absence
of additional adversity. This is particularly challenging given
the high incidence of further adversity in foster care and may
be better studied in children with diffuse attachment disorder.
We speculate that the lack of safety learning during critical
periods leads to limited psychological and emotion regulation
resources, represented by the safety learning possibilities wired
through the DARPP-32+ cells, to overcome challenges. Lack of
social safety learning likely leads to inability to detect and avoid
dangerous environments and individuals, ultimately leading to
similar outcomes.

Fortunately, future treatments may be able to mimic the
temporal dynamics of dopamine signaling and repair or renew
DARPP-32 cells in the basolateral complex, re-opening a window
of plasticity for social safety learning. Consistent with this model,
a single dose of the dopamine precursor L-DOPA/carbidopa
facilitates fear extinction in rodents and humans through
enhanced negative connectivity between ventromedial prefrontal
regions and amygdala (Haaker et al., 2013). More recent

work by Cisler et al. (2020) showed that L-DOPA/carbidopa
enhances post-training reactivation of amygdala during memory
consolidation, leading to enhanced extinction of fear in adults
with PTSD. It is tempting to presume that this enhanced
amygdala activation includes a preponderance of DARPP-32+
safety cells, but more research in this area is needed. It will be
critical to integrate these findings into emerging theories about
the neurobiological impacts of ELA, as well as models examining
connections between ELA and psychopathology.

FURTHER CONSIDERATION OF ELA,
AMYGDALA NEUROBIOLOGY, AND
CLINICAL PRACTICE

As noted earlier, we took a more broad and inclusive definition
of ELA here, but additional work is clearly needed to richly
characterize and define stressful early life experiences. This work
will come inmany forms andwill need to consider developmental
context, “true” lived experiences, subjective perceptions, and the
temporal dynamics of adversity exposure. Further cataloging
of positive events and success overcoming challenges despite
adversity will enrich our understanding of stress buffering
and safety learning. Indeed, all of these factors will likely
influence neurodevelopment and may impact trajectories of
amygdala neurobiology.

First, and to be critical, many studies (e.g., Hair et al., 2015;
Hanson et al., 2019) actually focus on developmental exposures,
or the adverse contexts that youth develop in. This is in contrast
to true experiences that a child actually encounters. To borrow
an illustrative example from (McLaughlin et al., 2020), two
children may be exposed to similar negative life circumstances
(e.g., parental drug abuse), but experience very different things
(i.e., parental hostility, vs. caregivers receiving drug treatment).
This is very much the case for exposure to poverty and
economic marginalization. Numerous studies have shown that
poverty, an adverse exposure, is associated with a host of
stressful experiences including: neighborhood violence, housing
instability, and issues with household structure and organization
(Evans and English, 2002). Illustrating this idea for child
neglect, we think about the context of institutional rearing vs.
parental neglect. Youth in institutional settings may actually have
support from staff or peers within these congregate care settings
(e.g., McCall et al., 2019) while those living with a neglectful
parent may rarely feel safety and experience greater perceived
entrapment. Clear measures of specific negative experiences,
during adverse exposures, will surely aid in understanding the
types and “dosing” of negative experiences likely to influence
brain and behavior. In addition to this distinction, the field
should expand assessments of the subjective perceptions of
ELAs. Strong recent work by Danese and Widom (2020)
underscores that participants’ perceptions of their experience
may be the most predictive of behavioral challenges. In a unique
cohort of individuals followed since childhood with court-
documented evidence of maltreatment and subjective reports
of childhood maltreatment histories, these investigators found
subjective reports of childhood maltreatment were more robust
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predictors of psychopathology, regardless of whether objective
(court) records substantiated maltreatment. Thinking more
about exposures, experiences, and subjective perceptions may aid
in clarifying inconsistent neurobiological findings.

Related to subjective perceptions, as well as the dichotomy of
exposure vs. experience, dimensional models begin to overcome
many of the limitations in past studies, but there is more work
to do in this space especially related to developmental timing.
For example, McLaughlin et al. (2014a), as well as Belsky et al.
(2012) and Ellis et al. (2017), articulate potential dimensions of
experience that may influence development (e.g., Deprivation vs.
Threat; Harshness vs. Unpredictability); however, it is unclear
if differences in developmental competencies, especially early
in life, may cause the blurring of boundaries between ELA
dimensions. For example, children exposed to early neglect
while living in institutional care would, in theory, represent a
“deprivation” ELA dimension. However, these children are often
very young (<3 years of age) when they are in these settings,
and the global neglect they are experiencing may impinge upon
attachment processes (represented in basomedial and superficial
nuclei, Figure 3). Such experiences, perhaps due to subjective
perceptions and processes, would then actually be threatening
in nature—the lack of a clear attachment figure would cause
heightened vigilance to environmental dangers. This actually fits
well with results from Tottenham’s group that has found post-
institutionalized children who suffered early social neglect have
alterations in the amygdala, both structurally and functionally
(e.g., Cohen et al., 2013; VanTieghem et al., 2021) and more
recently found amygdala volume predicted later stress hormone
responses (VanTieghem et al., 2021). Of important note, we
believe compelling distinctions exist in non-human animal
models of stress for inescapable vs. unpredictable stressors, but
believe it still too early to synthesize these ideas to the exposure
vs. experience distinction in humans. We are hopeful that future
conceptual work could continue progress in this space.

Furthermore, while research teams often catalogmany specific
occurrences of stress, many types of common (day-to-day)
experiences may not rise to the level of a “formal ELA.”
For example, there is a litany of research on “expressed
emotion” and risk for poor mental health (Butzlaff and Hooley,
1998; Weintraub et al., 2017). Expressed emotion is hostility,
criticalness, and excessive involvement of family members
toward someone in the family with identified mental health
problems (Weintraub et al., 2017). These family relational
patterns can represent a psychosocial stressor that interacts
with individuals’ diatheses, eventually culminating in relapse
(Hooley and Gotlib, 2000). Put another way—growing up with
a parent suffering from substance use disorder, or who is
hostile, may mean unpredictable bursts of anger or threatening
behavior; this may instill a chronic stressful alertness, or influence
attachment processes, as youth look for any sign of a bad
mood or known aggravating factor. Clinically, research has found
that hostility and emotional over-involvement slowed progress
with interventions such as exposure therapy (Tarrier et al.,
1999). However, and connected back to our conceptualization
of the amygdala, hostile and emotionally boundaryless contexts
may be perceived as psychologically unsafe and, ultimately, an
inescapable stressor. It will be important to think about this and

related elements of normal and atypical parenting in relation to
neurobiology [for thoughtful review in this space, see Farber et al.
(2020)].

Forging connections between these elements of adversity,
our neurobehavioral conceptualization of the amygdala, and
clinical outcomes, high or chronic levels of ELA, or ELA coupled
with recent stressors, may eventually embed perceptions or
feelings of inescapability and “being trapped.” In many cases, this
may take multiple psychosocial forms, from legal and financial
problems to chronic pain, to anxiety, depression, and other
forms of psychopathology. Amygdala neurobiological changes
(e.g., initial dendritic expansion; hyper-excitability) may be
compensatory efforts to map environmental features to detect
safety in the context of these stressors; however, with high-levels
of psychosocial burden and/or limited social support (limited
formation of DARPP-32+ escape solutions), no safety can be
achieved so the amygdala churns away, reaching a terminal
toxic-metabolic shrinkage. These psychosocial perceptions and
neurobiological changes may indeed explain many “Deaths of
Despair” in populations exposed to ELA (Bohnert and Ilgen,
2019). Declining opportunity or inability to escape deleterious
life circumstances cause many to turn to opioids or other drugs
to cope. In extreme cases (and exposure to multiple ELAs), this
may lead to extreme learned helplessness and suicidality. This
broad conjecture fits well with extant data showing elevated
drug use and abuse, as well as suicide attempts in many
exposed to ELAs (Dube et al., 2001, 2003; Brodsky and Stanley,
2008). For example, work has found that ∼30% of suicide
attempts among women and 23% of those among men were
attributable to having experienced repeated ELAs (e.g., physical
abuse, sexual abuse, witnessing domestic violence; Afifi et al.,
2008). Clinicians working with individuals with high ELA may
be able to interrupt this deleterious cycle by helping clients
see potential “escapes” out of multiple/compounding, real (or
perceived) psychosocial challenges.

THINKING ABOUT STIGMA, RESILIENCE,
AND “HIDDEN TALENTS”

While we believe that the model that we advance here is critical
to understanding the sequalae of ELA, it is also important to
acknowledge the balancing act that researchers and connected
groups are intending to strike in thinking about the impact
of ELAs. First, we are mindful of the potential stigma in
connecting neurobiology to experiences of trauma, poverty, and
other adversities. Without realizing it, one can create what
many have termed “biosocial determinism” and the unintended,
neurobiological rationalization of adversity-related disparities
(Pitts-Taylor, 2019). Our aims are, instead, that leveraging ours
and connected ideas related to the neurobiology of ELA can
not only promote prevention, but also push larger structural
changes at institutional levels to reform potential societal
factors correlated with ELAs. For example, scientific research on
institutionalization, and the child neglect common to many of
these congregate care settings, has spurred many policy-driven
changes aimed at transforming child protective services and
bolstering support for families and communities (Llorente et al.,
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2003; McCall et al., 2013; Berens and Nelson, 2015). Second,
there is the additional connected risk of implicitly disparaging
low-income households. Poverty and experiencing economic
marginalization do not produce child maltreatment, and abuse
occurs across all strata of the socioeconomic spectrum. Similarly,
poverty is not synonymous with stress; however, poverty is
associated with experiencing greater numbers of stressful life
events and other hazards to youth development (Evans and
English, 2002). We are mindful that parents and caregivers are
often seen as responsible for these elements, while systemic
factors contributing to adversity, such as social inequality and
racism, routinely receive less attention and focus. We are
encouraged by recent perspectives emerging from science and
technology studies pushing for the transformation of research on
ELA in how it is absorbed and discussed in different social and
policy circles (Müller and Kenney, 2020).

Of additional note, neurobiological methods can homogenize
people who have suffered ELA and often obscure the variety of
strengths present within individuals. There is a growing literature
on “hidden talents” that underscores many individuals growing
up in high-adversity context have intact, or even enhanced, social,
cognitive, and affective skills (Ellis et al., 2017, 2021; Frankenhuis
et al., 2020). For example, economically marginalized adults often
show enhanced procedural learning (i.e., acquiring stimulus–
response associations) compared to their higher socioeconomic
status peers. Scholars in this area, notably Ellis and Frankenhuis,
have underscored that differences in neurobiology or behavior
may be useful adaptations in responses to the adverse contexts;
these differences may promote adaptive functioning, as one
thinks about the different contexts that individuals inhabit.
Relatedly, there is a large and well-developed body of research
on resilience to ELA (Masten et al., 1999; Southwick et al., 2014),
as well as post-traumatic growth (Tedeschi and Calhoun, 2004).
This is outside the scope of our review, but at the broadest
level, these bodies of research underscore most individuals who
suffer ELA do not experience mental or physical health disorders.
Negative outcomes, like higher aggression or greater depression,
are enhanced, but these are not deterministic links. Many factors
(e.g., social support, cognitive functioning) protect youth in the
context of severe adversity (for thorough discussion, see the work
of Ann Masten, e.g., Masten et al., 2021), We, as a field must be
mindful that: (1) many exposed to ELA do not evince significant
impairments; (2) there may be positive change that occurs as a
result of the struggle with highly challenging life crises (Infurna
and Jayawickreme, 2019); and (3) successful outcomes may be
achieved through differential trajectories of neural and behavioral
functioning. Holding these collective concepts in mind can limit
the further marginalization of ELA-exposed populations and will
no doubt aid in supporting youth exposed to adversity.

SPECIFIC FUTURE DIRECTIONS
MOTIVATED BY OUR CONCEPTUAL
MODEL

The innovative and interesting conceptual framework put forth
here suggests a number of critical future directions in the study

of ELA and amygdala neurobiology. These include formal tests of
the proposed model, to considered revisions of some preclinical
stress manipulations. We elaborate on these below.

First, and related to our model, there is the potential to
adapt and deploy magnetic resonance spectroscopy (MRS)
to probe markers of amygdala neurobiology, including cell
density, membrane phosphocholines, second messenger
turnover, and other critical molecular markers. The second
author and his colleagues at University of Wisconsin-Madison
(e.g., Nacewicz et al., 2012) have been able to measure pooled
glutamate and glutamine to probe potential excitotoxicity in
typical and atypical samples (e.g., Individuals with Autism). This
work involves custom fitting of MRS voxel to amygdala anatomy
as we found an extraordinary sensitivity to partial inclusion of
different amygdala nuclei. Moving forward, although capturing
the average neurochemical concentrations of an entire amygdala
is spatially imprecise, the temporal and neurochemical precision
offered by emergent functional spectroscopy techniques
promises to unravel the exact dynamics of excitatory glutamate,
inhibitory GABA and even the acetylcholine (Bell et al., 2019),
which is enriched in the basolateral nucleus. Additionally, novel
diffusion weighted techniques (NODDI; Zhang et al., 2012)
estimate neurite (dendritic) complexity in gray matter with
a resolution approaching structural anatomical images, and
could longitudinally characterize the normal vs. allostatic peak
amygdala volumes. Complementing this, the novel PET tracer
UCB-J binds the synaptic marker SV2A as a direct, albeit relative,
measure of synapse density (Finnema et al., 2016). Combining
these methods, longitudinal increases or decreases in synapses
and dendritic trees can be combined with glutamate and GABA
measurements to determine the relative outgrowth of inhibitory
vs. excitatory synapses, thereby directly tracking development
of allostatic load. These tools can help screen for environmental
influences and treatments that halt the amygdala overgrowth or
at least the toxic shrinkage.

Second, and related to stress manipulations in preclinical
work, there are many experimental design changes that could
shed light on the full scope of neurobiological consequences of
ELA. To be blunt, few, if any, rodent models are developmentally
sensitive (cf. work by Regina Sullivan et al.). The seminal studies
by Vyas et al. motivated a host of human studies on ELA;
however, this work was completed in young adult rodents.
Additional work that is often less highlighted, by Rosenkranz
et al. completed similar stress manipulations and found many
critical differences (e.g., number of spontaneously firing neurons
vs. firing rates) in animals exposed to stress as juveniles vs.
in adulthood. Little work, in our opinion, goes far enough to
truly understand the true developmental impact of ELA. In
line with recommendations from Callaghan et al. (2019), it
is and will be critical to consider the developmental ecology
and “goals” of an organism (e.g., attachment; independence) in
thinking about neurodevelopment. Such ideas also connect to
a translational challenge in most preclinical studies—nearly all
of these paradigms do not adequately capture the transactional
nature of stress (Lazarus and Folkman, 1987). To be concrete,
in humans, ELA (e.g., the multiple stressors associated with
poverty; maltreatment) may affect how an individual responds to
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subsequent life stressors (Monroe and Harkness, 2005; Hammen,
2018).

In particular, we believe it will be important to consider the
interaction of ELAs with stressors during childhood and also later
in life. ELAmay affect how individuals respond to subsequent life
stressors and heighten risk for poor mental health (Monroe and
Harkness, 2005; Hammen, 2018). Rich support has been found
for this “stress sensitization” or “two-hit models,” for example,
women with exposure to one or more childhood adversities (e.g.,
family violence, parental psychopathology) were more likely to
become depressed by a lower “dose” of total stress than women
without such adversity (Hammen et al., 2000). This is true for
depression, anxiety, and PTSD, and found during childhood,
adolescence, and adulthood (Dougherty et al., 2004; Kendler
et al., 2004; Harkness et al., 2006; Espejo et al., 2007; McLaughlin
et al., 2010). Framed in terms of our safety-mapping model:
avoiding a known threat (guided by BA25-basomedial amygdala
signals), such as avoiding a parent or home at the slightest sign
of a bad mood, reduces the proportion of one’s life environment
in which an individual feels safe. A subsequent adverse event
in another environment thought to be “safe,” e.g., escaping an
abusive home and ending up in a romantic partnership that
involves further abuse, quickly exhausts the system and hastens
the allostatic changes. We also note that a single act of random
unprovoked violence can sometimes prove more difficult to
treat than repeated predictable abuse from a known individual,
again likely representing the challenge of finding anything
other than temporal signs of safety. In this way, ELA may
sensitize individuals to later challenges wherebymild tomoderate
stressors complete a mapping of inescapability, intensifying fear
generalization by glucocorticoid-induced amygdala remodeling.
Put more clearly—the occurrence of ELA may fundamentally
change how an organism moves through and approaches the
world. There may be changes in coping, self-concept, and other
complex psychosocial processes that then interact with later
events. Limited neurobiological work has examined such ideas
(cf., Hanson et al., 2015a, 2018, 2019), but it would be a fruitful
target for future investigations.

Third, a hopeful discovery by Sara et al. two decades ago
(Przybyslawski et al., 1999) suggested that conditioned fear
becomes labile when reactivated and its reconsolidation can be
disrupted such that the stored fear was no longer susceptible
to stress-induced reinstatement. Put simply, we can erase fear
conditioning by combining reactivation and pharmacotherapy.
While much had to be learned in the process, which was traced
to synapse-specific protein synthesis triggered by calcium influx
primarily fromNMDA receptors (Nader et al., 2000; Debiec et al.,
2006), it ultimately yielded promising candidates for medication-
assisted exposure therapy. This emerging work has identified
NMDA-antagonistic agents (D-cycloserine, ketamine; Guastella
et al., 2008; Kalisch et al., 2009; Otto et al., 2010; Das et al.,
2019), a mitochondrial enhancer (methylene blue; Telch et al.,
2014; Zoellner et al., 2017) and the anti-adrenergic propranolol
as having potential to erase the fight-or-flight component of
fear learning (Kindt et al., 2009; Soeter and Kindt, 2015; Brunet
et al., 2018). Several caveats were discovered including: (1) the
memories must be reactivated or the treatment adds nothing
(2) the medication exposure must end well, with relative safety

achieved by the end or treatment could worsen the fear and
(3) conveniently, the medication need not be administered prior
to the exposure but in a 4–6 h window of neuroplasticity after
treatment (4) in the case of propranolol a much higher dose is
required (40mg acute dose) than would typically be prescribed
for situational phobia. Armed with these tools, we may be able
to eliminate the biological fear response and accelerate treatment
(Brunet et al., 2018), but interestingly subjective fear can lag
the biology significantly (Rothbaum et al., 2014; Soeter and
Kindt, 2015). This opens an unprecedented avenue to understand
the separate components of biological fear generalization and
subjective impressions of entrapment. Further, as noted above,
other agents such as L-DOPA hold the promise of enhancing
the extinction memory rather than the disrupting the fear
memory itself. Given that activation of extinction neurons in
the absence of fear neurons is rewarding in rodents, head-
to-head comparisons of different medication-assisted therapies
could disentangle the relative contributions of safety signals and
fear signals in the allostatic load model. More importantly, our
limited mental health resources may be able to increase efficiency
for treating the enormous toll of ELA and adult mental illness
currently inflicted by the COVID-19 pandemic.

Finally, it will be important to investigate more deeply
potential “tipping points” in human ELA exposed samples
and whether cascades related to ELA may be pernicious and
excitotoxic. Adversity may potentially start at (and continue into)
multiple, different stages of development. In addition, there may
be psychosocial consequences of ELA that may increase the
likelihood of volumetric shrinkage in exposed individuals. Such
a developmental incorporation may have important insights for
the prediction, prevention, and treatment of negative outcomes
related to ELA. ELAmay cause psychosocial (or neurobiological)
alterations at one time point, but individuals who have suffered
these adversities keep engaging in, as well as creating, different
experiences. Outcomes at later time points may be related to
this initial adaptation, but also could be due to the interaction
of early changes and current situational experiences. Clinically,
those working with adversity-exposed populations often know
that previous (negative) adaptations in their clients may create
later residue that individuals who have suffered bring to the
different situations that subsequently greet them. Connected to
the ideas we advance above, future work will need to consider
not just age and duration of a stressor, but also the “escapability”
or proportion of contexts affected (e.g., daycare, home, and a
relative’s house). Thoughtful execution of these multiple ideas,
across preclinical and human studies, could significantly advance
our understanding of the neurobiological sequelae of ELA, the
mediating connections between ELA and psychopathology, and
more basic science questions such as nature vs. nurture.

CONCLUDING REMARKS

Here, we put forward an integrated model of amygdala
neurodevelopment to think about inconsistencies in research on
ELA, as well as the behavioral consequences of adversity. We
must all continue to dissect heterogeneity, think about theoretical
integrations of stress neurobiology and developmental
psychology, and clarify complex relationships between ELA
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and related long-term mental health challenges. We are excited
to pursue many of the future directions we proposed here and
would be excited about improvements in preclinical and human
studies focused on early stress exposure. Continued progress in
these spaces, potentially guided by the theoretical model laid out
here could be particularly important for predicting, preventing,
and treating the consequences of ELA.
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