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Blood transfusions are sometimes necessary after a high loss of blood due to injury
or surgery. Some people need regular transfusions due to medical conditions such as
haemophilia or cancer. Studies have suggested that extracellular DNA including mitochon-
drial DNA present in the extracellular milieu of transfused blood products has biological
actions that are capable of activating the innate immune systems and potentially contribute
to some adverse reactions in transfusion. From the present work, it becomes increasingly
clear that extracellular DNA encompassed mitochondrial DNA is far from being biologically
inert in blood products. It has been demonstrated to be present in eligible blood products
and thus can be transfused to blood recipients. Although the presence of extracellular DNA
in human plasma was initially detected in 1948, some aspects have not been fully eluci-
dated. In this review, we summarize the potential origins, clearance mechanisms, relevant
structures, and potential role of extracellular DNA in the innate immune responses and its
relationship with individual adverse reactions in transfusion.

Introduction
The presence of extracellular DNA (ecDNA) was first reported by Mandel and Métais [1] in 1948. The term
ecDNA describes any DNA existing in the extracellular environment, regardless of structure (association
with protein complexes and extracellular vesicles) [2,3]. Although another term, cell-free DNA (cfDNA),
is widely used presently, the term ecDNA is more accurate in this review because a large proportion of
DNA in vivo is localized in complexes or is packaged in vesicles rather than being truly free [4,5]. Found
in the extracellular milieu including serum, plasma, lymph, bile, milk, urine, saliva, spinal fluid, amniotic
fluid, and cerebrospinal fluid, ecDNA can be isolated from individuals in both healthy and various disease
states [6–10]. ecDNA comprises mainly nuclear DNA (nucDNA) and mitchondrial DNA (mitDNA). It
is also present in the extracellular milieu of blood products (as shown in Table 1) [11–20]. However, a
novel and significant role of ecDNA has emerged, involving its ability to trigger innate immune system
responses and drive inflammation when released from mechanically injured cells [21]. ecDNA, along with
other host molecules released upon cell damage, falls into the category of damage-associated molecular
patterns (DAMPs) [22,23].

ecDNA in blood products
Blood can be transfused without prior modification (whole-blood transfusion) or divided into red blood
cell units (RBCUs), fresh frozen plasma (FFP), platelet concentrates (PCs) and sometimes granulocytes.
These blood products for therapeutic use usually contain donors’ plasma, platelets, residual leukocytes
and erythrocytes. The DNA of a donor can, therefore, be transferred to a recipient via ecDNA in the
plasma fluid, ecDNA bound to the surfaces of blood components (such as erythrocytes and platelets) or
via the DNA localized in complexes or packaged in vesicles. According to the report of Garcia-Olmo et al.
[24], ecDNA from human plasma can pass through the 0.4 micron filters of Corning Transwell plates and
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Table 1 Extracellular DNA in blood products and their concentration

Reference Blood products DNA concentration
Sample
number DNA type Quantitative method

Duxbury et al., 1995 [11] Whole blood Range 260–1474 ng/ml 7 total DNA Threshold total DNA Assay
system

Dijkstra-Tiekstra et al., 2004
[12]

PCs (before filtration) 1.7 +− 0.8 leucocyte-eq/μl 5 nucDNA Quantitative real-time
polymerase chain reaction

PCs (after fitration) 1.5+− 0.8 leucocyte-eq/μl 5

Ivancic-Jelecki et al., 2009 [13] Plasma Range 0.06–22.5 ng/ml 10 nucDNA Quantitative real-time
polymerase chain reaction

Lee et al., 2014 [14] RBCUs (LR) Range 0.8–87-fold 11 mitDNA Quantitative real-time
polymerase chain reaction

PCs Range 0.4–235.6-fold 5

FFP Range 0.7–46.5-fold 16

Cognasse et al., 2016 [15] AE-associated PCs 484 +− 313.45 ng/ml (peak
concentration)

42 mitDNA Quantitative real-time
polymerase chain reaction

Control PCs 122.55 +− 52.64 ng/ml (peak
concentration)

59

Shih et al., 2016 [16] RBCUs (WBF) 1.08 +− 0.90 ng/ml 44 total DNA PicoGreen assay

RBCUs (WBF) 3.57 +− 1.99 μg/ml 47 Spectrophotometry

RBCUs (RCF) 0.50 +− 0.77 ng/ml 73 PicoGreen assay

RBCUs (RCF) 3.28 +− 1.28 μg/ml 73 Spectrophotometry

Bakkour et al., 2016 [17] RBCUs (non-LR) 5.3 × 105 copies/μl (mean
concentration)

12 mitDNA Quantitative real-time
polymerase chain reaction

RBCUs (MCS+ apheresis) 1.3 × 105 copies/μl (mean
concentration)

12

RBCUs (Trima apheresis) 1.2 × 105 copies/μl (mean
concentration)

12

Yashui et al., 2016 [18] NHTR-associated PCs Range 1.4–110 × 104

copies/ml
17 mitDNA Quantitative real-time

polymerase chain reaction

NHTR-associated RBCUs Range 0.3–23 × 104 copies/ml 20

NHTR-associated FFP Range 2.3–18 × 104 copies/ml 11

Control PCs Range 0.1–3.8 × 104

copies/ml
320

Simmons et al., 2017 [19] RBCUs 3 +− 0.4 ng/ml 114 mitDNA Quantitative polymerase
chain reaction

PCs 94.8 +− 69.2 ng/ml 17

FFP 213.7 +− 65 ng/ml 81

Waldvogel Abramowski et al.,
2018 [20]

RBCUs 290 +− 120 ng/ml 23 total DNA Qubit Fluorometer

PCs 339.6 +− 114 ng/ml 23

FFP 2.875 +− 0.996 ng/ml 23

there were no significant differences between the effects of human plasma administered to cell cultures indirectly
through the Transwell plates and plasma administered directly to the cells, indicating that no DNA was lost due to
the filter.

As early as in 1995, detectable DNA has been shown to be present in stored human donor blood at levels in the
range of 250–1500 ng/ml with a Threhold Total DNA Assay Kit, and the total amount of DNA administered to a
patient during the transfusion of a single unit of whole blood can be as much as 450 μg (based on 1.5 μg DNA/ml
of CPD plasma and assuming a plasma volume of 60% in a 500 ml unit of blood) [11]. According to studies in the
subsequent years, ecDNA was also observed in the plasma of transfusion blood components including RBCUs, PCs,
and FFP [12–20]. The studies on ecDNA in transfusion products and their concentration are summarized in Table 1.

As can be seen from the table, in the report of Waldvogel Abramowski et al. [20], cellular products including RBCUs
(290 +− 120 ng/ml) and PCs (339.6 +− 114 ng/ml) contained more ecDNA than did FFP (2.875 +− 0.996 ng/ml),
suggesting a potential link with the number of cells found in the blood bag. Simmons et al. [19] found detectable
levels of extracellular mitDNA in FFP (213.7 +− 65 ng/ml), PCs (94.8 +− 69.2 ng/ml), and RBCUs (3 +− 0.4 ng/ml).
In the present study, the concentration of extracellular mitDNA detected in RBCUs was lowest among the three
tested, perhaps because RBCs do not contain mitochondria and are subjected to leukocyte reduction [19]. Of note,
the generation or release of ecDNA present in blood products could be influenced by the details of the processing and
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manufacturing methods of blood components [16,17]. Shih et al. [16] have shown that that the levels of ecDNA are
affected by RBCUs processing method as well as product age: whole blood filtered (WBF), short-term storage RBCUs
had more ecDNA than red cell filtered (RCF), aged RBCUs. However, according to the study of Dijkstra-Tiekstra et
al. [12], the amount of ecDNA was not influenced by filtration of the PCs (1.7 +− 0.8 vs. 1.5 +− 0.8 leucocyte-eq/μl).

Unfortunately, many studies with respect to ecDNA in blood products were performed with dissimilar analytical
procedures, rendering comparison with their results infeasible. Some of these research results do not differentiate
between nucDNA and mitDNA that are thought to be of separate evolutionary origins [25,26]. MitDNA consists of a
high number of unmethylated CpG islands, as typically found in bacteria [27].

Potential origins and clearance of ecDNA in blood products
Potential origins
To date, no consensus has yet been reached with regard to the main origin of ecDNA. However, there are two con-
tenders for the main origin of ecDNA: (i) cellular breakdown mechanisms and (ii) active release mechanisms [28].
Cellular breakdown mechanisms such as apoptosis and necrosis are considered to be the main processes for produc-
ing ecDNA by some researchers [29,30]. It may be of interest to note that other forms of cell death such as NETosis
can also serve as sources for ecDNA [31]. Numerous studies have demonstrated that ecDNA can also be derived from
active release mechanisms [32–35]. However, it is still unclear which mechanism accounts for the ecDNA observed
in blood products.

During storage, cellular breakdown mechanisms, such as necrosis, apoptosis and NETosis, could theoretically lead
to ecDNA release in blood products. Neutrophils can release both nucDNA and mitDNA in structures known as
neutrophil extracellular traps (NETs), which are composed of decondensed chromatin decorated with granular pro-
teins [36–38]. The formation of NETs requires the activation of neutrophils and the release of their DNA in a process
that may or may not result in neutrophil death. Additionally, ecDNA could be encapsulated in extracellular vesicles
(EVs), such as microparticles (MPs) [39], which have also been detected in blood products [40,41]. This ecDNA,
present in membrane-bound EVs, can be protected from nuclease mediated degradation and can be released through
the breakdown of EVs [4].

What’s more, activated platelets have been reported to release intact mitochondria, which can be hydrolysed by
group IIA secretory phospholipase A2 (sPLA2-IIA), and thereby release extracellular mitDNA [42]. In their study,
Boudreau et al. [42] demonstrated that inactivated platelets contain an average of ∼4 mitochondria using fluorescence
and transmission electron microscopy.

Clearance mechanisms
Since 1966, work on autoimmune pathologies has permitted the first characterization of ecDNA [43–46], it is resis-
tant to RNase and proteinase K [47], but can be hydrolyzed by DNase. Studies on ecDNA clearance revealed that
extracellular DNases such as DNase1 and DNase1L3 could degrade ecDNA associated with a variety of structures
[48–52]. DNase1 and DNase1l3, which have close structural and functional resemblance, may substitute or cooper-
ate with each other during DNA degradation [50]. The enzyme DNase1 plays a role in the clearance of chromatin
during necrosis [49]. DNase1L3 is uniquely capable of digesting chromatin in microparticles released from apoptotic
cells [51]. DNase1 along with DNase1L3 are essential for disassembly of NETs [50,52].

The subsequent fate of such ecDNA in recipients’ blood is still unknown. DNase activity is one possible pathway
of degradation of ecDNA, but other mechanisms of clearance cannot be discounted. The clearance of ecDNA could
also be achieved by renal excretion into the urine [53] or uptake by the liver and spleen followed by macrophagic
degradation [54]. Y-chromosome-specific sequences were detected in the urine of women who had been transfused
with blood from male donors [55]. Detailed information on the mechanisms associated with these processes is lacking
and remains somewhat controversial.

A combination of DNase degradation, renal clearance, and uptake by the liver and spleen are likely to play a role
in the clearance of ecDNA in transfusion recipients. Whether the ecDNA is complexed with lipid/proteins or nucle-
osomes, or is encapsulated within membrane-enclosed particles may influence the ability of DNases to clear ecDNA
[4,56–58]. It was shown that DNA bound to nucleosomes can be protected from nuclease cleavage during apoptosis
[56,57]. The ecDNA contained in EVs was also shown to be protected from degradation [4,58]. And the clearance of
ecDNA may vary with the physiological state of the recipients [59]. Moreover, ecDNA can be recognized by various
cell-surface DNA-binding proteins and can be transported into cells for possible degradation to mononucleotides or
for transportation into the nucleus [60]. Therefore, the rate of ecDNA uptake by different cells may also affect the rate
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Figure 1. The potential origins and clearance of extracellular DNA in blood products

ecDNA in blood exists in a number of forms, namely histone/DNA complexes or nucleosomes, extracellular vesicles packed DNA,

cell-surface-bund DNA, DNA-protein complex, NETs and etc. It can be liberated from the blood cells via different mechanisms,

most prominently apoptosis, necrosis, and active secretion, although other forms of cell death and clearance may contribute.

Mitochondrial DNA can also be released by these mechanisms. Elimination of ecDNA could be achieved by DNase degradation,

renal excretion into the urine or uptake by the liver and spleen followed by macrophagic degradation. Abbreviations: NETs, neutrophil

extracellular traps.

of its clearance. The potential origins and clearance of ecDNA in blood products are explained and summarized in
Figure 1.

Particular structures relevant to ecDNA in blood products
Depending upon different mechanisms of release, ecDNA is relevant to different complex structures; particulate
structures such as EVs or macromolecular structures such as NETs and other less relevant structures that will not
be detailed here [3].

EVs
The first discovery of EVs was in 1964 when Chargaff and West, identified ´subcellular factors’ in cell-free plasma
and showed that these factors played a role in blood clotting [61,62]. In 1967, Wolf [63] confirmed the presence
of these subcellular factors using electron microscopy when he was studying the ´platelet dust’ that was known to
be shed by platelets during storage [64]. Activated or apoptotic cells and platelets in blood products can shed small
membrane vesicles, called EVs which are generally identified as MPs in transfusion research [62]. In particular, MPs
derived from stored RBCs have been shown to contribute to neutrophil priming and activation, thereby enhancing
the inflammatory response observed in patients who receive older RBCUs during transfusion [65].

Recently, the immunomodulatory potential of EVs in blood products has emerged as an important focus of studies
in transfusion medicine. Based on the current knowledge, it has been suggested that EVs in stored blood are associated
with a number of adverse outcomes such as neutrophil activation and the promotion of an inflammatory response
in the recipients [41,65–67]. A study showed that EVs accumulating in RBC products during storage contribute to
a strong inflammatory host response in recipients, which depends both on the number of EVs as well as on changes
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in the EVs related to storage [41]. Some studies suggested that platelet-derived EVs, such as those that convey mito-
chondrial DAMPs, may be a useful biomarker for the prediction of the potential risk of adverse transfusion reactions
[68].

NETs
NET formation, or ´NETosis’, was first described by Brinkmann et al. [36] in 2004. It occurs when neutrophils are
activated by pathogen agents or under particular conditions: NETosis leads to chromatin decondensation, lysis of cell
and nuclear membranes, and finally the release of NETs. The principal function of the NETs is believed to be to entrap
and kill circulating pathogens.

The composition of NETs was initially widely believed to be predominantly nucDNA; however, under specific stim-
ulatory conditions, NETs composed exclusively of mitDNA were demonstrated [69]. The emerging body of evidence
suggests that NETs can indeed be composed exclusively or predominantly of mitDNA, which means that NETosis
may represent a significant source of extracellular mitDNA in certain inflammatory conditions. In addition to the
role of intracellular mitDNA in NET composition, mitDNA may also trigger NET formation as a DAMP after major
trauma and with signaling mediated through a TLR9 dependent pathway [70]. Of note, Caudrillier et al. [71] reported
that activated platelets induce the formation of NETs in transfusion-related acute lung injury (TRALI), which is the
leading cause of death after transfusion therapy.

Potential effects of ecDNA on transfusion
Over the past several decades, the effects of ecDNA on transfusion have rarely been investigated. A report published
in 2018 pointed out that cell-free nucleic acids in blood products contained mainly double-stranded DNA (dsDNA)
, which has been shown to regulate genes of innate immune response [20]. The total ecDNA encompasses nucDNA
and mitDNA. It was found that only mitDNA and bacterial DNA (bacDNA), increased neutrophil viability as a conse-
quence of their activation [72]. In another report, mitDNA induced neutrophil matrix metalloproteinase 8 (MMP-8)
and MMP-9 release, while nucDNA did not [73]. This evidence suggested that the extracellular mitDNA encom-
passed in ecDNA in transfusion may be immunological or proinflammatory. Here, we review the role of extracellular
mitDNA in innate immune responses and its relationship with individual adverse reactions in transfusion. This sec-
tion will also describe the potential role of transfusion in horizontal gene transfer (HGT).

Extracellular mitDNA in innate immune responses
The particular DNA double-helix structure, the particular motifs of certain sequences and the molecular interac-
tions are three factors at the origin of the stimulation of the immune response [74]. In effect, the exposure of cells
of the innate immune system to dsDNA could provoke the activation of the genes of the innate immune response
[20,74]. This stimulation is at the origin of a strong inflammatory response mediated by the secretion of cytokines.
The abundant nucleic acid receptors in the cells play an important role in the innate immune system, which employs
them in response to DNA within the hosts [75,76]. How exactly mitDNA may mediate their immunological role in
transfusion is unknown, but different studies in some other areas of medicine rather than transfusion provided mech-
anistic insights. MitDNA has been shown to bind to Toll-like receptors (TLRs) or nucleotide oligomerization domain
(NOD)-like receptors (NLRs) and more recently it has been shown to be linked with the stimulator of interferon genes
(STING) pathway, thus providing distinct mechanisms potentially leading to immunological and inflammatory re-
sponses [77,78].

TLRs
Members of the TLR family are major pattern recognition receptors (PRRs) in cells [79], which are implicated in
the innate immune response and are present in immune cells such as dendritic cells (DCs), neutrophils (PMNs),
and macrophages (M∅) [80–83]. Zhang et al. [73,84] found that mitDNA activates neutrophil p38 mitogen-activated
protein kinase (MAPK) through TLR9 with release of MMP-8, a proinflammatory cytokine, leading to severe in-
flammation in mouse lungs. Gu et al. [85] also found that intratracheal administration of mitDNA provokes lung
inflammation through TLR9-p38 MAPK. In addition to MMP-8, mitDNA has been reported to trigger the activation
of the nuclear factor kappa B (NFκB) pathway via TLR9 [86], resulting in up-regulation of proinflammatory cytokine
production including TNF-α [87], IL-1β [88], and IL-6 [77].
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NLRs
The NLRs are another major PRRs in the innate immune system. Of the NLRs, the NLR pyrin domain 3 (NLRP3)
inflammasome is the most widely studied mainly due to its affinity for a wide variety of ligands [78]. The NLRP3 in-
flammasomes are targets of mitDNA, leading to the activation of caspase-1 in the inflammasome complex. Caspase-1
cleaves pro-IL-1β and pro-IL-18 into mature IL-1β and IL-18 [78], which is a potent pyrogen that elicits a strong
proinflammatory response [89]. Shimada et al. [90] showed that it is the oxidized form of mitDNA that confers the
inflammatogenic potential to mitDNA, which could directly bind NLRP3 to activate the inflammasome. Interestingly,
the genetic deletion of NLRP3 and caspase-1 results in less mitDNA release [91]. Conversely, NLRP3 inflammasome
formation releases mitDNA [91]. This suggests a positive feedback loop, in which activation of the NLRP3 inflam-
masome by oxidized mitDNA further promotes mitDNA release.

STING pathway
What’s more, mitDNA has the ability to stimulate the innate immune system through stimulation of the interferon
genes (STING) pathway, resulting in interferon (IFN) release. The STING pathway was recently mechanistically
dissected to reveal an intricate relationship demonstrating how mitDNA triggers interferon release [92]. The study
showed that through the depletion of mitochondrial transcription factor A (TFAM), mitDNA stability was disturbed,
causing enlargement of the mitochondrial nucleoid. Subsequently, fragmented mitDNA was released, activating
peri-mitochondrial cyclic GMP-AMP synthase (cGAS) causing increased cGAMP formation. The second messenger
cGAMP then activates the endoplasmic-reticulum-bound STING pathway which ultimately activates TANK-binding
kinase 1 (TBK1) and results in IFN I and other interferon-stimulated genes [92].

To conclude, mitDNA participates in a variety of innate immune pathways, including the mitDNA–TLR9–NFκB
axis, mitDNA–NLRP3–caspase1 pathway and mitDNA–cGAS–cGAMP–STING signaling (as summarized in Figure
2). The extracellular mitDNA appears to be a potent danger signal that could be recognized by the innate immune
system and modulate the inflammatory response [93].

Extracellular mitDNA and adverse transfusion reactions
The establishment of strict procedures to avoid the transfusion of microbial components has greatly reduced the
transmission of infections in recipients. However, sterile inflammation and organ injury in transfused recipients still
occur in the absence of any apparent infectious agents [94]. TRALI is the leading cause of transfusion-related death
and is initiated by soluble mediators in plasma [95]. Nonhemolytic transfusion reactions (NHTRs) are more frequent
[96,97]. In addition, the transfusion of the plasma fraction (without cells or platelets) is sufficient to trigger these
reactions [98].

Extracellular mitDNA falls into the category of DAMPs, which are known immune mediators associated with in-
flammation [22,23]. Studies have shown the potential contribution of extracellular mitDNA to adverse transfusion
reactions [14,18,19,42]. Boudreau et al. [42] quantified mitDNA in the extracellular milieu of PCs that has induced
adverse reactions and compared the levels to those within samples that were transfused without incidents. Interest-
ingly, they confirmed that significantly higher levels of extracellular mitDNA correlated with adverse reactions [42].
Yasui et al. [18] further confirmed that elevated levels of mitDNA were present in PCs that induced NHTRs in platelet
transfusion. Cognasse et al. [15] found that extracellular mitDNA did not correlate with cytokine levels and might be
an independent risk factor in PC transfusion-linked inflammation.

TRALI is defined as new acute lung injury that develops during or within 6 h of receiving a transfusion of any
blood product and progresses to a non-resolving severe respiratory failure such as acute respiratory distress syndrome
(ARDS) [99]. Simmons et al. [19] found that the levels of mitDNA present in FFP and PCs correlate well with the levels
of mitDNA in the serum of post-transfusion patients and are associated with a higher risk of ARDS. Mitochondrial
DAMPs, including mitDNA, have been shown to potentiate inflammatory lung injury when introduced into healthy
rats in a landmark paper by Zhang et al. [84]. In addition, mitDNA DAMPs could increase the EC permeability that
was observed in acute lung injury and ARDS [100].

Extracellular mitDNA DAMPs present in transfusion products may act as a potential effector of TRALI, as hy-
pothesized by Lee et al. [14]. According to current evidence as mentioned before, the working hypothesis of the
involvement of extracellular mitDNA in the adverse transfusion reaction is summarized in Figure 3.

The potential role of transfusion in HGT
During the 1950s to 1970s, blood transfusion experiments were found to alter the hereditary traits of the offspring
in poultry [101–103]. As early as 1871, Galton [104] carried out intervarietal blood transfusion experiments among
rabbits, but failed to induce heritable changes. Later, Sopikov [103] re-established the use of this method to analyse
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Figure 2. Innate immune pathways activated by mitochondrial DNA

Upon cell stress or cell damage, mtDNA escaped from mitochondria engages in the activation of multiple innate immune pathways,

including mitDNA–TLR9–NFκB axis, mitDNA–NLRP3–caspase1 pathway and mitDNA–cGAS–cGAMP–STING signaling, thereby

igniting inflammation. Abbreviations: IFN, interferon; IRF, interferon regulatory factor; MMP, matrix metalloproteinase; NF-κB, nuclear

transcription factor kappa B; NLRP3, Nod-like receptor pyrin domain containing 3; TBK1, TANK-binding kinase 1; TLR9, Toll-like

receptor 9; TNF, tumor necrosis factor.

the effect of blood transfusion on hereditary traits: repeated transfusion of the blood of Black Australorp roosters to
White Leghorn hens, and subsequent mating of these hens with White Leghorn roosters yielded progeny with mod-
ified inheritance. In exchanged donor and recipient roles, similar results were obtained [103]. Afterward, Sopikov’s
observations were confirmed not only by many Soviet researchers [105,106], but also by investigators in other coun-
tries [107,108].

Subsequently, increasing evidence that DNA injection could induce heritable changes emerged [109,110]. For in-
stance, DNA extracted from the Khaki Campbell was exclusively used to induce heritable changes in the Pekin duck
in the study of Benoit et al. [111] Hereditary modifications of morphological characteristics in ducks as a result of the
injection of DNA and RNA from other breeds of ducks were also reported. It is clearly possible that when DNA-rich
avian blood cells are transfused to other members of the same species, the transferred DNA can be expressed. Cur-
rently, many researchers have detected ecDNA in the plasma of donor-derived blood products, as listed before in
Table 1.
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Figure 3. Working hypothesis of the involvement of extracellular mitDNA in the adverse transfusion reaction

Briefly, the released/generated extracellular mitDNA in blood products during processing and storage time, which can be sensed by

PRR-bearing cells of recipients (i.e. PMNs, ECs and M), is capable of activating a variety of innate immune pathways. Subsequent

production of cytokines (i.e. IL-1β, IL-6, IL-18, and TNF-α) together with other proinflammatory mediator substances, thereby

inducing inflammatory responses leading to adverse transfusion reactions in recipients. Abbreviations: EC, endothelial cell; INF,

interferon; M, macrophages; PMN, neutrophil; PRR, pattern recognition receptor; TNF, tumor necrosis factor.

Landman [112] suggested that the genes of organisms could be divided into two groups: most were inherited ‘verti-
cally’ from ancestors, but some were acquired ‘horizontally’. HGT is defined as the transfer of genes between organisms
in a fashion other than that, which is found through traditional reproduction [113]. The transfer of biological sources,
including blood transfusion products, from donor to recipient will likely result in the presence of donor ecDNA in
the recipient’s blood circulation. This raises concern over the potential of ecDNA to transfer the genetic or epigenetic
information of clinical risk factors (genetically related illness, mutations or pharmaceutically induced adverse effects)
from donors to recipients.

Stroun and Anker [114] have been suggested that nucleic acids are released by living cells and circulate throughout
the whole organism. Newly synthesized, actively released ecDNA can translocate to neighbouring and remote parts
of the body, enter cells and alter their biology [115,116]. Genometastasis experiments have shown that ecDNA in
the plasma of cancer patients can indeed transfer oncogenic information to susceptible cells [24]. Thierry et al. [3]
illustrated that many structures carrying ecDNA could be involved in this genometastasis. However, this implies that
ecDNA in the plasma of blood transfusion products might be capable of transferring an activated human oncogene to
recipients during blood transfusions. In addition, many pharmaceutical and botanical compounds have been found to
induce epigenetic alterations [117–119]. It is, therefore, possible that the ecDNA in donors using medication can con-
tain these pharmaceutically induced epigenetic alterations and that these alterations can be transferred to recipients
during blood transfusions.

Moreover, it was shown that microchimerism might be related to real or potential health implications in autoim-
mune diseases, graft-versus-host reactions, and transfusion complications [120]. Microchimerism refers to a small
number of cells or DNA in one individual that is derived from another genetically distinct individual [121]. Regarding
blood transfusion, microchimerism from non-leukoreduced cellular blood products has been found to persist from
months to years after transfusion in traumatically injured patients [122]. Transfusion-associated microchimerism ap-
pears to be an identified complication of blood transfusion [123,124]. Whether patients with transfusion-associated
microchimerism have consequent adverse health effects, such as transfusion associated graft-versus-host disease, is
still under investigation.

Conclusion
Blood transfusion is the intravascular transfer of blood products into a recipient. A certain amount of DNA encom-
passed mitDNA was demonstrated to be present in the extracellular milieu of blood products for transfusion. This
raises the question of whether such ecDNA carries a risk. We provide a comprehensive review of the potential ori-
gins, clearance mechanisms and relevant structures of ecDNA in blood products in order to familiarize researchers
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with previous works and to show that there are still many unanswered questions relating to the nature and biological
functions of ecDNA in blood products. Our review shows that ecDNA especially mitDNA participates in a variety of
innate immune pathways and relevant to some adverse transfusion reactions. In addition, it should be concerned that
ecDNA might be capable of transferring some genetic or epigenetic information of clinical risk factors from donors
to recipients during blood transfusion. Notably, methods of isolation and quantification of ecDNA are crucial when
analysing data from different reports. At this time, there is a lack of uniformity in the methods of ecDNA extraction
and quantification, which need to be standardized. What’s more, the detailed clearance mechanisms of these ecDNA
in recipients administrated via transfusion also require further research, including (i) the activity of DNase, (ii) the
rate of renal excretion into urine, and (iii) the rate of uptake by the liver and spleen. However, this remains an under-
explored field in transfusion, and more insights will likely emerge in the near future. Hopefully, the articles presented
herein will stimulate researchers to give serious consideration to the potential harmful effects of ecDNA, especially
extracellular mitDNA, on transfusion.
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