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Abstract: Caries lesions during cement repairs are a severe issue, and developing a unique antimicro-
bial restorative biomaterial can help to reduce necrotic lesion recurrence. As a result, Thymus vulgaris
extract was used to biosynthesize copper nanoparticles (TVE-CuNPs) exhibiting different characteris-
tics (TVE). Along with TVE-CuNPs, commercial silver nanoparticles (AgNPs) and metronidazole
were combined with glass ionomer cement (GIC) to test its antibacterial efficacy and compressive
strength. FTIR, XRD, UV-Vis spectrophotometry, and TEM were applied to characterize the TVE-
CuNPs. Additionally, AgNPs and TVE-CuNPs were also combined with metronidazole and GIC. The
modified GIC samples were divided into six groups, where groups 1 and 2 included conventional
GIC and GIC with 1.5% metromidazole, respectively; group 3 had GIC with 0.5% TVE-CuNPs, while
group 4 had 0.5% TVE-CuNPs with metronidazole in 1.5%; group 5 had GIC with 0.5% AgNPs, and
group 6 had 0.5% AgNPs with metronidazole at 1.5%. An antimicrobial test was performed against
Staphylococcus aureus (S. aureus) and Streptococcus mutans (S. mutans) by the disc diffusion method and
the modified direct contact test (MDCT). GIC groups 4 and 6 demonstrated a greater antimicrobial
efficiency against the two tested strains than the other groups. In GIC groups 4 and 6, the combination
of GIC with two antimicrobial agents, 1.5% metronidazole and 0.5% TVE-CuNPs or AgNPs, enhanced
the antimicrobial efficiency when compared to that of the other groups with or without a single agent.
GIC group specimens combined with nanosilver and nanocopper had similar mean compressive
strengths when compared to the other GIC groups. Finally, the better antimicrobial efficacy of GIC
boosted by metronidazole and the tested nanoparticles against the tested strains may be relevant for
the future creation of more efficient and modified restorations to reduce dental caries lesions.

Keywords: antimicrobial efficiency; AgNPs; caries lesions; GIC; metronidazole; TVE-CuNPs

1. Introduction

Dental caries, one of the famous common chronic oral diseases in humans world-
wide [1,2], is related to a wide range of Gram-positive and Gram-negative microorganisms.
According to the contemporary caries etiology hypothesis, an imbalance of oral flora can
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cause acid accumulation and tooth demineralization, resulting in caries formation. Accord-
ing to the World Health Organization, dental caries affects roughly three-quarters of the
world’s population [3]. Caries treatment is still dependent on filling repair at the moment.
Therefore, a hotspot in the field of caries suppression and treatment is the evolution of
novel anti-caries materials. Metals such as silver, gold, copper, zinc, titanium, and others
have been used as antimicrobial agents for centuries to solve this problem [4]. Each metal
has unique properties and activity spectra. Because of their delivery capabilities, biocidal,
and anti-adhesive properties, silver and copper nanoparticles have received the most atten-
tion in recent years [5]. In comparison to silver nanoparticles, few studies have reported
copper’s antimicrobial properties against oral microbes, and copper nanoparticles bind
to SH groups and disrupt bacterial nucleic acids and key enzymes. The copper nanopar-
ticles have a high thermal and electrical conductivity and are less expensive than silver
nanoparticles [6]. The metal nanoparticles can be synthesized by biological methods using
plants. Typically, Thymus vulgaris leaf oil or extract is used to treat sore throats, tonsillitis,
gum disease, rheumatism, and arthritis [7–9] and can also be used in the biosynthesis of
nanoparticles. AgNPs kill bacteria by a variety of mechanisms, including the rupture of
the bacterial cell membrane via AgNP adherence and the penetration of AgNPs into the
cell and nucleus, resulting in binding interactions with proteins and DNA and, ultimately,
cell death [10]. Combinations of AgNPs with antibiotics have been reported to have syner-
gistic antibacterial effects toward both nonresistant and resistant strains [11]. According
to Xu et al. [12], nanoparticles such as those of silver or copper have good mechanical
properties, allowing them to be used in dental restorative cements. Glass ionic cement
(GIC) is a popular restorative material in dentistry due to its biocompatibility, antimicrobial
action, adhesion to dental structures, and fluoride release [13]. The GIC surface erodes
because of biofilm formation [14]. To solve this problem, restorative materials have been
mixed with antibiotics in previous studies because they have antimicrobial properties [15].
Nonetheless, due to the emergence of multidrug resistant pathogens, traditional antimi-
crobials are becoming ineffective in treating oral infections. Metronidazole is one of these
antibiotics that has antimicrobial activity and inhibits DNA synthesis in anaerobic mi-
crobes [16]. Metronidazole resistance has been described in dental abscesses and anaerobic
streptococcus illness [17].

To the best of the authors’ knowledge, the effect of antibiotic (metronidazole), AgNPs,
and biosynthesized CuNPs in novel GIC biomaterial formulations against oral microbes has
never been studied. This study uses Thymus vulgaris, which is used in dental applications,
to produce TVE-CuNPs. The principal aim of this research is to investigate the antimicrobial
efficacy of GIC after being treated with metronidatole, commercial AgNPs, and TVE-CuNPs
to bio-fabricate a novel anti-microbial dental biomaterial. The researchers tested modified
GIC as a novel anti-microbial dental filling biomaterial against caries-causing oral microbes.
This research is significant because improving the antibacterial efficiency and compressive
strength of GIC dental cements will result in modified GIC cements with superior properties
that can increase the longevity of the restorations and reduce recurrent caries.

2. Materials and Methods
2.1. Experimental Design

This study used GIC. GIC was mixed with three antimicrobial agents: metronidazole,
AgNPs, and TVE-CuNPs. Commercially available AgNPs powder of size 20 to 50 nm
(Alibaba Company, Shanghai Xinglu Chemical Technology Co., LTD, Shanghai, China) was
purchased. The antimicrobial efficiency of the modified dental cement on two common
microbial strains, S. mutans and S. aureus, was determined using Kirby–Bauer agar diffusion
and modified direct contact tests (Scheme 1).
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2.2. Materials and Equipment

The GIC (GC Fuji IX, Tokyo, Japan) was used in this study, as well as three antimicro-
bial agents: commercial AgNPs (Sigma-Aldrich, Saint Louis, MO, USA), TVE-CuNPs, and
metronidazole (VETRANAL®, analytical standard, Sigma-Aldrich, Saint Louis, MO, USA).
Thymus vulgaris L extract was used to biosynthesize TVE-CuNPs. Before manipulation,
the AgNPs, TVE-CuNPs, and metronidazole were weighed and mixed with GIC powder.

2.3. Biosynthesis of Copper Nanoparticles

Thymus vulgaris (25 g) was added to 100 mL of distilled water. The solution was
heated at 80 ◦C for one hour to prepare an aqueous extract, as shown in our previous
study by Gad El-Rab et al. [18]. In brief, 40 mL of copper chloride (2 mM) was mixed with
10 mL of Thymus vulgaris extract (TVE) and stirred for more than 2 h at room temperature
with constant magnetic stirring (200 rpm). The solution mixture’s color changed from
deep brown to yellowish brown during the reaction. It is suggested that TVE-CuNPs
were formed.

2.3.1. TVE-CuNP Characterization

The characterization of TVE-CuNPs was performed using the following methods.

UV-Visible Spectrum

This analysis was conducted using a UV–Vis spectrometer (Shimadzu UV-1650, Tokyo,
Japan) in the range of 300–800 nm to confirm the manufacture of TVE-CuNPs [15]. After
that, the final mixture was centrifuged at 10,000× g to separate the TVE-CuNPs. Finally,
brown-black TVE-CuNPs were recovered.

Transmission Electron Microscopy (TEM)

TEM analysis was carried out on TEM JEOL at 100 kV, Tokyo, Japan (Assiut Electron
Microscope Unit). Each sample for TEM analysis was prepared by placing a drop of the
suspension on carbon-coated copper grids and allowing it to dry on the grid for 4 min. The
shape and size of TVE-CuNPs were determined by a TEM micrograph [16].

X-ray Diffraction

A thin layer of well-grinded dry TVE-CuNPs was distributed on the glass slide that
was introduced into the XRD chamber to study the XRD pattern. The phase of TVE-CuNPs
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was characterized using Shimadzu XRD (3A, Tokyo, Japan), and the spectra were recorded
by CuKα radiation with a wavelength of 1.5406 Å in the 2θ (from the range of 20–80◦) [15].

Fourier Transform Infrared Analysis (FT-IR)

To determine the functional groups that are responsible for TVE-CuNP formation and
stabilization [19], as KBr pellets, the FTIR spectra of TVE and TVE-CuNPs were recorded
on a Shimadzu IR-470 Spectrometer, Tokyo, Japan, in the range of 4000–500 cm−1.

2.4. Preparation and Characterization of AgNPs

The AgNPs with diameters of 20–50 nm were obtained from Alibaba Company,
Shanghai Xinglu Chemical Technology Co., LTD, Shanghai, China. The samples were
re-suspended in deionized water at the concentration of 1 mg/mL. The UV–Vis spectra of
the AgNPs were recorded using a UV–Vis spectrometer (Shimadzu UV-1650, Tokyo, Japan).
The dimensions and sizes of the AgNPs were confirmed using a transmission electron
microscope TEM JEOL at 100 kV (Assiut Electron Microscope Unit).

2.5. Preparation of Specimens

A split Teflon mold (3 mm in height and 6 mm in diameter) was used to create disc-
shaped specimens of GIC cement (180 disc) [18]. All GIC specimens were prepared at
room temperature. The GIC powder and liquid were apportioned and combined using a
plastic spatula for 30 s to avoid dehydration of the GICs, as indicated by the manufacturer,
before being inserted into the molds. The molds were covered on both sides with polyester
strips and thick glass plates and let to set for 20 min before being taken from the mold and
sanitized for 30 min with UV light. The modified GIC samples (n = 180) were divided into
six groups of 30 specimens each, as follows:

1. (Group 1) GIC.
2. (Group 2) GIC and 1.5% metronidazole.
3. (Group 3) 99.5% GIC with 0.5% TVE-CuNPs.
4. (Group 4) 98% GIC with 0.5% TVE-CuNPs and 1.5% metronidazole.
5. (Group 5) 99.5% GIC with 0.5% AgNPs.
6. (Group 6) 98% GIC with 0.5% AgNPs and 1.5% metronidazole.

All groups were tested for antibacterial efficacy against S. aureus and S. mutans (at
1 day, 1 week, and 1 month).

2.6. Drug Release Determination

To determine metronidazole release from modified GIC, the samples were submerged
in 5 mL of phosphate-buffered saline (PBS) at pH 7.4 and incubated at 37 ◦C for up to
30 days. A UV-Vis spectrophotometer (Shimadzu UV-1650 pc spectrophotometer, Tokyo,
Japan) was used to quantify the concentration of metronidazole in the release medium
at 340 nm using a calibration curve. The metronidazole release (%) was calculated using
the equation: C (%) = B/A × 100, where C is the metronidazole release (%), B is the
total quantity of metronidazole released in the solution, and A is the amount of loaded
metronidazole in modified GIC samples.

2.7. Bacteria and Growth Conditions

Strains of S. aureus and S. mutans were obtained from our previous study by Enan et al. [18].
Before performing the antimicrobial test, fresh inoculums of S. aureus and S. mutans were
inoculated in Mannitol Salt Agar medium and Brain Heart Infusion (BHI) medium (Oxoid
Ltd., London, UK), respectively, and adjusted to the famous standard (i.e., 1.5 × 108 CFU/mL)
with the help of BHI and Mannitol Salt medium, respectively, and the culture was incubated
in growing conditions (18 h at 37 ± 2 ◦C).
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2.7.1. Amicrobial Efficacy Using Agar Disc Diffusion Assay

The disc diffusion assay was followed to determine the inhibition zones of the test
modified GIC [19]. Mueller–Hinton agar was prepared and added to the Petri plates upon
autoclaving and kept for setting or solidifying for 10–15 min. The targeted test for S. aureus
and S. mutans of 0.1 mL was added to media plates and spread with sterile cotton swabs
evenly throughout the plates. The test modified GIC discs were placed on the plates, which
were kept in an incubator at 37 ◦C for growth. The inhibition zones were recorded with the
zone interpretation scale. All experiments were run in triplets. The antibacterial efficiency
of modified GIC discs was evaluated at three time intervals: 24 h, 1 week, and 1 month.

2.7.2. Modified Direct Contact Test

The modified direct contact test (MDCT) [20] is based on determining the colony-
forming unit (CFU) of bacterial growth in 96-well microtiter plates. A microtiter plate was
held horizontally, and the floor of the wells was evenly coated with a thin layer of GIC. The
side walls of 96-well microtiter plates were coated with a thin layer of GIC. In accordance
with the manufacturer’s recommendation, the modified luting cement was allowed to set.
A total of 50 µL of S. aureus or S. mutans (approximately 106) were placed on the GIC with
100 µL of Mueller–Hinton broth or brain–heart infusion broth, respectively, for S. aureus
or S. mutans. A positive control, as prepared by placing 50 µL of bacterial suspension
along with 100 µL of Mueller–Hinton broth or brain–heart infusion broth in a separate well
without the GIC cement, was considered. After 24 h, the S. aureus or S. mutans suspension
was introduced in Mueller–Hinton agar or brain–heart infusion agar plates for S. aureus
or S. mutans, respectively, and the CFUs of the suspension were compared. The data were
recorded approximately 24 h after incubation. Additional tests were performed on a set of
modified GIC that had been aged for one month.

2.8. Compressive Strength Measurement

GIC samples (4 mm in diameter and 6 mm in height) were produced for the com-
pressive strength test (CS) using a Teflon mold. For 20 min, the GIC samples were left
at room temperature. After 24 h of mixing, the CS of GIC cement was measured using
a Material Test System (810 MTS Co., Minneapolis, MN, USA) at a crosshead speed of
0.5 mm/min−1. Six samples were tested for each GIC sample group. The highest recorded
force was measured at the fracture, and CS (N/mm2) was calculated using the equation
shown below [18].

CS = 4P/πd2 (1)

where P denotes the failure load and d denotes the sample’s diameter.

2.9. Statistical Analysis

The mean difference was calculated using One-way Statistical Analysis of Variance
(ANOVA) and Tukey’s Post Hoc test in the Statistical Package for Social Sciences version
17 software (SPSS Inc., Chicago, IL, USA). All statistical tests were two-sided, with a
significance level of p < 0.05.

3. Results
3.1. Biosynthesis of TVE-CuNPs

TVE-CuNPs were biosynthesized in the current study by reducing copper chloride
to TVE-CuNPs using TVE. A change in color from blue to brown indicates the green-
mediated synthesis of TVE-CuNPs in the reaction mixture. The formation of brown color
in an aqueous solution of TVE-CuNPs was caused by the excitation of surface plasmon
resonance (SPR) [21].
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3.2. Characterization of TVE-CuNPs
3.2.1. UV-Vis Spectroscopy of TVE-CuNPs

After the formation of TVE-CuNPs, UV–Vis absorption was measured using a UV–
visible spectrophotometer between 485 and 800 nm. Peaks at 573 nm were observed for
pure TVE-CuNPs (Figure 1). Cu-NPs, in particular, generated noticeable absorption in the
visible area in the range of 573–600 nm as a result of SPR.
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3.2.2. Size and Shape of TVE-CuNPs

TEM was used to investigate the TVE-CuNPs (Figure 2). TEM analysis determined
the size of the synthesized TVE-CuNPs to be 10–25 nm. The particle size distribution of the
TVE-CuNP picture further revealed that the TVE-AgNP size distribution ranged from 10 to
25 nm. TVE-CuNPs were spherical and monodispersed (Figure 2).
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3.2.3. X-ray Diffraction (XRD)

The XRD pattern explained the sharp and distinct peaks of (2θ) 46.3◦, 53.5◦, and 72.3◦

that correspond to the planes (111), (200), and (220) of the pure copper’s face-centered cubic
crystalline (FCC) structure (Figure 3). The purity of the TVE-CuNPs was reflected in the
XRD results of this study.
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3.2.4. Comparison of FTIR Spectra of Thymus vulgaris Extract and TVE-CuNPs

FTIR analysis was used to characterize the TVE and TVE-CuNPs. As shown in Figure 4
and Table 1, the broad band at 3402 cm−1 is assigned to the O-H stretch of the polyphenol
groups of Thymus vulgaris L extract. The peaks that appeared at 2934 cm−1 can be assigned
to C–H in methyl and alkanes. The fewer absorption peaks are observed at regions of 1630
and 1421 cm−1, which belong to the C=O stretching of amide in the carbonyl stretch in
proteins and enzymes. These proteins can be combined with metal nanoparticles via the
carboxylate of amino acid remnants or free amine groups.
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3.3. Characterization of AgNPs

The AgNPs (1 mg/mL) utilized in this investigation were obtained commercially.
In deionized water, the solution was diluted to 100 µg/mL (Figure 5A). TEM and UV–
Vis spectroscopy were used to examine the size, shape, and homogeneity of the AgNPs.
The absorbance spectra revealed a single high peak at 405 nm (Figure 5B), indicating
the existence of spherical AgNPs. TEM verified that the particles were spherical in form
(Figure 5C). The AgNPs had an average diameter of 20–50 nm (Figure 5D).



Antibiotics 2022, 11, 756 8 of 16

Table 1. Peaks were obtained by FTIR analysis and corresponding functional groups in Thymus
vulgaris extract and TVE-CuNPs.

Thymus vulgaris Extract TVE-CuNPs

Peak (cm−1) Functional Groups Peak (cm−1) Functional Groups

3429 Amine group (N–H) and the hydroxyl
group (O–H) 3402 Amine group (N–H) and the hydroxyl

group (O–H)
2920 C–H in methyl and alkanes 2927 C–H in methyl and alkanes

1624 C=O stretching of amide in carbonyl
stretch in proteins/enzymes 1631 C=O stretching of amide in carbonyl

stretch in proteins/enzymes
1060 C–O of proteins 1094 C–O of proteins
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3.4. Drug Release Determination

Figure 6 depicts the metronidazole release (%) from the modified GIC groups C and
D, revealing a two-step release: The quick first-step release, which is the metronidazole
release (%) from GIC, in groups 4 and 6, reached 58% and 64% after 24 h, respectively. After
240 h, the delayed second-step release reached about 84% and 87%, respectively.
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Figure 6. In vitro metronidazole release profile from GIC Group 4—1.5% metronidazole + 0.5%
TVE-CuNPs + 98% GIC. Group 6—1.5% metronidazole + 0.5% AgNPs + 98% GIC.

3.5. Antimicrobial Activity of the Tested Biomaterials

The results of agar disc diffusion assays against S. mutans and S. aureus revealed that
groups 3 and 4 of GIC had a significant effect on bacterial growth inhibition when compared
to other groups, as shown in Figure 7A,B. Furthermore, as shown in Figure 7C,D, GIC
groups 5 and 6 inhibited bacterial growth significantly more than GIC groups 1 and 2. This
effect was more pronounced when metronidazole and TVE-CuNPs or AgNPs were added,
as in groups 4 and 6, which showed the statistically highest inhibition zones compared to
groups 3 and 5, which contained TVE-CuNPs or AgNPs, (Group 4 > Group 3 > Group 2 >
Group 1), as well as with GIC groups (Group 6 > Group 5 > Group 2 > Group 1), as shown
in Table 3. The efficacy of GIC combined with metronidazole and TVE-CuNPs in group 4
was slightly lower than that of GIC combined with metronidazole and AgNPs in group 6.
The inhibition zone and significant effects of metronidazole and TVE-CuNPs or AgNPs
were the greatest in groups 4 and 6.

The mean inhibitory zones of the modified groups of GIC in the case of S. aureus
were significantly higher than the mean inhibitory zones of these groups in the case of
S. mutans. However, when compared to the other tested groups, groups 4 and 6 had the
highest inhibition zones (see Figure 7 and Table 3).

Figure 8 depicts the MDCT assay results of GIC groups against S. mutans and
S. aureus. The modified GIC (Group 4 > Group 3 > Group 2 > Group 1) and modified GIC
(Group 6 > Group 5 > Group 2 > Group 1) had a significant antimicrobial effect against
S. mutans and S. aureus when the antimicrobial effects of the GIC groups were compared.
These were modified after one hour. In comparison to other groups, the modified GIC
groups with AgNPs or TVE-CuNPs with metronidazole were more effective. At the end
of the month, groups 4 and 6 had the highest antimicrobial efficacy against S. aureus and
S. mutans when compared to the other groups (Figure 8), though the antimicrobial efficacy
of groups 3 and 4 was slightly lower than that of groups 5 and 6, respectively, against
S. aureus (as shown in Figure 8A,C) and S. mutans (as shown in Figure 8B,D). As a result,
when compared to the other groups, GIC combined with antimicrobial agents (AgNPs
or TVE-CuNPs and 1.5% metronidazole) demonstrated a superior antibacterial activity
against S. mutans and S. aureus.
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99.5% GIC with 0.5% TVE-CuNPs; 4—(Group 4) 98% GIC with 0.5% TVE-CuNPs + 1.5% metronida-
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1.5% metronidazole.

3.6. Compressive Strength Measurement

Table 2 shows the compressive strength of GIC in the following order: Group 3 ≥
Group 4 > Group 2 > Group 1 and Group 5 ≥ Group 6 > Group 2 > Group 1. Table 2 shows
that, when GIC groups 4 and 6 were coupled with metronidazole and nano-copper or Ag-
NPs, the compressive strength was slightly increased compared to GIC alone. Compressive
strength measurements were not significantly different, indicating that the incorporation
of metronidazole and/or nanoparticles did not reduce the strength of GIC for dental
applications. The difference between all GIC groups was statistically insignificant (p > 0.05).

Table 2. Tested GIC samples’ compressive strength (MPa).

Tested Groups n Mean ± SD ANOVA F Value ANOVA p Value

Group 1 8 41.2 ± 3.4

2.74 0.165

Group 2 8 42.8 ± 2.8
Group 3 8 44.2 ± 3.8
Group 4 8 43.9 ± 3.7
Group 5 8 45.9 ± 4.1
Group 6 8 45.0 ± 4.5

1—(Group 1) GIC; 2—(Group 2) 98.5% GIC with 1.5% metronidazole; 3—(Group 3) 99.5% GIC with 0.5% TVE-
CuNPs; 4—(Group 4) 98% GIC with 0.5% TVE-CuNPs +1.5% metronidazole; 5—(Group 5) 99.5% GIC with 0.5%
AgNPs; 6—(Group 6)-98% GIC with 0.5% TVE-CuNPs +1.5% metronidazole.
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Table 3. Antimicrobial efficiency of modified dental luting cements against the tested bacteria.

Bacteria Samples (Groups)
Inhibition Zone (mm)

ANOVA F Value ANOVA P Value Tukey’s Post Hoc
1 Day 2 Weeks 1 Month

S. aureus a. Group 1 NA NA NA NA NA NA
b. Group 2 14 ± 1.62 13 ± 1.52 11 ± 0.57 7.62 0.02 1 day > 2 week and 1 month
c. Group 3 20 ± 1.53 17 ± 1.21 15 ± 1.35 11.81 0.01 1 day > 2 week and 1 month
d. Group 4 29 ± 1.11 22 ± 1.27 19 ± 1.56 13.43 0.001 1 day > 2 week and 1 month
e. Group 5 24 ± 1.41 19 ± 0.57 16 ± 1.00 8.9 0.01 1 day > 2 week and 1 month
f. Group 6 30 ± 1.71 23 ± 1.52 18 ± 1.15 14.30 0.001 1 day > 2 week and 1 month

ANOVA F Value 16.71 14.65 17.35
ANOVA p-Value 0.0001 0.001 0.001
Tukey’s post Hoc f > d > e > c > b f > d > e > c > b f > d > e > c > b

S. mutans a. Group 1 NA NA NA NA NA NA
b. Group 2 18 ± 1.93 16 ± 1.67 12 ± 1.58 9.62 0.03 1 day > 2 week and 1 month
c. Group 3 19 ± 1.26 16 ± 1.31 13 ± 1.55 11.9 0.01 1 day > 2 week and 1 month
d. Group 4 26 ± 1.34 21 ± 1.88 18 ± 1.17 16.30 0.001 1 day > 2 week and 1 month
e. Group 5 20 ± 1.65 18 ± 1.53 14 ± 1.66 11.9 0.01 1 day > 2 week and 1 month
f. Group 6 27 ± 1.35 23 ± 1.93 17 ± 1.69 16.30 0.001 1 day > 2 week and 1 month

ANOVA F Value 16.26 15.52 14.36
ANOVA p-Value 0.001 0.001 0.001
Tukey’s post Hoc f > d > e > c > b f > d > e > c > b f > d > e > c > b

1—(Group 1) GIC; 2—(Group 2) 98.5% GIC with 1.5% metronidazole; 3—(Group 3) 99.5% GIC with 0.5% TVE-CuNPs; 4—(Group 4) 98% GIC with 0.5% TVE-CuNPs +1.5% metronidazole;
5—(Group 5)- 99.5% GIC with 0.5% AgNPs; 6—(Group 6)-98% GIC with 0.5% TVE-CuNPs +1.5% metronidazole. All samples were analyzed in triplicate.
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Currently, metronidazole and TVE-CuNPs or AgNPs with GIC are successfully bio-
fabricated and exhibit the highest antibacterial efficiency against resistant S. aureus and
S. mutans when compared to other modified materials (GIC with TVE-CUNPs or AgNPs).
Because of the AgNPs effect, the modified GIC with metronidazole and TVE-CuNPs had
a slightly lower antimicrobial efficiency than the GIC with metronidazole and AgNPs.
However, both groups 4 and 6 show superior antimicrobial efficacy when compared to
the other tested forms, which adds to the study’s novelty and significance in terms of
controlling dental caries lesions.

4. Discussion

In this study, commercial AgNPs and TVE-CuNPs were synthesized using TVE and
coupled with GIC with or without metronidazole to generate a new dental biomaterial.
When GIC was mixed with the tested nanoparticles and metronidazole, its antibacterial
effects were demonstrated when compared to GIC combined with AgNPs, TVE-CuNPs,
or metronidazole alone. The current work validates the success of the biosynthesis of
TVE-CuNPs from TVE based on our findings. The production of brown color in an aqueous
solution of TVE-CuNPs was induced by surface plasmon resonance (SPR) excitation [21].
The production of TVE-CuNPs at the absorption band of around 573 nm due to SPR in
TVE-CuNPs was verified by UV-Vis spectroscopy [22]. The TVE includes phytochemicals
including phenol and protein amino acids, as well as enzymes that function as reducing
and stabilizing agents for the greenly synthesized TVE-CuNPs and may also be responsible
for the reduction of Cu+ to Cu0 [23]. TVE-CuNPs were spherical and monodispersed, with
sizes ranging from 10 to 25 nm, and these results are in agreement with those of Suarez-
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Cerda et al. [24]. The TVE-CuNPs XRD pattern revealed three main peaks at 2θ values. The
XRD pattern’s significant intensity and small breadth, and the sharpness of TVE-CuNP
diffraction peaks indicated that the TVE-CuNPs were well crystalline. This study’s XRD
data revealed the purity of TVE-CuNPs, which is similar to prior research [25,26]. The
presence of large absorption peaks in TVE’s FTIR spectra proved the existence of reducing
and stabilizing agents, such as proteins, amino acids, and phenolic chemicals (i.e., ellagic
acid, thymol, -terpinene, -pinene, carvacrol) [23,25].

The AgNP characterization was undertaken. The spectra revealed a single high peak
at 405 nm, indicating the presence of AgNPs, and TEM verified the particles’ spherical
form [27]. Smaller nanosilvers have a peak at 400 nm, but bigger nanosilvers have higher
scattering and expanded peaks pushed towards longer wavelengths, as observed in ear-
lier research [27,28].

The drug release from GIC groups 4 and 6 was carried out in two stages. The primary
rapid release during the first 24 h is very dependent on the strength of the drug attachment
and might be caused by weak electrostatic interactions between metronidazole molecules
and the GIC surface, hydrogen bond breakdown, and non-covalent connections [29]. The
surface of GIC is susceptible to chemical and hydrolytic deterioration. Water can infiltrate
the resin matrix and enhance matrix solubility, which is accelerated by a low pH [30]. As a
result, the inorganic component of the GIC on the surface can dissolve and metronidazole
can be released. For the next 216 h, a protracted and progressive release profile was seen.
The release during this extended stage might be attributable to medication molecules
trapped in the cement’s resin matrix. The two-step and prolonged release process is
important in therapeutic treatments because the initial rapid release provides a therapeutic
dosage rapidly and the subsequent long-term release maintains this dose over a long period
of time. After 240 h, the released percentage was 86% of the total quantity.

The MDCT and agar disc diffusion assay results of GIC groups against S. mutans and
S. aureus show that, when metronidazole and TVE-CuNPs or AgNPs were added, as in
groups 4 and 6, there were statistically highest antimicrobial effect compared to groups
3 and 5, which contained TVE-CuNPs or AgNPs that were conjugated with SH groups
in proteins and disrupted neuclic acids [6]. These findings are consistent with those of
Mittal et al. [31] and Aguilar-Perez et al. [32], who found that the antimicrobial efficiency
was affected by the concentration of metronidazole and nanoparticles used. Additionally,
these findings are in agreement with the previous studies, which explain that the addition
of nanoparticles to antibiotics enhances the antibacterial efficacy of clinically approved
drugs [33] because metronidazole revives when mixed with TVE-CuNPs or AgNPs.

The findings of the GIC groups containing TVE-CuNPs were equivalent to those
including commercial AgNPs against the tested bacteria, which exhibited somewhat de-
creased antibacterial activity, which was consistent with the findings of Zia et al. [34]. When
compared to copper nanoparticles, silver nanoparticles were shown to be more reactive in
inhibiting bacterial growth. According to Gad El-Rab et al. [35], S. mutans and S. aureus are
very sensitive to nanoparticles containing antibiotics, which can be efficiently taken up by
the bacteria because AgNPs and TVE-CuNPs regenerate the metronidazole to be active.
Furthermore, AgNPs and TVE-CuNPs were conjugated with the SH group in proteins
and damageed nucleic acids. In the current research, and for the first time, as shown in
Table 4, GIC was combined with metronidazole and TVE-CuNPs or AgNPs, and the result
demonstrates a significantly higher antimicrobial efficacy against the tested microbes when
compared to the GIC with a single antimicrobial agent as well as the conventional GIC
without any combinations [32,36,37]. Furthermore, the compressive strength difference
across all GIC groups was statistically negligible (p > 0.05). These findings are consistent
with those of Enan et al. [18], who discovered that adding nanoparticles to GIC did not
result in a substantial improvement in compressive strength.
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Table 4. Comparison of earlier research with restorative biomaterials for antibacterial activity against
oral bacteria.

Materials Concentration Bacteria Reference

• GIC + CuNPs • 96% GIC + 4% CuNPs • S. mutans and S.
sanguinis • Aguilar-Perez et al. [32]

• GIC + antibiotics • 98% GIC + 2% antibiotic • S. mutans • Singer et al. [36]

• GIC + AgNPs • GIC + 0.5% AgNPs • S. aureus, S. mutans and
C. albicans • Ashour et al. [37]

• GIC + TVE-CuNPs +
metronidazole

• 98% GIC + 0.5%
TVE-CuNPs + 1.5%
metronidazole

• S. aureus, and S. mutans • This study

• GIC + AgNPs +
metronidazole

• 98% GIC + 0.5% AgNPs
+ 1.5% metronidazole • S. aureus, and S. mutans • This study

Currently, the combination of GIC, metronidazole, and AgNPs or TVE-CuNPs is
successfully produced and exhibits high antimicrobial activity against the tested strains
because metronidazole revives when mixed with TVE-CuNPs or AgNPs. It appears to have
superior antimicrobial efficacy when compared to other forms. The GIC groups containing
TVE-CuNPs were equivalent to those containing commercial AgNPs against the tested
bacteria, although they exhibited somewhat decreased antibacterial activity. These findings
add to the novelty and significance of the study that can be applied in the dental field to
prevent dental caries. In the future, we will study the antimicrobial activity of these novel
materials in vivo.

5. Conclusions

To conclude the results of the present study, Thymus vulgaris extract is a potential
natural product for the green biosynthesis of TVE-CuNPs by the reduction of copper salts
using reducing agents, such as phenolics and proteins, in addition to the enzymes present
in TVE and for forming TVE-CuNPs. When metronidazole was combined with AgNPs or
TVE-CuNPs, it was revived, and this combination with GIC formed novel nanobiomaterials.
The GIC groups containing AgNPs exhibited somewhat increased antibacterial activity
when compared with the GIC groups containing TVE-CuNPs. So, this material has superior
antimicrobial activity against the resistant tested strains. Finally, this novel bio-material has
potential to increase antimicrobial efficacy against the resistant tested strains and will result
in the development of cost-effective dental materials for controlling bacterial infections and
dental caries in the future.
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