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INTRODUCTION

Underactive bladder (UAB) has yet to be formally 
defined by any international academic society, such as 
the International Continence Society (ICS). Recently, an 
international expert group has described UAB as a symptom 
complex suggestive of detrusor underactivity (DU) that is 
usually characterized by prolonged urination time with or 
without a sensation of incomplete bladder emptying, usually 
with hesitancy, reduced sensation on filling, and slow stream 
[1]. Moreover, given Andersson’s proposal to characterize 
UAB based on symptoms, a better term may be UAB 
syndrome, in analogy to the overactive bladder syndrome 
defined by the ICS [2]. Unlike UAB, DU has already been 
defined by the ICS as a contraction of reduced strength and/
or duration resulting in prolonged or incomplete emptying 
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of the bladder [3]. DU, which is urodynamically diagnosed 
based on a pressure-flow study, is characterized by a low-
pressure, poorly sustained, or wavelike detrusor contraction 
associated with poor flow rate [4]. Considering its definition, 
UAB may have certain vagueness, given that the symptoms 
to be included in the syndrome still need to be discussed.

The lower urinary tract (LUT), including the urinary 
bladder and urethral sphincter, is regulated by simple 
circuits (on-off  switching) that maintain an interactive 
relationship between the urinary bladder and the urethral 
outlet through which sufficient storage and voiding can be 
achieved. These reflexes are coordinated through complex 
neural interactions among the central nervous system (CNS) 
including pons, periaqueductal gray, brain frontal cortex, 
lumbosacral spinal cord, and peripheral nerves system 
(pelvic, hypogastric, and pudendal nerves), and storage 
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and voiding reflexes are primarily organized in the spinal 
cord and the brain, respectively [5]. Sufficient urine output 
requires complete relaxation of the internal (smooth muscle) 
and external urethral sphincter (striated muscle), followed 
by increased intravesical pressure due to detrusor smooth 
muscle contraction [6]. It is highly probable that UAB is 
caused by one or several dysfunction(s) in the site (central 
and/or peripheral) innervating the micturition reflex.

CAUSES OF UNDERACTIVE BLADDER

So far, several causes (diseases/disorders) of UAB have 
been reported [7,8]: aging [9,10], persistent bladder out-
let obstruction (BOO) [11], diabetes mellitus (DM) [12,13], 
neurologic disorders [14] (e.g., Parkinson disease, multiple 
sclerosis, and infectious neurologic problems, such as 
AIDS and herpes zoster), and nervous injury to the 
spinal cord, cauda equine, and peripheral nerves [15,16] 
(e.g., spinal stenosis, pelvic fractures, and pelvic surgery). 
These cause impaired bladder function, especially voiding, 
and consequently result in DU/UAB, which undoubtedly 
deteriorates the patient’s quality of  life. To optimize 
treatment, we need to consider how such causes (diseases) 
contribute to impaired voiding function. Considering 
pathophysiological backgrounds, several contributing 
factors, such as intrinsic detrusor dysfunction (myogenic 
failure), efferent and/or afferent nerve dysfunctions, and 
dysfunctions in CNS control, have been reported (Fig. 1).

FACTORS CONTRIBUTING TO  
UNDERACTIVE BLADDER

1. Myogenic failure
Human detrusor smooth muscle bundles are arranged 

in a complicated pattern and surrounded by connective 
tissue containing significant amounts of collagen. From a 
functional viewpoint, however, the detrusor expands an 
integrated unit of interconnected muscle bundles [17]. The 
different bundles converge in the bladder neck, continue 
to the urethra, and then run an oblique or longitudinal 
course in the urethral wall. The muscles fade out distally 
in the connective tissues surrounding the urethral meatus. 
Impairment in the contractility of  the detrusor smooth 
muscle, which can be attributed to “myogenic failure,” would 
directly lead to DU/UAB.

One of the major causes of myogenic failure is “aging.” 
Symptoms of  urinary retention, urinary hesitancy, and 
incontinence, which are frequently observed with aging, 
have been attributed to UAB [18-20]. Gilpin et al. [21] reported 
on age-related morphological changes, especially decreased 
axonal content of  the human detrusor smooth muscle. 
Another histological examination that utilized human 
tissues demonstrated an increase in collagen deposition with 
aging [22]. In patients with UAB, similar histological changes, 
such as widespread degeneration of the axon, muscle loss, 
and fibrosis of the detrusor smooth muscle, were observed 
[23]. Moreover, Mansfield et al. [24] reported that mRNA 
expression of M3 muscarinic receptor decreased with aging 
and these changes may diminish the potential sensitivity 
of micromotional activity to cholinergic neurotransmitters. 
These age-related changes were recently confirmed and 
reported by Ito et al. [25,26]. They demonstrated that aged 
rats showed weaker contractile responses to carbachol and 
electrical field stimulation related to decreased cholinergic-
mediated contraction, lower M3 muscarinic receptor mRNA 
expression, and higher collagen deposition in isolated 
detrusor strips, and that cystometric investigations of aged 
rats showed greater postvoid residual volume and lower 
voiding efficiency. Pathophysiological changes in muscarinic 
receptors, especially the M3 muscarinic receptor subtype, and 
fibrosis can be theoretically and reliably considered as key 
factors for UAB.

2. Efferent nerve (motor nerve) dysfunction
Voluntary control of the LUT requires nervous interactions 

between autonomic (sympathetic and parasympathetic 
nerves) and somatic (pudendal nerves) afferent and efferent 
pathways [5]. In several pathophysiological conditions of LUT 
dysfunction [27-31], deterioration of bladder efferent function 
may be due to peripheral denervation. Various factors, such as 
nerve damage (e.g., DM) [32,33], ischemic/oxidative conditions 
(e.g., BOO and atherosclerosis) [34-39], and oxidative stress [40], 
have been assumed to induce peripheral denervation.Fig. 1. Contributing factors and mechanisms involved in underactive bladder.
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Several studies have indicated that the isolated bladder 
itself shows autonomous micromotions (microcontractions), 
which increase with bladder distension, generate sensory 
(afferent) nerve activity, and become altered in cases of 
LUT dysfunctions [41-44]. During the voiding phase in a 
normal bladder, excitation of the parasympathetic efferent 
nerve causes the smooth muscles to contract synchronously, 
thereby increasing intravesical pressure. However, indivi-
duals with bladder efferent function deterioration, especially 
by denervation, would have an attenuated initial contractile 
force in the denervated areas. Therefore, these denervated 
areas might be able to contract only when there is excited 
propagation from a neighboring intact innervated area 
or via interstitial cells that are also present between the 
bundles of  detrusor smooth muscle. Moreover, during 
voiding, the potential for micromotional propagation 
to recruit contraction in denervated areas may allow 
compensation for some loss of innervation. However, over 
time, extensive denervation may take too long to generate a 
rise in tone and contraction, which would lead to prolonged 
voiding durations with insufficient urine evacuation. Thus, 
the increasing severity of denervation would be associated 
with an attenuation of  contractibility, causing impaired 
detrusor contractility [45]. Such processes have been sugges-
ted at least in aged mice [46].

3. Afferent nerve dysfunction
Throughout the bladder filling (storage) phase, the 

parasympathetic efferent innervation (pelvic nerve) to the 
detrusor is inhibited, whereas that to the urethral smooth 
and striated muscles (hypogastric and pudendal nerves) 
is activated, preventing urinary incontinence [47]. Bladder 
distention has been supposed to evoke afferent activity via 
myelinated Aδ-fibers connected in series with smooth muscle 
fibers [48,49]. This in turn activates sympathetic outflow, 
(mainly via the hypogastric nerve), to the bladder outlet (the 
bladder neck and the urethra) and the pudendal outflow 
to the external urethral sphincter during the storage 
phase. Normal bladder distension activates low-threshold 
mechanoreceptive afferents coupled in series with detrusor 
muscle cells (myogenic pathway). However, unmyelinated 
C-fibers running in the suburothelial layer and even in the 
urothelium, coupled with urothelial cells and suburothelial 
interstitial cells, lead to signal transductions from the 
urothelium (urothelial pathway) [50]. Not only is the 
urothelium a barrier for harmful substances in the urine, it 
is also functionally active in the storage phase of micturition 
cycles [51]. In particular, the urothelium actively contributes 
to sensory functions, expressing various receptors for 

neurotransmitters [52], while urothelial cells are able to 
release neurotransmitters and signaling molecules, including 
nitric oxide, adenosine triphosphate, ACh, prostaglandins, 
substance P, and nerve growth factor [53-57]. Urothelial cell-
released substances may act directly on afferent nerves or 
indirectly via an action on suburothelial myofibroblasts 
(also referred to as ‘‘interstitial cells’’) that lie near afferent 
nerves. Myofibroblasts are extensively linked to each other, 
as well as to afferent nerve fibers and detrusor smooth 
muscles, by gap junctions (electrical synapse) and can 
release substances that in turn act on afferent nerves [5]. 
Thus, urothelial cells and myofibroblasts are believed to 
contribute to sensory mechanisms in the urinary bladder by 
chemical coupling to the adjacent sensory nerves. Therefore, 
it is conceivable that age- or disease-related changes in the 
structure and function of  the urothelium and afferent 
nerves could directly alter bladder afferent function.

Smith et al. [58] performed urodynamic studies in pati-
ents with LUT symptoms and found that those with DU 
may have defective volume sensation rather than impaired 
detrusor contractility, suggesting that reduced central 
sensitivity to volume sensation (i.e., mechanosensitive 
afferent activity) contributes to DU in nonobstructed, 
nonneurogenic symptomatic patients. Such observations are 
consistent with their previous reports wherein they show 
that peripheral and/or central sensory mechanisms may be 
important contributors to aging-related bladder dysfunction 
[9,59]. In addition, Azadzoi et al. [37] showed degenerating 
and collapsed axons, Schwann cells surrounded by dense 
connective tissue, and splitting of the myelin sheaths in a 
chronically ischemic bladder. Dahlin et al. [60] reported that 
thinly myelinated fibers were more susceptible to oxygen 
deprivation under ischemic conditions than thicker ones, 
whereas unmyelinated fibers were resistant to ischemic 
induction. Furthermore, attenuation of urothelial sensitivity 
to modulators of  potassium channel activity has been 
observed in diabetic bladders [61], which may cause afferent 
sensory dysfunction [33,62-64], as well as contribute to 
contractile force and spontaneous activity of the detrusor 
smooth muscle [61]. Mohammed et al. [65,66] reported that 
aged rats showed significant decreases in the expression 
of  calcitonin gene-related peptide (CGRP) and substance 
P on the lumbosacral dorsal root ganglion neurons and 
in the density of  pituitary adenylate cyclase-activating 
polypeptide innervation on the subepithelial plexus and the 
muscle layer of the bladder, whereas CGRP and substance 
P innervation on the muscle layer were slightly reduced. 
Moreover, Jiang and Kuo [67] recently reported that patients 
with DU had a significantly lower expression of E-cadherin, 
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which plays an important role in cell adhesion. They 
additionally demonstrated a decrease in the expression of 
M2 and M3 muscarinic receptors, P2X3 purinergic receptors, 
and endothelial nitric oxide synthase and an increase in 
the expression of β3-adrenoceptors in patients with DU [67]. 
These findings clearly show that directly altered sensory 
transduction and impaired urothelial signaling pathways 
appear to be the pathophysiological conditions for UAB/DU.

4. Brain/spinal cord dysfunctions
Symptoms of incomplete bladder emptying, which has 

been attributed to UAB, are also commonly observed in 
patients with specific neurological diseases: multiple sclerosis 
[68], Parkinson disease [69], and multiple system atrophy 
[70]. The common pathologic findings in multiple sclerosis 
are focal demyelination and plaque formation throughout 
the CNS (brain to spinal cord), which delay and/or block 
nervous system communication (nervous conduction), 
including sensory afferent function [71]. Regarding the 
relationship between lesion sites and symptoms, a previous 
study demonstrated that patients with cervical cord or 
pontine lesions were more likely to suffer from UAB/DU, 
whereas those with cerebral cortex lesions were more prone 
to having storage symptoms, and detrusor overactivity (DO) 
[72]. Although the underlying pathophysiology of  UAB/
DU in Parkinson disease is still unclear, it is conceivable to 
correlate UAB/DU with the patient’s overall motor function 
in the brain areas, including the frontal cortex, basal 
ganglia, thalamus, anterior cingulate gyrus, and caudate 
nucleus. Moreover, Kim et al. [73] recently reported that 
patients with multiple system atrophy had higher incidences 
of DU compared to those with Parkinson disease, although 
the pathophysiology of UAB/DU still remains uncertain.

Almost all patients with spinal cord injury (SCI) ini-
tially show UAB/DU or acontractile detrusor during 
spinal shock, which subsequently develop into chronic 
bladder dysfunctions depending on the level of  spinal 
cord lesions. For patients with supra-lumbosacral SCI, the 
parasympathetic and sensory spinal centers in the sacral 
spinal cord are preserved; however, synaptic reorganization 
leads to the appearance of involuntary bladder contractions 
during bladder filling, i.e., neurogenic DO [74-76]. In addition, 
the coordination between bladder contractions and urethral 
sphincter relaxation guaranteed by the pontine, where 
well known as micturition center, becomes impaired. 
Instead, bladder and urethral sphincter contractions occur 
simultaneously, such phenomenon leading to an event 
known as detrusor-sphincter dyssynergia.

Injuries in the sacral spinal cord or cauda equina could 

lead to chronically persisting DU or acontractile detrusor. In 
an animal model of cauda equina lesions, Sekido et al. [77] 
reported on the pathophysiology of UAB induced by lumbar 
spinal canal stenosis (LCS). Two weeks after surgery in rats 
with LCS, cystometry results showed that postvoid residual 
urine volume and the number of nonvoiding contractions 
increased, whereas voided volume, threshold pressure, and 
maximum intravesical pressure decreased. Moreover, isolated 
bladder strips showed an increase in the contractile response 
to electrical field stimulation. Interestingly, they reported no 
obvious changes in the detrusor muscle’s contractile response 
to carbachol stimulation and its morphology in LCS rats.

ANIMAL MODELS FOR UNDERACTIVE 
BLADDER

Due to ethical concerns, direct experimentation on 
human subjects with UAB has been limited, requiring 
studies to utilize animal models of UAB as an alternative. 
Ideal animal models are those that mimic part of human 
pathophysiology and/or a functional problem. Thus far, 
several animal models mimicking clinical UAB, which 
show “prolonged urination time” and/or “reduced contractile 
strength,” have been reported, especially in rodents.

1. Diabetes mellitus
In an animal model related to DM, streptozocin-injected 

animals (rodents) have been widely used [32,33,78]. This 
DM model is relatively guaranteed the experimental 
reproducibility with higher glucose blood level, but 
simultaneously needs to pay attention to the differentiation 
from the influence of polyuria, which can be distinguished 
by sucrose-induced polyuria animal model [63]. Moreover, 
genetical DM animals have long been used and recognized 
as mild DM model, which may be similar to type II DM in 
human [79-83].

2. Aging
The certain definition of  “aging” is still unclear in 

rodents, however, animals at more than 12 months old are 
generally used [84,85], and those at more than 24 months old 
are frequently used for the investigations [25,26,59,86].

3. BOO
Surgery for the creation of  BOO is basically similar 

among several studies, but the degree of obstruction some-
times depends on the techniques, animal species, and sexes 
[87]. Although a short period of time of obstruction shows 
sign of UAB [88,89], prolonged periods of obstruction (chronic 
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or persistent BOO) generally appears as more severe UAB 
[34,89-91].

4. Nerve injury (especially of the pelvic nerve)
There have been several published studies reported 

as a UAB model by using pelvic nerve crash- or cryo-
injury (unilaterally or bilaterally) [92-96], in which detrusor 
contractility was remarkably impaired. In case of bilateral 
pelvic nerve injury by complete resection, the animals 
showed severe nervous dysfunctions, which were resemble 
to the situation with SCI [95].

5. Ischemia
Ischemic models have long been investigated on bladder 

dysfunctions [60,97-99]. To address more clinical situation, 
atherosclerosis models have recently been reported [37,100], 
and the animal with longer period of time of atherosclerosis 
may be a better candidate as an ideal UAB model [38,39].

Given the absence of alternative tools for determining 
the pathophysiology of UAB, an animal model needs to be 
used. However, species differences between animals and 
humans should be considered. Moreover, an appropriate 
animal model of  UAB has not been established, because 
UAB carries multifactorial symptoms and has yet to 
be properly def ined. To advance pathophysiological 
understanding and develop medical interventions including 
pharmacotherapy for UAB, various animal models need to 
be further established.

CONCLUSIONS

The pathophysiology of  UAB/DU includes failure in 
detrusor muscle contractility, bladder efferent and afferent 
nerve dysfunction, and failure of  the CNS to coordinate 
voiding function. Though a few publications have helped 
us better understand the complex pathophysiological 
mechanisms of  UAB, many uncertainties still remain, 
particularly in the role of aging, altered sensory function, 
and the translational value of existing animal models.
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