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Background: Gastric cancer is a common gastrointestinal malignancy. Since it is often
diagnosed in the advanced stage, its mortality rate is high. Traditional therapies (such as
continuous chemotherapy) are not satisfactory for advanced gastric cancer, but
immunotherapy has shown great therapeutic potential. Gastric cancer has high
molecular and phenotypic heterogeneity. New strategies for accurate prognostic
evaluation and patient selection for immunotherapy are urgently needed.

Methods: Weighted gene coexpression network analysis (WGCNA) was used to identify
hub genes related to gastric cancer progression. Based on the hub genes, the samples
were divided into two subtypes by consensus clustering analysis. After obtaining the
differentially expressed genes between the subtypes, a gastric cancer risk model was
constructed through univariate Cox regression, least absolute shrinkage and selection
operator (LASSO) regression and multivariate Cox regression analysis. The differences in
prognosis, clinical features, tumor microenvironment (TME) components and immune
characteristics were compared between subtypes and risk groups, and the connectivity
map (CMap) database was applied to identify potential treatments for high-risk patients.

Results: WGCNA and screening revealed nine hub genes closely related to gastric
cancer progression. Unsupervised clustering according to hub gene expression grouped
gastric cancer patients into two subtypes related to disease progression, and these
patients showed significant differences in prognoses, TME immune and stromal scores,
and suppressive immune checkpoint expression. Based on the different expression
patterns between the subtypes, we constructed a gastric cancer risk model and
divided patients into a high-risk group and a low-risk group based on the risk score.
High-risk patients had a poorer prognosis, higher TME immune/stromal scores, higher
inhibitory immune checkpoint expression, and more immune characteristics suitable for
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immunotherapy. Multivariate Cox regression analysis including the age, stage and risk
score indicated that the risk score can be used as an independent prognostic factor for
gastric cancer. On the basis of the risk score, we constructed a nomogram that relatively
accurately predicts gastric cancer patient prognoses and screened potential drugs for
high-risk patients.

Conclusions: Our results suggest that the 7-gene signature related to tumor progression
could predict the clinical prognosis and tumor immune characteristics of gastric cancer.
Keywords: gastric cancer, tumor microenvironment, immunotherapy, WGCNA, prognosis
INTRODUCTION

Gastric cancer is the fifth most frequently diagnosed cancer and
the third leading cause of cancer-related death worldwide (1).
Many patients are diagnosed with advanced gastric cancer, and
another 25–50% of patients will develop metastasis during the
course of the disease (2). Despite continuous improvements in
treatment, the 5-year survival rate of metastatic gastric cancer is
only 5–20% (3–5). Immunotherapy has broad application
prospects in gastric cancer, and immune checkpoint blockade
is now established as a treatment for chemorefractory gastric
cancer (6). The use of immunotherapy alone or in combination
with other therapies can have a positive impact on the treatment
of gastric cancer, but due to the high heterogeneity of gastric
cancer, the response rate of patients during immunotherapy is
not satisfactory (7, 8). Therefore, it is necessary to identify
biomarkers and genetic characteristics to define the subgroup
of gastric cancer patients most likely to respond to a specific
immunotherapy (9, 10).

The tumor microenvironment (TME) is composed of cellular
and noncellular components, including peripheral blood vessels,
immune cells, fibroblasts, tumor stem cells, and extracellular
matrix (ECM) (11). Studies have fully shown that tumor growth
depends not only on the accumulation of abnormal genetic
material in the original cancer cells but also on the TME,
which provides conditions for the survival, growth and
migration of cancer cells (12, 13). Immune cells in the TME,
especially tumor infiltrating lymphocytes (TILs), have become
prognostic and predictive factors for many solid tumors (14). In
addition, immune cells in the TME are also important factors
affecting the immunotherapy response (15), and TILs have been
used as markers for the immunotherapy response. Immune cells
in the TME play an important role in tumorigenesis, and tumor-
related immune cells can antagonize or promote tumor
progression, with the specific role depending on the
composition and proportion of immune cells. Compared with
traditional chemotherapy, immunotherapy mainly uses immune
cells to specifically identify and attack cancer cells. Therefore, by
analyzing the composition and proportion of immune cells in the
tissues of gastric cancer patients, it is possible to evaluate whether
the patient can benefit from immunotherapy.

At present, the American Joint Committee on Cancer (AJCC)
stage is still the most basic prognostic prediction tool for gastric
cancer, and a high stage indicates a poor prognosis. However,
2

due to the high heterogeneity of gastric cancer, patients with the
same tumor-node-metastasis (TNM) stage may have different
prognoses (16). Similarly, differences in responses to
immunotherapy among patients may also be related to their
genetic and molecular backgrounds. Therefore, it is necessary to
fully understand the specific characteristics of each patient,
incorporate other important factors, and then conduct
individualized treatment and prognosis prediction. Through
the bioinformatics analysis of large-scale genomic or
transcriptomic data, molecular markers related to the
occurrence, development and prognosis of gastric cancer can
be screened to provide reliable treatment targets for precision
medicine, which has advantages in personalized treatment and
prognosis prediction and broad prospects (17–22).

In this study, we found a module related to tumor progression
in the gastric cancer dataset by the weighted gene coexpression
network analysis (WGCNA) method and identified nine hub
genes. According to the hub genes, unsupervised clustering
grouped the gastric cancer samples into two subtypes with
different clinical and immune characteristics. We also explored
the differences in gene expression patterns between the two
subtypes. Finally, a 7-gene signature based on the differentially
expressed genes was constructed. A nomogram based on the age,
stage and risk score was established to provide theoretical
guidance for clinical prognosis prediction. By analyzing the
relationship between the risk score, TME and immune
characteristics, it was found that high-risk patients were more
suitable for immunotherapy, which provides theoretical support
for the application of clinical immunotherapy. The flow chart of
this research is shown in Figure 1.
MATERIALS AND METHODS

Patients and Data Processing
Clinical samples for inclusion in this study were required to meet
the following criteria: histologically confirmed as gastric
adenocarcinoma, surgical resection of primary gastric cancer,
age ≥18 years, with complete pathological, surgical, treatment,
and follow-up data. Clinical samples collected in this study
required a clinical diagnosis of gastric adenocarcinoma and no
radiotherapy and chemotherapy prior to surgery. Detailed
patient information in publicly available databases was
available with reference to relevant research literature.
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According to our patient selection criteria, sixteen pairs of gastric
cancer and adjacent normal tissues were collected from
Shandong Cancer Hospital and frozen in liquid nitrogen until
further analysis. Gastric cancer transcriptome data and clinical
data GSE26901 (n = 109) (23), GSE15460 (n = 248) (3),
GSE62254 (n = 300) (5), GSE15459 (n = 192), and GSE84437
(n = 433) were downloaded from the Gene Expression Omnibus
(GEO) database (http://www.ncbi.nlm.nih.gov/geo/). The
transcriptome data included the original data files (CEL files)
and platform files. Gastric adenocarcinoma mutation data,
survival data, and fragments per kilobase of transcript per
million mapped reads (FPKM) transcriptome data were
downloaded from The Cancer Genome Atlas (TCGA) (https://
cancergenome.nih.gov/) and the cBioPortal database (http://
www.cbioportal.org/), and there were 323 samples with
transcriptome and survival data and 286 samples with
transcriptome, survival and mutation data. The transcriptional-
level differential expression analysis results of nine hub genes and
seven genes used for modeling between normal tissues and
Frontiers in Oncology | www.frontiersin.org 3
tumor tissues were from GEPIA (http://gepia.cancer-pku.cn/
index.html) (24). The survival curves of nine hub genes and
seven genes used for modeling were from the Kaplan–Meier
p lo t t e r (h t tp : / /kmplo t . com/ana ly s i s / index .php?p=
background) (25).

The “affy” and the “impute” R packages in R/Bioconductor
software were used for GEO data processing, and the “limma”
package was used for differential gene expression analysis. We
referred to Yang et al. (26) for the specific processing procedures.
The ESTIMATE (Estimation of STromal and Immune cells in
MAlignant Tumor tissues using Expression data) algorithm was
applied to evaluate stromal and immune microenvironment
infiltration (27), and the proportions of infiltrating stromal and
immune cells in gastric cancer samples were quantified by
stromal and immune scores using gene expression signatures.
In this study, the immune score, stromal score, ESTIMATE
score, and tumor purity were all obtained through the
“estimate” R package in R software. The CIBERSORT
algorithm was used to normalize the expression data to infer
FIGURE 1 | Detailed flow chart of this research.
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the absolute proportions of 22 kinds of infiltrating immune cells.
CIBERSORT is a deconvolution algorithm that uses a set of
reference gene expression values (547 genes) to predict the
proportions of 22 immune cell types from a large number of
tumor sample expression data by support vector regression (28).
The infiltration levels of 22 immune cells were obtained through
the CIBERSORT website (https://cibersort.stanford.edu/). The
“maftools” R package was used to analyze the quantity and
quality of gene mutations in the high-risk and low-risk groups,
and the “GenVisR” package was used to draw a mutation
waterfall chart. The Connectivity Map (CMap) database was
used to find drugs that were negatively correlated with the input
differential gene profile after acting on the cells (29) (https://
portals.broadinstitute.org/cmap/).

Construction of a Weighted Gene
Coexpression Network
The GSE26901 dataset includes 109 gastric cancer patients and
provides the patient sex, age, and tumor stage, which is suitable
for the construction of a weighted gene coexpression network.
The data matrix of gene expression in GSE26901 was constructed
by using the “WGCNA” R package, and the top 25% of genes in
tumor samples with the largest variance were selected as the
input dataset for the subsequent WGCNA. To select the standard
scale-free network, the sample hierarchical clustering method
was used to detect and remove abnormal samples before
selecting the appropriate soft threshold function. In the next
stage, the adjacency matrix and topological overlap matrix
(TOM) were constructed, the corresponding dissimilarity (1-
TOM) was calculated, and dynamic tree cutting was used to
complete the gene tree and module identification. The minimum
module size was 30. Then, the module characteristic genes were
fused by clustering, and the highly similar modules were merged.
The degree of difference was less than 0.25, and the correlation
between the module characteristic genes and the clinical
phenotype of gastric cancer was calculated.

Clustering and Enrichment Analysis
Consensus clustering is an algorithm that can be used to identify
cluster members and their numbers in data sets (such as
microarray gene expression). In this study, based on the
expression values of the nine hub genes, we used the
“ConsensusClusterPlus” software package to cluster samples
into two clusters. Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) analyses were
performed using the “ClusterProfiler” R package. The “GSVA” R
software package was used for gene set variation analysis (GSVA)
in different sample clusters (30). Gene set enrichment analysis
(GSEA) was performed to investigate the functions correlated
with different risk groups by GSEA 4.1.0, and the software was
downloaded from the website for GSEA (http://www.gsea-
msigdb.org/gsea/downloads). ssGSEA (single sample GSEA)
analysis of gastric cancer samples based on 29 immune-related
gene sets was performed using the “gsva” package, and scores of
immune cell types, functions, and pathways were obtained for
each sample. Hierarchical clustering of samples based on scores
Frontiers in Oncology | www.frontiersin.org 4
using the “sparcl” R package allowed the samples to be divided
into high and low immune groups (30, 31).

Core Network Identification
The genes in the midnight blue module were input into the
Search Tool for the Retrieval of Interacting Genes/Proteins
(STRING) website for protein-protein interaction (PPI)
analysis, and PPI scores were obtained. Then, the results were
imported into Cytoscape and analyzed using the MCODE plug-
in. Finally, two core subnetworks (subnets) were obtained.

Construction and Validation of the
Risk Model
First, the GSE62254 and GSE15460 datasets were combined to
eliminate batch effects using the “sva” R package. A total of 548
samples was obtained. In total, 276 samples were randomly
selected as the training set, and the remaining 272 samples were
used as the validation set. The “survival” R package was used to
perform univariate Cox regression analysis of the differentially
expressed genes between clusters 1 and 2, the “glmnet” R package
was used for least absolute shrinkage and selection operator
(LASSO) analysis, and the “survival” R package was used for
multivariate Cox regression analysis to establish a risk model. The
risk score was obtained using the “predict” function in R software,
and the mathematical model of the risk score is as follows:

Risk   score   =   h0(t)∗exp(b1X1 +   b2X2 +… + bnXn)
where n is the representative number of modeling genes; b and X
are the correlation coefficient and expression level of model gene
prediction, respectively; and h0(t) is derived from the
“predict” function.

Construction and Assessment of
the Nomogram
We used the “rms” R package to build the nomogram and the
calibration chart. The calibration chart was used to evaluate the
performance of the nomogram, and the “pROC” R package was
used to draw the receiver operating characteristic (ROC) curve to
evaluate the accuracy of the nomogram. Decision curve analysis
(DCA) was employed to determine the clinical usefulness of the
nomogram by quantifying the net benefits at different threshold
probabilities using the “rmda” package in R software.

RNA Extraction, QRT-PCR
Total RNA in clinical samples was extracted using the TRIzol
method following the manufacturer’s protocol (Invitrogen,
Carlsbad, CA, USA). Complementary DNA (cDNA) was
synthesized using the PrimeScript™ RT Reagent Kit with
gDNA Eraser (TaKaRa, Japan). The expression of the seven
genes was verified by PCR using TB Green™ Premix Ex Taq™

(TaKaRa, Japan). The primers used in QRT-PCR assays are listed
in Supplementary Table 1.

Statistical Analysis
We used the “survival” R package to draw the survival curve in R
software and perform statistical analysis. Time-dependent
receiver operating characteristic (ROC) analysis and the
June 2021 | Volume 11 | Article 690129
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calculation of the area under the curve (AUC) were performed by
the “survcomp” and “survival” packages of R software. The
comparison of integrated area under the curves (IAUC) used
“iauc.comp” package. GraphPad Prism 8.0 was used to draw
various bar graphs. The data were reported as the mean ± SEM.
In this study, analyses between the two groups were performed
using Student’s t-tests or Mann–Whitney tests. One-way analysis
of variance was used to analyze the difference between multiple
groups. Categorical variables in different groups were analyzed
used the chi-square test by SPSS22.0. Spearman’s test was used to
analyze the correlation between the two groups. Statistical
significance was described as follows: n.s., not significant;
*P < 0.05; **P < 0.01; and ***P < 0.001.
RESULTS

WGCNA Identified the Modules Related to
Tumor Progression and Further Screened
the Hub Genes
To identify genes related to the progression of gastric cancer, a
coexpression network was constructed by WGCNA in GSE26901.
After removing five outlier samples, 104 samples were used to
construct an adjacency matrix (Supplementary Figure 1A).
In this study, we selected b = 9 as the soft thresholding power
to achieve a scale-free network (Supplementary Figures 1B, C).
As a result, 10 gene coexpression modules were identified
after using a merged dynamic tree cut (Supplementary
Figure 1D). A network heatmap among 1,000 selected random
genes was constructed to analyze the interaction relationships
of the 10 modules (26), and it was clearly found that the
genes within the module were highly correlated. In addition,
the modules are also interrelated rather than independent
of each other (Supplementary Figure 1E). By calculating the
correlations between module eigengenes and clinical features,
we found that the midnight blue module had the strongest
correlation with the AJCC stage (Figure 2A). The heatmap
shows the expression profiles of all genes in the midnight blue
module (Supplementary Figure 1F).

To gain further insight into the function of genes in the
midnight blue module, GO and KEGG analyses were performed.
We detected enrichment in several biological process (BP) GO
terms, such as positive regulation of defense response, leukocyte
migration and regulation of the inflammatory response
(Figure 2B). In terms of cellular components (CC), the
secretory granule membrane, external side of the plasma
membrane and collagen-containing extracellular matrix were
enriched (Figure 2B). Moreover, some molecular function
(MF) GO terms, such as G protein-coupled receptor binding,
chemokine receptor binding and receptor ligand activity, were
enriched (Figure 2B). Regarding KEGG pathway analysis, the
Toll-like receptor signaling pathway, chemokine signaling
pathway and cytokine–cytokine receptor interaction were
mostly associated with these genes (Figure 2C).

To obtain the hub genes, we analyzed the PPI network of the
genes in the midnight blue module, imported the results into
Frontiers in Oncology | www.frontiersin.org 5
Cytoscape software, processed them with the MCODE plug-in,
and obtained two subnets, subnet1 and subnet2, under the
condition of degree cutoff = 2 (Figures 2D, E). We chose
subnet 1 as the next research object (Figure 2D) because it
had more genes (n = 33), complex networks and a high MCODE
score. We considered the importance of genes in the midnight
blue module and the relevance of clinical staging, and under the
conditions of module membership >0.8 and significance of
correlations with AJCC stage >0.2, 16 genes in the midnight
blue module were selected (32) (Figure 2F). When the 16 genes
of the midnight blue module and the above 33 genes of subnet 1
overlapped, a total of nine hub genes was obtained (Figure 2G).

To understand the role of the nine hub genes in the progression
of gastric cancer, we analyzed the differential expression of these
genes in cancer tissues and normal tissues in GEPIA. The
results showed that C1QA, CIQB, C1QC, CD14, FCER1G,
and TYROBP were highly expressed in gastric cancer tissues
compared with normal tissues (Supplementary Figure 2),
and there were no significant differences in CD163, CSF1R,
and MS4A6A. Kaplan–Meier survival analysis in the Kaplan–
Meier plotter showed that all hub genes except for CD14 and
FCER1G had obvious prognostic value (Supplementary Figure 3).

Two Subtypes With Significant Differences
in Terms of Clinical and Immune
Characteristics and Biological Function
Were Identified Based on the Consensus
Clustering of Nine Hub Genes
To further investigate whether the nine progression-related hub
genes play a synergistic role in gastric cancer, we used the
“ConsensusClusterPlus” software package to cluster patients
according to the expression profiles of the nine genes in
GSE15460. The patients were divided into two separate clusters
(Supplementary Figure 4A). Next, we considered whether two
was the best cluster number. The consensus cumulative
distribution function (CDF) diagram shows that when the
cluster number was 2, the CDF curve had the smallest slope
(Supplementary Figure 4B). We used the “NbClust” software
package to evaluate the optimal number of clusters and found
that the optimal number of clusters was 2 (Supplementary
Figure 4C). To further verify the classification, we evaluated
the two clusters through principal component analysis (PCA),
and the results showed that the two clusters could still be
separated (Supplementary Figure 4D). To assess the clinical
significance of the classification, we compared the differences in
prognosis and clinical characteristics between the two subtypes
of gastric cancer patients. We found that compared with cluster 1
patients, cluster 2 patients had significantly worse prognoses
(Figure 3A). The distribution of classifications reported before of
the two clusters of patients was significantly different. Metabolic
and proliferative types were mainly observed in cluster 1, while
the invasive subtype was observed more frequently in cluster 2
(Figure 3B) (33). Regarding the stage, there were higher
proportions of stages I and II patients in cluster 1 and higher
proportions of stages III and IV patients in cluster 2 (Figure 3B).
We then analyzed the expression of several classic invasion and
June 2021 | Volume 11 | Article 690129
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migration markers in the two clusters of patients and found that
VIM, SNAI1, SNAI2, TWIST1, MMP2, MMP7, and MMP9
were highly expressed in cluster 2 patients (Supplementary
Figure 4E). The heatmap results showed that compared with
that in cluster 1, the expression of the nine hub genes in cluster 2
was significantly higher (Figure 3B). Since the TME plays an
important role in cancer progression, we first used the “estimate”
R package in the GSE15460 dataset to obtain the TME scores of
the two sample clusters and then compared them. The immune
score, stromal score, and estimated score values showed that
there were more infiltrating immune cells and stromal cells in
cluster 2 than in cluster 1 (Figure 3C). Conversely, cluster 1 had
a higher tumor purity than cluster 2 (Supplementary Figure 4F).
In view of the difference in the level of immune cell infiltration
between the two types of patients, we also compared the levels of
Frontiers in Oncology | www.frontiersin.org 6
22 kinds of immune cells between the two groups. We found that
there were many kinds of immune cells with significantly
different infiltration levels in the two groups. For example,
cluster 2 exhibited greater infiltration of CD8+ T cells, CD4+
memory-activated cells, M1 macrophages and M2 macrophages,
and cluster 1 exhibited greater infiltration of B cells and follicular
helper T cells (Figure 3D). In addition, we found that there were
differences in the expression of multiple immunosuppressive
checkpoint molecules between the two groups, and their
expression levels in cluster 2 were significantly higher than
those in cluster 1 (Figure 3E). To compare the biological
function differences between the two clusters, we conducted
GSVA analysis. The results of hallmark and KEGG enrichment
analysis showed that a variety of signaling pathways related to
the immune response, signal transduction, epithelial-
A B
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FIGURE 2 | The identification of hub genes related to gastric cancer progression. (A) Heatmap of the correlations between module eigengenes and the clinical traits
of gastric cancer. (B) Gene Ontology (GO) analysis of the genes in the midnight blue module (p < 0.05). (C) Kyoto Encyclopedia of Genes and Genomes (KEGG)
analysis of the genes in the midnight blue module (P < 0.05). (D, E) Protein-protein interaction (PPI) core network of subnet 1 (MCODE score = 15.1) and subnet 2
(MCODE score = 3.0) in the midnight blue module. (F) Scatter plot genes in the midnight blue module. The vertical line represents the cutoff of module membership =
0.8, and the horizontal line represents the cutoff of gene significance for AJCC stage = 0.2. (G) The Venn diagram shows the intersection of the MCODE core network
and the module membership (>0.8) and the significance of correlations with AJCC stage (>0.2) genes in the module.
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FIGURE 3 | Continued
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FIGURE 3 | Assessment of the differences in clinical characteristics and immune components between the two subtypes. (A) Kaplan–Meier survival analysis of the
two clusters (cluster 1 n = 132, cluster 2 n = 116; log-rank test). (B) Analysis of the differences in clinical characteristics between the two clusters (cluster 1 n = 132,
cluster 2 n = 116; categorical variables, chi-square tests; continuous variable, Student’s t-tests). (C) Identification of the differences in the tumor microenvironment
(TME) between the two clusters (cluster 1 n = 132, cluster 2 n = 116; Student’s t-tests). (D) Comparison of the difference in the number of immune cells between
the two clusters (cluster 1 n = 132, cluster 2 n = 116; Wilcoxon tests). (E) Comparison of the expression levels of immune checkpoint molecules between the two
clusters (cluster 1 n = 132, cluster 2 n = 116; Student’s t-tests). (F) Difference heatmap of GSVA-based HALLMARK enrichment analysis between the two clusters
(false discovery rate (FDR) <0.05) (cluster 1 n = 132, cluster 2 n = 116; Student’s t-tests). (G) Difference heatmap of GSVA-based KEGG enrichment analysis
between the two clusters (FDR <0.05) (cluster 1 n = 132, cluster 2 n = 116; Student’s t-tests). All data are from the GSE15460 dataset. Significant difference
between the two groups: *P < 0.05; ***P < 0.001.
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mesenchymal transition (EMT), hypoxia and tumor progression
pathways were enriched in cluster 2 samples (Figures 3F, G).

In short, based on nine hub genes, the samples can be divided
into two subtypes by consensus clustering, and the subtypes have
obvious differences in clinical and immune characteristics and
biological functions.

A Risk Model With Prognostic Value Was
Constructed Based on Seven Differentially
Expressed Genes Between the
Two Clusters
To explore the hidden mechanism that drives the clinical and
immune characteristics and biological function differences between
the two clusters, we analyzed the differences between the mRNA
expression profiles of the two clusters of samples in GSE15460, and
in total, 200 differentially expressed genes were obtained (false
discovery rate (FDR) <0.05, |log2FoldChange| >1), of which 174
were upregulated and 26 were downregulated in cluster 2 versus
cluster 1 (Supplementary Figure 5A and Supplementary Table 2).
The heatmap shows the top 20 differentially expressed genes that
were upregulated and downregulated in cluster 2 (Supplementary
Figure 5B). Subsequently, GO and KEGG enrichment analyses were
performed on the differentially expressed genes. In the GO and
KEGG enrichment analysis, the response to chemokines,
extracellular matrix, CXCR chemokine, chemokine signaling
pathway and other signaling pathways related to immune cell
response and migration were enriched (Supplementary Figures
5C–F). Based on this finding, we speculated that these differentially
expressed genes may play a role in immune cell migration and the
immune response.

To further explore the clinical value of the differentially
expressed genes, we first performed univariate Cox regression
analysis on the above 200 differentially expressed genes in the
training set and obtained 88 genes with prognostic value
(P <0.01) (Supplementary Table 3). The LASSO regression
analysis method was used to remove the strong collinearity
genes (Supplementary Figures 6A, B), and finally, 10 genes
were obtained in the training set (Supplementary Table 4). After
multivariate Cox regression, seven genes were obtained by
further optimization analysis: APOD, APOE, CCDC80,
CTHRC1, FERMT2, GXYLT2, and SMPX (all seven genes
mentioned below refer to these seven genes). Furthermore, we
used the “predict” function of R to construct a 7-gene signature
to estimate the risk score of each patient based on the mRNA
expression level of each gene weighted by the multivariate Cox
regression coefficient (Supplementary Table 5). Based on the
median risk score, patients in the training set were divided into
Frontiers in Oncology | www.frontiersin.org 8
high- and low-risk groups. Kaplan–Meier survival analysis
showed that patients in the high-risk group had worse
prognoses than those in the low-risk group (Figure 4A). The
heatmap of the survival time, survival status, and risk score
showed the distribution of patients into different risk groups
(Figure 4B). The expression heatmap showed that the seven
modeled genes were highly expressed in the high-risk group
(Figure 4C). The time-dependent ROC curve analysis based on
the risk score showed that the 1-year, 3-year and 5-year area
under the curve (AUC) values were 0.719, 0.758, and 0.738
(Figure 4D), respectively, indicating that the risk score can
predict survival with relatively high accuracy. We next verified
the risk model in the verification set. Kaplan–Meier survival
analysis showed that there were also significant differences in the
survival of patients in the high- and low-risk groups in the
validation set, and the high-risk group had a worse prognosis
(Supplementary Figure 6C). The distribution heatmap of
the risk score, survival time, and survival status shows the
distribution of patients into different risk groups in the
validation set (Supplementary Figure 6D). The expression
heatmap of the validation set also showed that the expression
trends of the seven genes used for modeling were consistent with
those of the training set (Supplementary Figure 6E). The time-
dependent ROC curve of the risk validation set is shown
(Supplementary Figure 6F). In addition, to further verify the
universality of the risk model, we verified it using several gastric
cancer datasets. For the GSE15459, GSE15460, GSE62254,
GSE84437 and TCGA datasets, the Kaplan–Meier overall
survival curve showed poor prognoses in the high-risk group
(Figures 4E–G and Supplementary Figures 6G, H), and the
time-dependent ROC curve showed the accuracy of the survival
curve for predicting survival at different times (Figures 4H–J and
Supplementary Figures 6I, J). The disease-free survival (DFS)
curve yielded the same results as the overall survival curve
(Figure 4K), and the ROC curve showed the accuracy of the
model in predicting the DFS rate at different times in the
GSE62254 dataset (Figure 4L).

To explore the clinical value of the risk score, we combined
clinical indicators, including the sex, age, stage, and Lauren
classification, to perform univariate Cox regression analysis in the
training set and found that the age, stage, and risk score had
significant prognostic significance (Figure 5A). We also
conducted univariate Cox analysis on different validation sets and
found that the risk score had prognostic significance in these
datasets (Supplementary Figures 7A–G). The results of
multivariate Cox regression analysis showed that the risk score
can be used as an independent prognostic factor (Figure 5A).
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To facilitate clinical application, we constructed a nomogram
in the training set, according to the results of univariate Cox
regression analysis in training and validation sets, which
integrates the age, stage, and risk score (Figure 5B). The line
segments in the three calibration graphs are all close to the 45°
line, indicating that the nomogram shows good a prediction
performance at 1, 3, and 5 years (Figures 5C–E). In addition,
calculations revealed that the nomogram concordance index was
Frontiers in Oncology | www.frontiersin.org 9
0.766, and the 95% confidence interval (CI) was 0.730–0.801.
ROC analysis was used to evaluate the predictive accuracy of the
nomogram, and the area under the curve (AUC) values of the 1-,
3-, and 5-year line graphs were 0.846, 0.849, and 0.845,
respectively (Figures 5F–H). The decision curve showed that
at 1, 3, and 5 years, the threshold probability was 3–79%, 4–83%,
and 5–85%, respectively, and within this range, and the
nomogram was used to predict survival more accurately
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FIGURE 4 | Construction of a 7-gene signature for gastric cancer based on differentially expressed genes between the two clusters. (A) Kaplan–Meier survival
analysis of the different patient risk groups (high-risk n = 138, low-risk n = 138; log-rank test). (B) The survival time, survival status and risk score of patients in
different risk groups (high-risk n = 138, low-risk n = 138). (C) Heatmaps of the expression of the seven model genes in different risk groups of patients (high-risk
n = 138, low-risk n = 138). (D) Time-dependent receiver operating characteristic (ROC) analysis of the risk score in gastric cancer patients. (E) An overall survival
curve was drawn for the GSE15459 datasets based on the same cutoff value used to obtain the training set risk score (high-risk n = 100, low-risk n = 92). (F) An
overall survival curve was drawn in GSE15460 datasets based on the same cutoff value used to obtain the training set risk score (high-risk n = 127, low-risk
n = 121). (G) An overall survival curve was drawn for the GSE62254 datasets based on the same cutoff value used to obtain the training set risk score (high-risk
n = 138, low-risk n = 162). (H–J) Plot of time-dependent survival ROC curves in different datasets. (K) A disease-free survival (DFS) curve was drawn for the
GSE62254 dataset according to the same cutoff value used to obtain the training set risk score (high-risk n = 138, low-risk n = 162). (L) Plot of the time-dependent
ROC curve for DFS. The data for (A–D) are from the training set. Data for (E, H) are from the GSE15459 dataset; (F, I) are from GSE1540; and (G, J–L) are from the
GSE62254 dataset.
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FIGURE 5 | Construction of a nomogram based on the age, stage and risk score. (A) Univariate Cox analysis was used to analyze the clinical factors and risk score,
and multivariate analysis was used to analyze the significant factors from the univariate Cox analysis. (B) A nomogram for clinical diagnosis was constructed based
on clinical characteristics and the risk score. (C–E) The calibration plots for predicting recurrence at 1, 3, and 5 years. The X-axis represents the predicted
recurrence probability from the nomogram, and the y-axis represents the actual recurrence probability. (F–H) Time-dependent ROC analysis of gastric cancer patient
survival was used to evaluate the predictive accuracy of our nomogram and compare it with other previously developed and validated models. The area under the
curve (AUC) was calculated and compared (Mann–Whitney tests). (I–K) Decision curve analysis of the nomogram for 1-, 3- and 5-year risk. The x‐axis represents the
threshold probability, and the y‐axis represents the net benefit. The black line represents the assumption that no patients died at 1, 3, or 5 years. The gray line
represents the assumption that all patients die at 1, 3, or 5 years. The blue dotted line represents the prediction model of the nomogram. All data are from the
training set. (L) The heatmap shows the results of real-time fluorescent quantitative PCR for detecting the mRNA levels of the seven genes in 16 pairs of gastric
cancer and adjacent normal tissues (n = 16, paired Student’s t-tests). Significant difference between the two groups: *P < 0.05; **P < 0.01; ***P < 0.001.
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(Figures 5I–K). We also compared our nomogram with three
previously developed and validated prognostic models of gastric
cancer, namely, GPSGC nomogram (34), GRGs nomogram (35),
and mPS_colon (36). The time-dependent ROC curve analysis of
our nomogram, GPSGC nomogram, GRGs nomogram,
mPS_colon showed that the 1-, 3-, and 5-year areas under the
curve (AUC) values were 0.846, 0.813, 0.535, and 0.525; 0.849,
0.831, 0.559, and 0.608; 0.845, 0.834, 0.592, and 0.623
(Figures 5F–H). Compared with GPSGC nomogram (Mann–
Whitney tests; P <0.001), GRGs nomogram (Mann–Whitney
tests; P <0.001) and mPS_colon (Mann–Whitney tests;
P <0.001), our nomogram has a larger area under the curve
(Figures 5F–H). In short, these results show that our nomogram
has a good predictive performance and clinical application value.

To understand the roles of the seven genes in the progression
of gastric cancer, we detected the mRNA expression levels of
seven genes in 16 pairs of gastric cancer and adjacent normal
tissues. The results showed that APOE, CTHRC1, and GXYLT2
were highly expressed in gastric cancer tissues compared with
adjacent normal tissues (Figure 5L and Supplementary
Figures 8B, D, F), while APOD was expressed at low levels in
gastric cancer tissues (Figure 5L and Supplementary
Figure 8A), and there were no significant differences in
CCDC80, FERMT2, and SMPX (Supplementary Figures 8C, E,
G). We also analyzed the expression differences of these seven
genes in cancer tissues and normal tissues in GEPIA, which were
consistent with our detection results (Supplementary
Figures 8H–N). Kaplan–Meier survival analysis in the Kaplan–
Meier plotter showed that all genes had obvious prognostic value
and that high expression indicated a poor prognosis
(Supplementary Figure 9). The circle graph shows the
chromosomal location of the seven genes involved in
the model (Supplementary Figure 10A). The bar chart shows
the genetic alteration rate of the seven signature genes and their
distribution in TCGA patients (Supplementary Figure 10B), and
the results show that the genetic alteration rates of APOD, CCDC80,
and CTHRC1 were greater than 5% (Supplementary Figure 10B).

Overall, a gene signature was constructed based on seven
differentially expressed genes that clustered patients into high-
and low-risk groups with different prognoses, and a nomogram
was constructed based on the age, stage, and risk score and had a
good ability to predict prognoses.

There Were Significant Differences in
Clinical Characteristics and Biological
Functions Between Different Risk Groups
We analyzed and compared the clinical characteristics of patients
in different risk groups in the GSE62254 dataset. The heatmap
shows that the distributions of the T stage, M stage, tumor stage,
Lauren classification, lymphovascular invasion and subgroup in
the high- and low-risk groups were significantly different
(Figure 6A). We found that the risk score was significantly
altered among samples of different stages (Figure 6B), with a
higher stage indicating a higher risk score. Compared with other
subtypes, diffuse-type disease was related to a higher risk score
(Figure 6C). Patients with lymphatic invasion had a higher risk
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score than patients without lymphatic invasion (Figure 6D).
Mesenchymal phenotype (MP) patients had a higher risk score
than epithelial phenotype (EP) patients (Figure 6E). Metastasis
(M1) patients had a higher risk score than no metastasis (M1)
patients (Figure 6F). We also compared several common
molecular phenotypic signatures, and the results showed that
proliferation, cadherin-1 (CDH1) expression, and methylation
signatures were strong indicators of a low risk, while EMT and
cytokine signatures were strong indicators of a high risk
(Figure 6G). Based on this finding, we speculate that most
patients in the low-risk group have early-stage cancer, in which
cell proliferation is a dominant feature, while most patients in the
high-risk group have advanced-stage disease, which has invasion
and migration characteristics. To verify our hypothesis and
explore the differences in biological function between different
risk groups in driving the progression of gastric cancer, we
conducted GSEA in GSE62254. The results showed that the
gene set enriched in low-risk samples was related to DNA
replication and repair pathways (Figure 6H), while the gene
set enriched in high-risk samples was related to cancer and
tumor metastasis-related pathways (Figure 6I).

To further confirm the relationship between the risk score
and EMT, we assessed the correlations between EMT markers
and the risk score in GSE62254. The circle graph results show
that the risk score is positively correlated with the expression of
EMT-promoting molecules CDH2, SNAIL1, SNAIL2, and VIM
and negatively correlated with the expression of the EMT-
inhibiting molecule CDH1 (Figure 6J). We also compared
gene mutations in different risk groups in the TCGA dataset
but found no difference in the total mutation load
(Supplementary Figures 11A–C).

The Immune Characteristics of Patients in
the High- and Low-Risk Groups Were
Significantly Different
Because the TME is closely related to EMT, we next compared
the differences in the TME between the high-risk and low-risk
groups in GSE62254. The results showed that the immune score,
stromal score and ESTIMATE score of the high-risk group were
significantly higher than those of the low-risk group (Figure 7A).
Tumor purity was significantly negatively correlated with the risk
score (Figure 7B). Next, we used ssGSEA to divide the samples
into high-immune score and low-immune score groups based on
29 immune signatures in GSE62254 (Figure 7C). The results of
the chi-square test showed that most patients in the high-risk
group had high immune scores, and there were significant
differences between the high-immune score group and the low-
immune score group (Figure 7D). We further compared the
differences in 29 immune signatures in the high- and low-risk
groups and found that most of the signatures, such as immune
response-related signatures, CD8+ T cells, NK cells, checkpoints,
TILs, and the IFN response, were expressed at higher levels in the
high-risk group (Figure 7E). We further compared the
expression levels of immune checkpoint molecules in the high-
and low-risk groups. The expression level of immune checkpoint
molecules in the high-risk group was significantly higher than
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that in the low-risk group (Figure 7F). The above results suggest
that patients in the high-risk group are more likely to benefit
from immunotherapy than those in the low-risk group.

In addition to immunotherapy, we further explored other
potential drugs that could be used for the treatment of patients in
the high-risk group. We compared the transcriptome data of
samples from the high- and low-risk groups. Under the
conditions of |log2FoldChange| >0.585 (FoldChange >1.5)
and FDR <0.05, in total, 440 genes were upregulated and 49
Frontiers in Oncology | www.frontiersin.org 12
genes were downregulated in the high-risk group in GSE62254
(Supplementary Table 6). We imported the differentially expressed
genes into the CMap database and screened 43 potential drugs that
could be used to treat high-risk patients (Supplementary Table 7
and Figure 7G). Among the drugs with enrichment ≤0.8 were
chloropyrazine, harmalol, arachidonyltrifluoromethane, vinblastine,
khellin, sulfamonomethoxine, 3-acetamidocoumarin, cloxacillin,
and lisuride (Figure 7G). Vinblastine is a clinically used
antitumor drug, harmalol has an antitumor effect in vitro (37),
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FIGURE 6 | Analysis of differences in clinical characteristics and functional enrichment of patients in different risk groups. (A) The distributions of clinicopathological
features were compared between the low-risk and high-risk groups (high-risk n = 138, low-risk n = 162 chi-square test). (B, C) Comparison of the risk scores of
patients with different clinical stages and Lauren types (one-way analysis of variance). (D) Comparison of risk scores between patients with negative and positive
lymphatic invasion status (Student’s t-test). (E) Comparison of the risk score of patients with epithelial phenotype (EP) and mesenchymal phenotype (MP) subtypes
(Student’s t-test). (F) Comparison of the risk score of patients with no metastasis (M0) and metastasis (M1) (Student’s t-test). (G) Comparison of the different
molecular signatures in the high- and low-risk groups (high-risk n = 138, low-risk n = 162 Student’s t-tests). (H) Gene set enrichment analysis (GSEA) in the low-risk
group (n = 162, permutation tests P < 0.05, FDR < 0.25). (I) Gene set enrichment analysis (GSEA) in the high-risk group (n = 138, permutation tests P < 0.05,
FDR < 0.25). (J) Analysis of the correlation between the risk score and EMT marker expression in gastric cancer patients (Pearson correlation coefficient). Data for
(A–J) are from the GSE62254 dataset. Significant difference between the two groups: *P < 0.05; **P < 0.01; ***P < 0.001.
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and khellin analogs can serve as new potential pharmacophores for
epidermal growth factor receptor (EGFR) inhibitors (38), indicating
that these drugs may be beneficial for the treatment of high-risk
patients. The antitumor activity of the other drugs needs to be
further studied.
DISCUSSION

Many patients have advanced gastric cancer at the time of
diagnosis and miss the optimal treatment period; thus, their
prognosis is relatively poor. At present, the AJCC stage is still the
Frontiers in Oncology | www.frontiersin.org 13
most common method of determining the prognosis of patients
with gastric cancer. However, patients may still have different
survivals with the same TNM stage, which may be due to
different molecular characteristics of the tumors. Therefore, it
is very important to develop a more sensitive prognostic
diagnostic method according to the molecular characteristics of
gastric cancer patients to identify new prognostic markers. The
purpose of this study was to identify molecular signatures
that can help predict prognoses and evaluate potential
immunotherapy benefits. In this study, we used the mRNA
expression and clinical data of gastric cancer samples in a
public dataset for WGCNA and obtained a midnight blue
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FIGURE 7 | Identification of the immune characteristics of the high- and low-risk groups. (A) Differences in the TME between the high- and low-risk groups were
identified (high-risk n = 138, low-risk n = 162; Student’s t-tests). (B) Correlation analysis of tumor purity and risk scores (Pearson correlation coefficient). (C) Chi-
square analysis of high- and low-risk groups and different immune clusters (Immunity_L n = 128, Immunity_H n = 172 Chi-square test). (D) The gastric cancer
samples were divided into two immune clusters by ssGSEA based on 29 immune signatures (Immunity_L n = 128, Immunity_H n = 172; chi-square test).
(E) Analysis of differences in the expression of 29 immune signatures in the high- and low-risk groups (Student’s t-tests). (F) Expression analysis of immune
checkpoints in different risk groups (high-risk n = 138, low-risk n = 162; Student’s t-tests). (G) The Connectivity Map (CMap) database was used to screen potential
drugs for the treatment of high-risk patients. Drugs marked in red represent enrichment ≤0.8. Data for (A–G) are from the GSE62254 dataset. Significant difference
between the two groups: *P < 0.05; **P < 0.01; ***P < 0.001.
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module that was positively correlated with tumor progression.
After further optimization and screening, we found the following
nine hub genes, which are listed in order of impact: C1QA,
C1QB, C1QC, CSF1R (colony-stimulating factor 1 receptor),
FCER1G (Fc fragment of IgE receptor Ig), CD14, MS4A6A
(membrane-spanning 4-domain subfamily A member 6A),
scavenger receptor cysteine-rich type 1 protein M130 (CD163),
and TYROBP (TYRO protein tyrosine kinase-binding protein).
Among them, C1QA, CIQB and C1QC together form C1q to
perform biological functions (39). C1q is an activator of the
classical complement pathway, but there are studies showing that
C1q can promote tumor proliferation and migration by
interacting with the TME (40, 41), and this effect does not
depend on the complement pathway. As a receptor on the cell
membrane surface, CSF1R activates different signaling pathways
by binding to different ligands to play a role in a variety of
physiological and pathological processes, including
tumorigenesis (42, 43). Studies have shown that FCER1G
participates in a variety of immune functions and can be used
as a prognostic marker for a variety of cancers (44–46). As a key
component of the Toll-like receptor (TLR) signaling pathway,
CD14 can promote tumor occurrence and development by
regulating the activation of different signaling pathways in
tumor cells or tumor infiltrating immune cells (47–50).
Research on MS4A6A is mainly focused on Alzheimer’s
disease, and there are also current studies showing that it can
be used as a prognostic marker for tumors (51, 52). CD163 is a
type I membrane protein and a member of the scavenger
receptor superfamily. It is the most specific monocyte and
macrophage marker currently in use, and it mainly plays a role
in inflammation. Recent studies have shown that high expression
of CD163 is related to a poor prognosis in breast cancer (53) and
glioma (54) patients. TYROBP is mainly involved in immune
signaling pathways, but an increasing number of studies have
shown that TYROBP can be used as a prognostic marker for
cancer (55, 56). We found that the hub nine genes were mainly
located in the extracellular matrix and cell membrane, which
may indicate that they promote tumor progression by regulating
the tumor microenvironment.

We divided the samples into two clusters based on the nine
hub genes and found that compared with cluster 1 patients,
cluster 2 patients had a worse prognosis. We compared their
clinical characteristics and found that the proportions of patients
with invasive subtypes and high tumor grades were higher in
cluster 2, which explains why cluster 2 patients have a poor
prognosis. We also found that the expression of invasion and
migration markers in cluster 2 was increased significantly
compared with that in cluster 1. Studies have shown that the
TME can cause tumor cells to undergo EMT, thereby promoting
tumor cell invasion and migration. However, the TME results
showed that cluster 2 patients had higher TME component levels
and lower tumor purity. This suggests that cluster 2 has a better
prognosis, but we speculate that this may be because in cluster 2
patients, most immune cells are shielded from the outside of the
solid tumor and cannot exert an immune killing effect due to the
EMT of tumor cells. Similar results were found in previous
Frontiers in Oncology | www.frontiersin.org 14
studies on gastric cancer and other cancers (57–60). Studies
have shown that the activation of the matrix in the TME
can inhibit T cell activity (61). Studies have also shown that
tumor-associated macrophages (TAMs) are negatively related to
tumor prognoses. TAMs activate the tumor EMT process
through the TGF-b signaling pathway and can also maintain
the mesenchymal characteristics of tumor cells (62). TAMs have
been shown to be similar to M2 macrophages (63). The analysis
of the infiltration levels of 22 immune cells in this study showed
that the infiltration of M2 macrophages was significantly higher
in cluster 2 patients than in cluster 1 patients, which suggests that
M2 macrophages could facilitate EMT and indicate a poor
prognosis in cluster 2 patients. On the other hand, although
cluster 2 exhibited high infiltration levels of immune cells that
are beneficial to the immune response, such as CD8+ T cells,
CD4+ T cells, and NK cells, the expression level of the immune
suppression checkpoint in cluster 2 was higher, which led to
immunosuppression. The GSVA results showed that cluster 2
samples exhibited activation of TGF-b signaling, EMT, hypoxia,
and various cancer pathways. These results indicate that under
the influence of the internal and external environment, the
signaling pathway of tumor progression is activated, which
leads to invasion and metastasis in cluster 2 patients, resulting
in a poor prognosis.

In this study, we constructed a 7-gene signature. The seven
genes were apolipoprotein D (APOD), apolipoprotein E (APOE),
coiled-coil domain-containing protein 80 (CCDC80), collagen
triple helix repeat-containing protein 1 (CTHRC1), fermitin
family homolog 2 (FERMT2), glucoside xylosyltransferase 2
(GXYLT2), and small muscular protein (SMPX). APOD is an
apolipoprotein, and recent studies have shown that it can be used
as a prognostic marker for breast cancer (64, 65). Studies have
shown that APOE can not only promote the migration of gastric
cancer cells by activating the PI3K-Akt signaling pathway but
can also serve as a diagnostic marker for gastric cancer (66, 67).
CCDC80 can mediate the regulation by focal adhesion kinase
(FAK) of the migration of melanoma cells and can also exert a
tumor suppressor effect in thyroid cancer (68, 69). Previous
studies have shown that CTHRC1 can promote the metastasis of
colorectal cancer, ovarian cancer, gastric cancer, and cervical
cancer (70–73). FERMT2 is a scaffolding protein that has been
reported to promote the proliferation and migration of
esophageal squamous cell carcinoma (74). GXYLT2 promotes
the proliferation and migration of human cancer cells by
regulating the NOTCH signaling pathway (75). SMPX is a
small muscle protein located in the nucleus. It has been
reported to be involved in the formation of hearing (76), but it
has not been reported in tumor studies. In this study, we also
found that the high expression of these seven genes is related to a
poor prognosis in gastric cancer patients, and based on this and
previous reports, we speculate that these seven genes can
promote the progression of gastric cancer.

According to the risk score obtained from the above risk
model, gastric cancer patients were divided into high- and low-
risk groups. The prognosis of patients in the high-risk group was
worse. A comparison of clinical features revealed that patients in
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the high-risk group had a higher stage, more lymphatic invasion,
and a higher frequency of diffuse-type disease. This shows that
patients in the high-risk group have the characteristics of invasion
and metastasis, which leads to a poor prognosis. Further research
revealed that patients in the high-risk group had EMT
characteristics, while patients in the low-risk group had
proliferative characteristics. GSEA also showed that EMT,
angiogenesis, and multiple tumor progression pathways were
activated in the high-risk group. In the low-risk group, signaling
pathways related to proliferation, such as base excision repair,
DNA replication, homologous recombination and pyrimidine
metabolism, were activated. This suggests that conventional
chemotherapy drugs that induce DNA damage and cell cycle
arrest may be more suitable for patients in the low-risk group.
TME analysis showed that the high-risk group had a higher level
of immune cell infiltration. Further analysis revealed that the high-
risk group had higher levels of CD8+ T cells, TILs, NK cells, B cells
and other immune activation-related cells and had higher immune
suppression checkpoint expression levels, which means that the
high-risk group may benefit from immunotherapy. However,
studies have shown that activation of the EMT, TGF-b and
angiogenesis pathways can inhibit T cell activity (57). This can
also explain why patients in the high-risk group have a poor
prognosis despite abundant immune cell infiltration. Therefore,
the combination of EMT, TGF-b and angiogenesis pathway
inhibitors during immunotherapy may yield greater benefits in
patients. Based on CMap data, we also found several drugs with
the potential to treat high-risk patients, but the exact efficacy of the
drugs needs to be further confirmed by in vivo and in vitro trials.

In this study, we obtained a 7-gene signature by analyzing
transcriptome data and clinical data, and we validated the accuracy
of the risk model in multiple datasets. A large number of clinical
samples and prospective studies are still needed to evaluate the value
of the riskmodel inpredicting theprognosis and immune responseof
gastric cancer patients and to determine the optimal cutoff value.

Above all, we developed a 7-gene signature related to tumor
progression in our research. The nomogram constructed from
the prognostic model risk score combined with the age and stage
can predict prognoses well. In addition, according to the risk
model, patients with gastric cancer can be divided into two
groups with different clinical and immune characteristics, and the
high-risk group is more likely to benefit from immunotherapy.
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Supplementary Figure 1 | Identification of clinical feature-related modules
through WGCNA and the expression heatmap of the 9 hub genes. (A) Dendrogram
and clinical feature heatmap. The bottom panel shows the clinical characteristics of
sex, age and stage. (B, C) Analysis of the average connectivity of the scale-free
fitting index and various soft threshold functions. Assessment of the scale free
topology when b = 9. (D) Hierarchical clustering dendrogram of similar genes based
on topological overlapping. Genes with similar expression profiles are grouped into
modules of the same color. (E) The heatmap shows the top 1000 genes of the
topological overlap matrix (TOM) in the WGCNA, and the color degree is positively
correlated with the degree of overlap. (F) The expression profiles of all genes in the
midnight blue module.

Supplementary Figure 2 | Analysis of the differential expression of 9 hub genes
in gastric cancer tissues and normal tissues. (A–I) Differential expression box plots
forC1QA,C1QB,C1QC,CD14,CD163,CSF1R, FCER1G,MS4A6A and TYROBP.
All data were obtained from Gene Expression Profiling Interactive Analysis (GEPIA),
*P < 0.05.

Supplementary Figure 3 | The Kaplan-Meier survival curve showed the
prognostic value of the 9 hub genes in gastric cancer. (A–I) Survival curves
according to C1QA, C1QB, C1QC, CD14, CD163, CSF1R, FCER1G,MS4A6A and
TYROBP expression. All data were from Kaplan-Meier Plotter.

Supplementary Figure 4 | The identification of consensus clusters according to
9 hub genes and the consensus clustering results were evaluated, and the EMT
markers and tumor purity were compared between the two clusters. (A)Consensus
clustering matrix for k = 2. (B) The cumulative distribution function (CDF) of
consensus clustering with k = 2 to 9. (C) Evaluation of the optimal number of
clusters based on the NbClust package. (D) The classification results were further
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evaluated by the principal component analysis (PCA) method. (E) Analysis of the
differential expression of several classic invasion and migration markers in two
clusters of patients (cluster 1 n=132, cluster 2 n=116; Student’s t-tests).
(F) Analysis of the difference in tumor purity scores between the two clusters
(cluster 1 n=132, cluster 2 n=116; Student’s t-test). All data were from the
GSE15460 dataset.

Supplementary Figure 5 | Differential gene expression analysis and differential
gene enrichment analysis of the two clusters. (A) Volcano map of differentially
expressed genes between the two clusters (Student’s t-tests FDR < 0.05, log2fold
change (FC) > 1). (B) Heatmap of differentially expressed genes between the
two clusters (cluster 1 n=132, cluster 2 n=116). (C) Biological process (BP)
enrichment analysis of differentially expressed genes. (D) Cellular component
(CC) enrichment analysis of differentially expressed genes. (E) Molecular function
(MF) enrichment analysis of differentially expressed genes. (F) KEGG enrichment
analysis of differentially expressed genes between the two clusters. All data are from
the GSE15460 dataset.

Supplementary Figure 6 | Different datasets were applied to validate the
multivariate Cox risk model. (A, B) Least absolute shrinkage and selection operator
(LASSO) regression analysis. (C) Survival curves for different risk groups in the
validation set (high-risk n=127, low-risk n=145; log-rank test). (D) Relationship
between the patient survival time, survival status and risk score validation set (high-
risk n=127, low-risk n=145). (E) Expression heatmap of 7 genes with different risk
groups for the modeling validation set (high-risk n=127, low-risk n=145). (F) Time-
dependent ROC analysis of the risk score in validation-set patients. (G) Overall
survival curves in GSE84437 datasets based on the same cutoff value used to
obtain the training set risk score (high-risk n=222, low-risk n=211; log-rank test).
(H)Overall survival curves in TCGA datasets based on the same cutoff value used to
obtain the training set risk score (high-risk n=136, low-risk n=187; log-rank test).
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(I–J) Time-dependent survival ROC curves for different datasets. Data for G are
from the GSE84437 dataset, and those for H are from the TCGA dataset.

Supplementary Figure 7 | Univariable Cox regression analyses of the risk scores
and clinical factors in different validation datasets. (A) Internal validation dataset.
(B) GSE15459. (C) GSE15460. (D) GSE84437. (E) Univariable Cox regression
analyses based on overall survival (OS) in GSE62254. (F) Univariable Cox
regression analyses based on disease-free survival (DFS) in GSE62254. (G) TCGA.

Supplementary Figure 8 | Differential expression analysis of the 7 genes in
gastric cancer tissues and normal tissues. (A) APOD. (B) APOE. (C) CCDC80.
(D) CTHRC1. (E) FERMT2. (F) GXYLT2. (G) SMPX. (H) APOD. (I) APOE.
(J) CCDC80. (K) CTHRC1. (L) FERMT2. (M) GXYLT2. (N) SMPX. A-G results
from 16 pairs of cancer and adjacent tissues, and H-N data are from the GEPIA.

Supplementary Figure 9 | The Kaplan-Meier survival curve shows the prognostic
valueof the 7genes ingastric cancer. (A)APOD. (B)APOE. (C)CCDC80. (D)CTHRC1.
(E) FERMT2. (F) GXYLT2. (G) SMPX. All data are from Kaplan-Meier Plotter.

Supplementary Figure 10 | Copy number and mutation analysis of the 7 genes
in The Cancer Genome Atlas (TCGA). (A) The circle graph shows the chromosomal
locations of the 7 genes. (B) Genetic alteration of the 7 signature genes. The upper
bar graph shows the survival status of each patient, and the lower bar graph shows
the survival time of each patient.

Supplementary Figure 11 | Gene mutation analysis was performed for high-risk
and low-risk patients in TCGA. (A) The mutation map of the top 30 altered genes in
the low-risk group. (B) The mutation map of the top 30 altered genes in the high-risk
group. (C) Histogram of the difference in the tumor mutation burden (TMB) between
the high- and low-risk groups (chi-square test).
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