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Abstract: A new class of modular functionalized oxazolines are synthesized using a simple, novel one-pot method 

under inert moisture-free conditions. Then the oxazolines can be further elaborated to phosphine-containing oxa-

zolines. The first step is to synthesize intermediates via the reaction of 2 - hydroxybenzonitrile or 2-

aminobenzonitrile with chiral amino alcohols, subsequent reactions with phosphine chlorides, providing products in 

moderate yields. Product structures are fully characterized by NMR, IR, MS and X-Ray analyses. These com-

pounds are found to be highly active catalysts for the cyanosilylation of prochiral benzaldehyde (20-96% yield). 
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aminobenzonitrile, chiral amino alcohols, phosphine chlorides. 

INTRODUCTION 

Oxazolines are widely used in fields such as photography, agri-
culture, and they can be employed as surface coatings, plasticizers, 
surface active agents, additives for pharmaceuticals, additives for 
gasoline and lube oil additives, corrosion inhibitor, antiform agents, 
textile chemicals, pharmaceuticals, stabilizers for chlorinated hy-
drocarbons and for aqueous formaldehydes solutions, protective 
films in polish formulations, and foam stabilizers [1a]. In asymmet-
ric catalysis, oxazoline structures have received much attention as 
“privileged” ligands for a broad wide variety of metals [1, 2]. For 
example, compounds containing these ligands have shown good 
catalytic activity in Diels-Alder reactions [3], allylic alkylations 
reactions [4], cyclopropanation reactions [5], aldol reactions [6], 
Henry reactions [7], and Michael reactions [8]. Additionally, cata-
lysts containing chiral phosphine-substituted oxazolines have been 
reported to induce high enantioselectivity in asymmetric hydro-
genation [8], cyanosilylation [9], allylic substitution [10], Heck 
reaction [11], Diels-Alder reaction [12] and hydrosilylation reac-
tions [13].  

Many methods for the synthesis of oxazolines have already 
been developed, but they are most commonly prepared by the con-
densation of amino alcohols with imidate hydrochlorides [14], car-
boxylic acids [15a-15b], dicarbonates [15c], ortho esters [16], imino 
ether hydrochlorides [17], or nitriles [18].  

Encouraged by the previous pioneering work, we also report the 
synthesis of a new class of modular functionalized oxazolinyl-
phosphine esters and amides using a simple, novel two-step 
method. Generally, the synthetic procedures for compounds involv-
ing phosphine involve multi-steps, low temperatures (-20∽-78°C), 
and the use of n-butyl lithium [19, 20]. In our method, n-butyl lith-
ium is replaced with triethylamine, leading to fewer side reactions 
and making this synthetic method both practical and effective. 

RESULTS AND DISCUSSION 

Oxazolines 5(a-d)~8(a-d) were obtained in moderate yields 
(40-60%) by reacting 2 – hydroxy or 2-amino substituted benzo-
nitriles respectively with enantiomeric 2-aminoalcohols in chloro 
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benzene under dry, anaerobic conditions. Dry zinc Chloride was 
used as a catalytic Lewis acid for this reaction [21-24] (Scheme 1). 

Moisture and oxygen-free conditions were also used in the sec-
ond step. Compounds 5(a-d) ~8(a-d) reacted with diphenyl-
phosphinic chloride or phenyl phenylphosphonic dichloride to pro-
vide the target compounds in good yields. (Tables 1 and 2) Instead 
of using n-butyllithium, triethylamine was employed as a proton 
scavenger to neutralize hydrogen chloride formed in this reaction. 
The excess base may also accelerate the reaction and prevent the 
decomposition of the oxazolines. 

To drive the formation of P-N and P-O bonds, toluene was used 
as a high boiling point solvent so that the reactions could be con-
ducted at higher temperatures. Compounds 9, 10 and 11 were 
formed when 5 and 6 reacted with diphenylphosphinic chloride or 
phenylphosphonic dichloride in a 1:1 ratio or 2:1 ratio. The identi-
ties of compounds 9a, 10c and 11c were confirmed by their crystal 
structures.  

The formation of 10 and 11 was not expected. It appears that 
when the attack of either the phenolic OH- or imino nitrogen dis-
places the first chloride from phosphorous, this chloride attacks the 
carbon next to the oxygen, either prior to or concerted with the 
cyclization step. Compounds 12, 13 and 14 were obtained by react-
ing 7 and 8 with diphenylphosphinic chloride or phenylphosphonic 
dichloride in a 1:1 ratio or 2:1 ratio. The identities of compounds 
12a and 13b were also confirmed by their crystal structures.  

Crystal of compounds 9a, 10c, 11c, 12a and 13b were obtained 
by slow evaporation of the solvent after isolation of the compound 
with column chromatography using CH2Cl2 / petroleum ether (9:1) 
as the eluent. (Figs 1-5).  

Interestingly, in the process of synthesizing the oxazoliny-
phosphine esters and amides, diphenylphosphinic acid and 
phenylphosphonic acid were always recovered as the side products 
in the last fraction collected during column purification of com-
pounds using solvent CH2Cl2 / petroleum ether (9:1). The crystal 
structures of compounds 15 and 16 have confirmed the identity of 
these byproducts. (Figs 6 and 7). 

To evaluate the catalytic efficiency of the novel compounds, 
20mol% of the oxazolines were used as catalysts for the cyanosily-
lation of prochiral benzaldehyde. The results are recorded in  
Table 3. 
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Scheme 1. The Synthetic Routes to the Compounds 9-16. 
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Table 1. Synthesis of 9-11 from the Intermediate 5-6. 

Entry Reagent Ratio Solvent Yield (%)
[d]

 Time (h) 

1 5
[a]

 1:1.43 (compound 1:3) chlorobenzene  72 

1a 5a   71  

1b 5b   65  

1c 5c   76  

1d 5d   64  

1 6
[a]

 1:1.43 (compound 1:4) chlorobenzene  72 

1a 6a   80  

1b 6b   85  

1c 6c   78  

5 9
[b]

 1.08:1(compound 5: Ph2POCl) toluene+ Et3N  48 

5a 9a   69  

5b 9b   64  

5c 9c   59  

5d 9d   58  

5 10
c
 2.04:1(compound 6: PhPOCl2) toluene+ Et3N  48 

5a 10a   46  

5b 10b   59  

5c 10c   62  

5d 10d   51  

6 11
[c]

 2.04:1(compound 4: PhPOCl2) toluene+ Et3N  48 

6a 11a   65  

6c 11c   48  

6d 11d   55  

a: Reaction conditions: A mixture of compound 1 (42.0mmol)  3a - 3d (60.0mmol) , 4a-4d (60.0mmol) and catalyst ZnCl2 (7.8mmol) in chlorobenzene (50mL) was stirred at reflux 
under dry, anaerobic conditions.

 b: A mixture of compound 5 (9.17mmol), diphenylphosphinic chloride (8.50mmol) in toluene (20mL) and Et3N (20mL) was stirred at reflux under 

dry, anaerobic conditions. c: A mixture of compound 7(6.42mmol) or 8(12.84mmol), phenylphosphonic dichloride (3.00mmol) and (4.99mmol) in toluene (20mL) and Et3N (20mL) 
was stirred at reflux under dry, anaerobic conditions. disolated yield. 

Table 2. Synthesis of 12-14 from the Intermediate 7-8. 

Entry Reagent Ratio Solvent Yield (%)
[d]

 Time (h) 

2 7
[a]

 1:1.42 (compound 2:3) chlorobenzene  72 

2a 7a   76  

2b 7b   80  

2c 7c   79  

2d 7d   73  

2 8
[a]

 1:1.42 (compound 2:4) chlorobenzene  72 

2a 8a   60  

2b 8b   60  

2c 8c   58  

2d 8d   61  

7 12
[b]

 1.08:1 (compound 7: Ph2POCl) toluene+ Et3N  48 

7a 12a   80  

7b 12b   82  

7c 12c   75  

7d 12d   63  
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Table 2. Contd….. 

Entry Reagent Ratio Solvent Yield (%)
[d]

 Time (h) 

7 13
[c]

 2.14:1 (compound 7: PhPOCl2) toluene+ Et3N  48 

7a 13a   82  

7b 13b   85  

7c 13c   76  

7d 13d   70  

8 14
[c]

 2.57:1 (compound 8: PhPOCl2) toluene+ Et3N  48 

8a 14a   85  

8b 14b   88  

8c 14c   82  

8d 14d   80  

a: Reaction conditions: A mixture of compound 2 (42.3mmol), 3a-3d (60.0mmol), 4a-4d (60.0mmol) and catalyst ZnCl2 (7.8mmol) in chlorobenzene (50mL) was stirred at reflux 

under dry, anaerobic conditions. b: A mixture of compound 7 (9.17mmol), diphenylphosphinic chloride (8.50mmol) in toluene (20mL) and Et3N (20mL) was stirred at reflux under 
dry, anaerobic conditions. c: A mixture of compound 7 (6.42mmol) or 8 (12.84mmol), phenylphosphonic dichloride (3.00mmol) and (4.99mmol) in toluene (20mL) and Et3N (20mL) 

was stirred at reflux under dry, anaerobic conditions; .d: isolated yield. 
 

 

Fig. (1). The Crystal Structure of 9a. 

 

Fig. (2). The Crystal Structure of 10c. 

 

Fig. (3). The Crystal Structure of 11c. 

 

Fig. (4). The Crystal Structure of 12a. 

 

Fig. (5). The Crystal Structure of 13b. 

 

Fig. (6). The Crystal Structure of 15. 
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Fig. (7). The Crystal Structure of 16. 

From the data shown in Table 3, we can conclude that our novel 
oxazolinylphosphinic esters and amides showed catalytic activity in 
the cyanosilylation of prochiral benzaldehyde. Among these cata-
lysts 9b, 10c, 11c, 12a, 12b, 12d, 14a and 14d showed high to 
excellent yields(80-96%), and catalysts 9a, 9c, 10a, 11a, 12c, 13b-

13d, and 14b- 14c afforded nearly quantitative yields(40-80%) 
after 6-8h or19h, but catalysts 9d-11d showed low activity(5-40%). 
Although they have shown moderate to high yields, they all showed 
low enantiselectives (<10% ee) in this reaction. 

CONCLUSION 

In conclusion, we have synthesized a series of novel chiral 
compounds involving oxazolines which have not been reported in 
the literature. The next step is to determine the large-scale use of 
these compounds as catalysts in asymmetric application. Crystallo-
graphic information files for all compounds have been deposited 
with the Cambridge Crystallographic Data Center as supplementary 
publications CCDC 810907-810910, 853713, 853717, 1043621. 

EXPERIMENTAL PART 

Materials and Measurements 

2 - Hydroxybenzonitrile (2-cyano-phenol), 2-aminobenzonitrile, 
diphenylphosphinic chloride, phenylphosphonic dichloride, benzal-
dehyde, TMSCN and amino alcohol were purchased from Acros, 
Aldrich, Fluka. Flash column chromatography was performed using 
E. Merck silica gel (60, particle size 0.02-0.03 mm), 1H and 13C 
NMR and 31PNMR spectra were obtained using Bruker AM-300, 
Bruker AM-400 and Bruker AM-500 spectrometers. Proton chemi-
cal shifts are reported in ppm ( ) with the solvent relative to 
tetramethylsilane (TMS) employed as the internal standard (CDCl3, 
 7.26 ppm). The following abbreviations were used to designate 

chemical shift mutiplicities: s = singlet, d = doublet, t = triplet, m = 
multiplet. Infrared spectra were recorded on a Mattson Galaxy Se-
ries FTIR 3000 spectrometer; peaks are reported in cm-1. High 
resolution mass spectra (HRMS) were obtained on Micro GCT-MS 
equipped with an EI ion source. Optical rotations were measured on 
WZZ-1 automatic polarimeter with a 2 cm cell at the sodium D-
line. 

Structure Determination 

The colorless plate crystal of the title compound 9a of approxi-
mately 0.30x 0.20 x 0.12 mm was selected for the data collection on 
a “graphite” diffractometer with mirror monochromated CuK/  
radiation ( =0.71073 ). A total of 6944 reflections were collected 
in the range of 2.0276 <  < 72.1972° by using “phi and omega 
scans” techniques at 293(2) K, C25H26NO3P, M = 419.44, mono-
clinic, P 21, a = 8.5761(11) ,  = 90º , b = 16.207(2) ,  = 
97.290(13) º, c = 16.011(2) ,  = 90º , V = 2207.4 3, Z = 4, 

Dcalc. = 1.262mg/m3, the final R factor was R1 = 0.0501, 3508 for 
reflections with I0 > 2 (I0), R =0.0608 for all data. The structure 
was solved by full-matrix least-squares on F2 using the SHELXTL 
PROGREM [25, 26].  

The colorless plate crystal of the title compound 10c of ap-
proximately 0.36x 0.30 x 0.30 mm was selected for the data collec-
tion on a “graphite” diffractometer with mirror monochromated 
CuK/  radiation ( =0.71073 ). A total of 7343 reflections were 
collected in the range of 1.81 <  < 27.00° by using “phi and omega 
scans” techniques at 293(2) K, C21H17ClNO3P, M = 397.78, mono-
clinic, P21, a = 7.6799(1) ,  = 90º, b = 21.7621(2) ,  = 
93.421(1) º, c = 11.3684(1) ,  = 90º, V = 1896.62 3, Z = 4, 
Dcalc. = 1.393mg/m3, the final R factor was R1 = 0.0325, 7115 for 
reflections with I0 > 2 (I0), R =0.0738 for all data. The structure 
was solved by full-matrix least-squares on F2 using the SHELXTL 
PROGREM [25, 26]. 

The colorless plate crystal of the title compound 11c of ap-
proximately 0.36x 0.30 x 0.26 mm was selected for the data collec-
tion on a “graphite” diffractometer with mirror monochromated 
CuKa radiation ( =0.71073 ). A total of 2042 reflections were 
collected in the range of 3.18 <  < 62.67° by using “phi and omega 

Table 3. Catalysis of Asymmetric Cyanosilylation Reactions
[a]

. 

O

H
+   TMSCN

OTMS

CN
15mol% catalysts

H

72h, THF
 

Compound Yield (%)
[b] 

Time (h) 

9a 60 8 

9b 94 8 

9c 45 8 

9d 12 8 

10a 20 8 

10c 85 8 

10d 20 8 

11a 58 8 

11c 90 6 

11d 22 6 

12a 80 8 

12b 95 8 

12c 61 19 

12d 95 19 

13a 80 6 

13b 60 6 

13c 70 6 

13d 45 6 

14a 80 6 

14b 40 6 

14c 45 6 

14d 80 6 

[a] Reactions were carried out with 1mL PhCHO and 0.3mL TMSCN in 2 mL THF 

using 15mol% of catalyst at room temperature (30-40°C) for 6-8h or 19h. [b] Yield % 

was determined by NMR analysis. 
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scans” techniques at 293(2) K, C21H17ClNO3P, M = 397.78, mono-
clinic, P 21, a = 11.1580(1) ,  = 90º , b = 6.0355(3) ,  = 
100.742(4) º, c = 14.1606(6) ,  = 90º , V = 936.92 8  3, Z = 
2, Dcalc. = 1.410mg/m3, the final R factor was R1 = 0.0308  1810 
for reflections with I0 > 2 (I0), R =0.0736 for all data. The structure 
was solved by full-matrix least-squares on F2 using the SHELXTL 
PROGREM [25, 26]. 

The colorless plate crystal of the title compound 12a of ap-
proximately 0.36x 0.30 x 0.30 mm was selected for the data collec-
tion on a “graphite” diffractometer with mirror monochromated 
CuK/  radiation ( =0.71073 ). A total of 6680 reflections were 
collected in the range of 1.81 <  < 27.00° by using “phi and omega 
scans” techniques at 293(2) K, C25H27N2O2P, M = 418.46, mono-
clinic, P 21, a = 7.5174(1) ,  = 90º , b = 16.2383(5) ,  = 
97.766(2) º, c = 16.0825(4) ,  = 90º , V = 2203.94 3, Z = 4, 
Dcalc. = 1.261mg/m3, the final R factor was R1 = 0.0361, 5811 for 
reflections with I0 > 2 (I0), R =0.1025 for all data. The structure 
was solved by full-matrix least-squares on F2 using the SHELXTL 
PROGREM [25, 26]. 

The colorless plate crystal of the title compound 13b of ap-
proximately 0.32x 0.30 x 0.24 mm was selected for the data collec-
tion on a “graphite” diffractometer with mirror monochromated 
MoK/  radiation ( =0.71073 ). A total of 5292 reflections were 
collected in the range of 3.02 <  < 72.82° by using “phi and omega 
scans” techniques at 293(2) K, C30H35N4O3P, M = 530.59, mono-
clinic, P21, a = 10.6752(5) ,  = 90º , b = 9.2364(4) ,  = 
104.618(1) º, c = 15.1137 (6) ,  = 90º , V = 1441.98 3, Z = 4, 
Dcalc. = 1.138mg/m3, the final R factor was R1 = 0.0628, 4049 for 
reflections with I0 > 2 (I0), R =0.1618 for all data. The structure 
was solved by full-matrix least-squares on F2 using the SHELXTL 
PROGREM [25, 26]. 

The prismatic brown crystal of the title compound 15 of ap-
proximately 0.465 x 0.318 x 0.227 mm was selected for the data 
collection on a “graphite” diffractometer with mirror monochro-
mated MoK/  radiation ( =0.71073 ). A total of 2343 reflections 
were collected in the range of 1.81 <  < 27.00° by using “phi and 
omega scans” techniques at 293(2) K, C12H11O2P, M = 218.18, 
monoclinic, P 21/c, a = 11.4280(14) ,  = 90º , b = 6.0638(8) ,  
= 99.905(2) º, c = 15.7060(19) ,  = 90º , V = 1072.2(2) 3, Z = 4, 
Dcalc. = 1.352mg/m3, the final R factor was R1 = 0.0488, 2009 for 
reflections with I0 > 2 (I0), R =0.1354 for all data. The structure 
was solved by full-matrix least-squares on F2 using the SHELXTL 
PROGREM [25, 26]. 

The prismatic colorless crystal of the title compound 16 of ap-
proximately 0.169 x 0.125 x 0.097 mm was selected for the data 
collection on a “graphite” diffractometer with mirror monochro-
mated MoK/  radiation ( =0.71073 ). A total of 2901 reflections 
were collected in the range of 5.360 <  < 56.360° by using “phi 
and omega scans” techniques at 293(2) K, C12H16O7P, M = 334.19, 
monoclinic, P -1, a = 6.0038(18) ,  = 96.632º , b = 7.716(2) ,  
= 97.274 (5) º, c = 16.583(5) ,  = 93.516º , V = 754.7(4) 3, Z = 
2, Dcalc. = 1.471g/m3, the final R factor was R1 = 0.0435, 2447 for 
reflections with I0 > 2 (I0), R =0.1228 for all data. The structure 
was solved by full-matrix least-squares on F2 using the SHELXTL 
PROGREM [25, 26]. 

Preparation of the Intermediates 5a-5d 

1.06g of dry ZnCl2 (7.8mmol), 2-hydrobenzonitrile 5.0g 
(42.0mmol) and L-amino alcohol (60.0mmol) were added under 
free-water and free-oxygen conditions in a dry 100mL Schlenk 
flask. They were dissolved in 80mL of dry chlorobenzene; the reac-
tion mixture was refluxed for 72h. The solvent was removed under 
reduced pressure and the residue was dissolved in 15mL H2O, ex-
tracted with 10x3 mL of dichloromethane. The solvent was re-
moved under vacuum, giving the crude red oil. Further purification 
was performed by silica gel. (petroleum ether/ dichlormethane 4/1).  

Synthesis 

Preparation of (S)-2-(4-isobutyl-4,5-dihydrooxazol-2-yl)phenol 

Yield%: 71%, a colorless liquid, [a]20
D= -48.67º (c=0.54, 

CHCl3): 
1HNMR (500MHz, CDCl3, 27°C),  (ppm) = 12.30(s, 1H), 

7.63(d, J= 8Hz, 1H), 7.36 (t, J=0.5Hz, 1H), 7.00(d, J=8Hz, 1H), 
6.86(t, 1H), 4.47 (t, J=0.5Hz, 1H), 4.37 4.38(m, 1H), 3.95(t, 
J=0.5Hz, 1H), 1.84 1.87(m, 1H), 1.61 1.67(m, 1H), 1.38 1.42(m, 
1H), 0.98 1.00(m, 6H). 

Preparation of (S)-2-(4-isopropyl-4,5-dihydrooxazol-2-yl)phenol 

Yield%: 65%, a colorless liquid, [a]20
D= -28.6º (c=0.64, 

CHCl3): 
1HNMR (500MHz, CDCl3, 27°C),  (ppm) = 12.37(s, 1H), 

7.63(d, J= 7.5Hz, 1H), 7.35 7.36 (m, 1H), 7.02(d, J=8.5Hz, 1H), 
6.86(t, J=0.5Hz, 1H), 4.39 4.43(m, 1H), 4.09 4.15(m, 2H), 
1.78 1.82 (m, 1H), 0.94 1.02(dd, J=6.5, 6.5Hz, 6H).  

Preparation of (S)-2-(4-phenyl-4,5-dihydrooxazol-2-yl)phenol 

Yield%: 76%, a colorless crystals, [a]20
D= -23.4º (c=0.35, 

CHCl3): 
1HNMR (500MHz, CDCl3, 27°C),  (ppm) = 12.36 (s, 1H), 

7.85 7.88(dd, J=2.5, 2.5Hz, 1H), 7.34 7.49 (m, 6H), 7.17(d, 
J=14Hz, 1H), 7.00(t, 1H), 5.44 5.50 (m, 1H), 4.78(t, J=2Hz, 1H), 
4.26(t, 1H). 

Preparation of (S)-2-(4-benzyl-4,5-dihydrooxazol-2-yl)phenol 

Yield%: 64%, milk yellow paste, [a]20
D= -3.07° (c=1.13, 

CHCl3): 
1HNMR (500MHz, CDCl3, 27°C),  (ppm) = 12.22(s, 1H), 

7.65(d, J= 8Hz, 1H), 7.25~7.41(m, 6H), 7.04(d, J=8Hz, 1H), 6.89(t, 
1H), 4.61 4.65(m, 1H), 4.39(t, J=0.5Hz, 1H), 4.14(t, 1H), 
3.10 3.14(dd, J= 6.5Hz, 6Hz, 1H), 2.81 2.85(dd, J=7.5Hz, 7.5Hz, 
1H). 

Preparation of 6a-6c 

1.06g of dry ZnCl2 (7.8mmol), 2-hydrobenzonitrile 5.0g 
(42.0mmol) and D-amino alcohol (60.0mmol) were added under 
free-water and free-oxygen conditions in a dry 100mL Schlenk 
flask. They were dissolved in 80mL of dry chlorobenzene; the reac-
tion mixture was refluxed for 72h. The solvent was removed under 
reduced pressure and the residue was dissolved in 15mL H2O, ex-
tracted with 10x3 mL of dichloromethane. The solvent was re-
moved under vacuum, giving the crude red oil. Further purification 
was performed by silica gel. (petroleum ether/ dichlormethane 4/1).  

Preparation of (R)-2-(4-isobutyl-4,5-dihydrooxazol-2-yl)phenol 

A colorless liquid, yield: 80% [a]20
D=+46.29º (c=0.52, CH-

Cl3); 
1HNMR (500MHz, CDCl3, 27°C),  (ppm) = 12.32(s, 1H), 

7.63(d, J= 7.5Hz, 1H), 7.34 (t, J=0.5Hz, 1H), 7.00(d, J=8Hz, 1H), 
6.86(t, 1H), 4.47 (t, J=0.5Hz, 1H), 4.34 4.37(m, 1H), 3.94(t, 
J=0.5Hz, 1H), 1.84 1.87(m, 1H), 1.60 1.63(m, 1H), 1.36 1.39(m, 
1H), 0.97 1.00(m, 6H). 13CNMR(125MHz, CDCl3, 27 ) 164.4, 
159.5, 132.8, 127.6, 118.2, 116.3, 110.4, 72.0, 63.4, 45.0, 25.2, 
22.6, 22.0. IR (KBr) : 3057, 2957, 2930, 2871, 2651, 1644, 1618, 
1583, 1493, 1467, 1367, 1311, 1261, 1232, 1155, 1128, 1066, 1034, 
968, 946, 913, 829, 765, 687, 665, 496; HRMS(EI):m/z (%): calcd 
for C13H17NO2: 219.1259; found: 219.1263.  

Preparation of (R)-2-(4-phenyl-4,5-dihydrooxazol-2-yl)phenol 

A colorless liquid, yield: 60%; [a]20
D=+24.5º (c=0.41, [a]5

D=-
65.85º (c=0.41, CHCl3); 

1HNMR (500MHz, CDCl3, 27°C),  (ppm) 
= 12.36(s, 1H), 7.84(d, J=7.5Hz, 1H), 6.30 7.49 (m, 6H), 7.17(d, 
J=8Hz, 1H), 7.00(t, J=1Hz, 1H), 5.48 (t, J=1Hz, 1H), 4.79(t, 
J=1.5Hz, 1H), 4.26(t, J=0.5Hz, 1H). 13CNMR(125MHz, CDCl3, 



666     Current Organic Synthesis, 2015, Vol. 12, No. 5 Mei Luo 

 

27 ) 166.0, 159.9, 141.3, 133.4, 129.5,128.6, 127.6, 126.2, 118.5, 
116.6, 110.3, 73.7, 68.5. IR (KBr) : 3062, 3027 2923, 1643, 1618, 
1582, 1492, 1454, 1425 1368, 1311, 1260, 1234, 1155, 1129, 
1067, 1034, 961, 922, 829, 798, 749, 757, 700, 665, 541, 496; 
HRMS(EI):m/z (%): calcd for C15H13NO2: 239.0946; 
found:239.0948.  

Preparation of (R)-2-(4-benzyl-4,5-dihydrooxazol-2-yl)phenol 

A colorless liquid, yield: 78%; [a]20
D=+4.22º (c=0.46, CHCl3); 

1HNMR (500MHz, CDCl3, 27 ),  (ppm) = 12.26(s, 1H), 7.65(d, 
J= 7.5Hz, 1H), 7.27 7.41(m, 6H), 7.05(d, J=8Hz, 1H), 6.89(t, 1H), 
4.62(t, J=0.5Hz, 1H), 4.39(t, J=0.5Hz, 1H), 4.13(t, J=0.5Hz, 1H), 
3.09 3.13(dd, J= 6Hz, 6Hz, 1H), 2.80 2.84(dd, J=7.5Hz, 8Hz, 1H). 
13CNMR(125MHz, CDCl3, 27 ) 165.1, 159.6, 137.2, 133.1, 
129.4, 128.9, 128.3, 127.7, 126.4, 118.3, 116.4, 110.3, 70.8, 66.4, 
41.5. IR (KBr): 3063, 3030, 2903, 1640, 1617, 1584, 1491, 1455, 
1420, 1366, 1311, 1259, 1232, 1206, 1156, 1129, 1070, 1034, 951, 
905, 831, 794, 757, 699, 685, 667, 562, 534, 513; HRMS(EI):m/z 
(%): calcd for C16H15NO2: 253.1103; found: 253.1107.  

Preparation of the Intermediates 7a-7d 

1.06g of dry ZnCl2 (7.8mmol), 2-aminobenzonitrile 5.0g( 
42.3mmol) and L-amino alcohol (60.0mmol) were added under 
free-water and free-oxygen conditions in a dry 100mL Schlenk 
flask. They were dissolved in 80mL of dry chlorobenzene; the reac-
tion mixture was refluxed for 72h. The solvent was removed under 
reduced pressure and the residue was dissolved in 15mL H2O, ex-
tracted with 10x3 mL of dichloromethane. The solvent was re-
moved under vacuum, giving the crude red oil. Further purification 
was performed by silica gel. (petroleum ether/ dichlormethane 4/1. 

Preparation of (S)-2-(4-isobutyl-4,5-dihydrooxazol-2-yl) aniline 

Yellow crystals, m.p.: 34 36ºC, yield: 76% [a]20
D= -17.26º (c= 

2.17, CHCl3) 
1HNMR (500MHz, CDCl3, 27°C),  (ppm) = 

7.73 7.76(dd, J=2Hz, 2.5Hz, 1H), 7.20 7.26 (m, 1H), 6.67 6.73(m, 
2H), 6.15(s, 2H), 4.39 4.44(m, 2H), 3.89 3.94(m, 1H), 
1.89 1.93(m, 1H), 1.65 1.72(m, 1H), 1.41 1.48(m, 1H), 
1.02 1.05( m, 6H). 

Preparation of (S)-2-(4-isopropyl-4,5-dihydrooxazol-2-yl)aniline 

Colorless crystals, m.p.: 38 40°C, yield: 80%  [a]5
D= -11.88º 

(c=1.09, CHCl3): 
1HNMR (500MHz, CDCl3, 27°C),  (ppm) = 

7.66(d, J= 8Hz, 1H), 7.18(t, J=0.5Hz, 1H), 6.62 6.69(m, 2H), 
6.12(s, 2H), 4.30(t, J=0.5Hz, 1H), 4.08 4.10(m, 1H), 3.98(m, 1H), 
1.75 1.79 (m, 1H), 0.92 1.02(dd, J=7Hz, 6.5Hz, 6H).  

Preparation of (S)-2-(4-phenyll-4,5-dihydrooxazol-2-yl) )aniline 

Colorless crystals, m.p.: 37 39ºC, yield: 79% [a]20
D= +195.8º 

(c=0.25, CHCl3): 
1HNMR (500MHz, CDCl3, 27°C),  (ppm) = 

7.85(d, J= 5.5Hz, 1H), 7.29 7.43(m, 6H), 6.76(d, J=6Hz, 2H), 
6.22(s, 2H), 5.51(t, 1H), 4.74(t, J=1Hz, 1H), 4.19(t, J=0.5Hz, 1H). 

Preparation of (S)-2-(4-benzyl-4,5-dihydrooxazol-2-yl) )aniline 

Colorless crystals, m.p.: 40 42ºC, yield: 73% [a]20
D= +25.12º 

(c=1.29, CHCl3): 
1HNMR (400MHz, CDCl3, 27°C),  (ppm) 

=7.66 7.68 (dd, J=1.6 Hz, 1.6Hz, 1H), 7.18 7.30(m, 6H), 
6.62 6.68(m, 2H), 6.08(s, 2H), 4.56 4.61 (m, 1H), 4.25(t, 1H), 
3.98 4.02(m, 1H), 3.08 3.14(dd, J=6.2Hz, 6.2Hz, 1H), 
2.72 2.78(dd, J=8Hz, 8Hz, 1H). 

Preparation of 8a-8d 

1.06g of dry ZnCl2 (7.8mmol), 2-aminobenzonitrile 5.0g  
(42.3mmol) and D-amino alcohol (60.0mmol) were added under 
free-water and free-oxygen conditions in a dry 100mL Schlenk 
flask. They were dissolved in 80mL of dry chlorobenzene; the reac-
tion mixture was refluxed for 72h. The solvent was removed under 
reduced pressure and the residue was dissolved in 15mL H2O, ex-

tracted with 10x3 mL of dichloromethane. the solvent was removed 
under vacuum, giving the crude red oil. Further purification was 
performed by silica gel. (petroleum ether/ dichlormethane 4/1).  

Preparation of (R)-2-(4-isobutyl-4,5-dihydrooxazol-2-yl) )aniline 

Yellow crystals, m.p.: 34 36ºC, yield: 60%; [a]20
D=+18.01º (c= 

3.04, CHCl3): 
1HNMR (500MHz, CDCl3, 27°C),  (ppm) = 7.70(d, 

J=7.5Hz, 1H), 7.20(t, 1H), 6.65~6.70(m, 1H), 6.13(s, 2H), 4.38(t, 
J=7Hz, 2H), 3.85(s, 1H), 1.85~1.88(m, 1H), 1.63~1.68(m 1H), 
1.36~1.42(m 1H), 1.36~1.42(m 1H), 0.98~1,01(m, 6H). 13CNMR 
(125MHz, CDCl3, 27°C) 163.0, 148.2, 131.5, 129.4, 128.2, 115.6, 
115.3, 70.1, 64.8, 45.4, 25.3, 22.6, 22.3. 

Preparation of (R)-2-(4-isopropyl-4,5-dihydrooxazol-2-yl) )aniline 

Colorless crystals, m.p.: 38 40ºC, yield: 60%; [a]20
D=+12.15º 

(c=1.18, CHCl3): 
1HNMR (500MHz, CDCl3, 27°C),  (ppm) = 7.66 

(d, J=7.5Hz, 1H), 7.18(t, 1H), 6.63~6.69(m, 2H), 6.12(s, 2H), 
4.31(t, J=0.5Hz, 1H), 4.08~4.10(m, 1H), 3.98~4.01(m, 1H), 
1.75~1.79(m, 1H), 0.92~1,02 (dd, J=8.5Hz, 8.5Hz, 6H).  

Preparation of (R)-2-(4-phenyl-4,5-dihydrooxazol-2-yl) aniline 

Colorless crystals, m.p.: 37 39ºC, yield 58%; [a]20
D=-194.6º 

(c=0.38, CHCl3) 
1HNMR (500MHz, CDCl3, 27°C),  (ppm) = 7.78 (d, J=9.0Hz, 

1H), 7.23~7.38(m, 6H), 6.69~6.72(m, 2H), 6.16(s, 2H), 5.45(t, 1H), 
4.69(t, J=5Hz, 1H), 4.13(t, 1H).  

13CNMR (125MHz, CDCl3, 27°C) 164.6, 146.2, 142.1, 129.0 
(x2), 128.4(x2), 118.1(x2), 117.8, 114.3, 74.5, 69.6. 

Preparation of (R)-2-(4-benzyl-4,5-dihydrooxazol-2-yl) )aniline 

Colorless crystals, m.p.: 40 42ºC, yield: 61%; [a]20
D=-26.02º 

(c=1.34, CHCl3): 
1
HNMR (500MHz, CDCl3, 27°C),  (ppm) = 7.67 

(d, J=8.0Hz, 1H), 7.19~7.33(m, 6H), 6.64~6.71(m, 2H), 6.10(s, 
2H), 4.59~4.62(m, 1H), 4.27(t, J=0.5Hz, 1H), 4.02(t, J=0.5Hz, 1H), 
3.11~3.15(dd, J=6Hz, 6Hz, 1H), 2.74~2.79 (dd, J=8Hz, 8Hz, 1H). 

13CNMR (125MHz, CDCl3, 27°C) 163.7, 148.4, 138.1, 131.8 
(x2), 129.3(x2), 128.9, 128.2, 126.1, 115.7, 115.4, 108.6, 69.9, 
67.8, 42.0. 

Preparation of 9a-9d 

Compound 5 (9.17mmol) and triethylamine 20mL were added 
under free-water and free-oxygen conditions in a dry 100mL 
Schlenk flask. They were dissolved in 30mL of dry toluene, and 
then diphenylphosphinic chloride (8.50mmol) was added dropwise. 
The reaction mixture was refluxed for 72h. The solvent was re-
moved under reduced pressure, giving the crude red oil. Further 
purification was performed by silica gel. (petroleum ether/ dichlor-
methane 1/9). 

Preparation of (S)-2-(4-isobutyl-4, 5-dihydrooxazol-2-yl)phenyl 

diphenylphosphinate  

Colorless crystals, yield%: 69%, m.p.32~34°C; [a]20
D= -17.68º 

(c=0.27, CHCl3): 
1HNMR (500MHz, CDCl3, 27°C),  (ppm) = 8.05 8.07 (m, 

4H), 7.75 (d, J=8.0Hz, 1H), 7.66(d, J=8.5Hz, 1H), 7.41 7.42(m, 
6H), 7.26 7.31(m, 1H), 7.08(t, J=0.5Hz, 1H), 4.39 4.47(m, 2H), 
3.90 (t, 1H), 1.87 1.90 (m, 1H), 1.73 1.76(m, 1H), 1.40 1.43(m, 
1H), 0.97 1.02(dd, J=6.5Hz, 6.5Hz, 6H). 13CNMR(125MHz, CD-
Cl3, 27°C) 161.0, 150.0(x2), 132.3(x2), 132.1(x2), 131.3(x2), 
128.5(x2), 128.4(x2), 124.2(x2), 121.7, 120.2, 118.6, 116.7, 72.5, 
65.6, 45.7, 25.5, 23.0, 22.7. 31PNMR(121.5MHz, CDCl3, 27°C):  
(ppm) = 27.462, IR (KBr): 2970, 2917, 2849, 2251, 1679, 1612, 
1588, 1462, 1440, 1390, 1313, 1273, 1221, 1124, 1063, 1031, 789, 
733, 691, 649, 621, 592, 570, 528; HRMS(EI):m/z (%): calcd for 
C25H26NO3P: 419.1650; found: 419.1659. 
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Preparation of (S)-2-(4-isopropyl-4,5-dihydrooxazol-2-yl)phenyl 
diphenylphosphinate 

Light yellow liquid, yield%: 64%, [a]20
D= -20.27º (c=0.28, 

CHCl3)  
1HNMR (500MHz, CDCl3, 27°C)  (ppm) = 7.61 7.68(m, 5H), 

7.24 7.36(m, 7H), 6.98(d, J=8.5, 1H), 6.84(t, 1H), 4.38 4.43(m, 
1H), 4.08 4.14 (m, 2H), 1.76 1.82(m, 1H), 0.92 1.00(dd, J=7Hz, 
6.5Hz, 6H). 13CNMR(125MHz, CDCl3, 27°C) 165.2, 160.1(x2), 
133.3(x2), 131.4(x2), 131.3(x2), 128.3(x2), 128.1(x2), 128.1(x2), 
118.6(x2), 116.8(x2), 71.6, 69.9, 33.1, 18.8, 18.7.. 
31PNMR(121.5MHz, CDCl3, 27°C)  (ppm) = 23.180. IR (KBr): 
3057, 2959, 2926, 2872, 2250, 1676, 1644, 1618, 1583, 1555, 1492, 
1464, 1438, 1364, 1438, 1364, 1309, 1260, 1233, 1201, 1155, 1094, 
1069, 1035, 999, 959, 911, 859, 830, 800, 755, 728; HRMS(EI):m/z 
(%): calcd for C24H24NO3P: 405.1494; found: 405.1502. 

Preparation of (S)-2-(4-phenyl-4,5-dihydrooxazol-2-yl)phenyldi-
phenylphosphinate 

Light yellow liquid, yield%: 59%, [a]20
D= +19.38º (c=0.05, 

CHCl3)  
1HNMR(500MHz, CDCl3, 27°C)  (ppm) = 8.00 8.07(m, 3H), 

7.88(d, J=7.5Hz, 1H), 7.72(d, J=8.5Hz, 2H), 7.24 7.46(m, 12H), 
7.12(t, 1H), 5.46 (t, J=1.5Hz, 1H), 4.74 4.77 (m, 1H), 4.25(t, 
J=0.5Hz, 1H). 13CNMR(125MHz, CDCl3, 27°C) 166.4, 160.2(x2), 
141.7(x2), 133.7(x2), 131.4(x2), 131.3(x2), 128.9(x2), 128.3(x2), 
128.2(x2), 128.0(x2), 126.6(x2), 118.8(x2), 117.0(x2), 74.12, 69.0. 
31PNMR(121.5MHz, CDCl3, 27°C),  (ppm)=25.560. IR (KBr): 
3064, 3033, 2956, 2924, 2854, 2250, 1684, 1643, 1612, 1590, 1537, 
1495, 1479, 1461, 1440, 1378, 1304, 1274, 1249, 1221, 1138, 1156, 
1126, 1070, 1030, 909,793, 754, 734, 698, 648, 626, 557, 527.; 
HRMS(EI):m/z (%): calcd for C27H22NO3P: 439.1337; found: 
439.1344. 

Preparation of (S)-2-(4-benzyl-4,5-dihydrooxazol-2-yl)phenyldi-
phenylphosphinate 

Light yellow liquid, yield%: 58%, [a]20
D= +14.04º (c=0.14, 

CHCl3): 
1HNMR (500MHz, CDCl3, 27°C)  (ppm) = 7.61 7.70(m, 5H), 

7.23 7.38(m, 11H), 7.02(d, J=8Hz, 1H), 6.86(t, J=0.5Hz, 2H), 
4.60 4.64(m, 1H), 4.40(t, J=0.5Hz, 1H), 4.14(t, J=0.5Hz, 1H), 

3.09 3.13(dd, J=6, 6.5Hz, 1H), 2.80 2.84(dd, J=7.5, 8Hz, 1H), 
13CNMR(125MHz, CDCl3, 27°C) 165.6, 160.0(x2), 137.6(x2), 
133.5(x2), 131.3(x2), 131.2(x2), 129.3(x2), 128.7(x2), 128.3(x2), 
128.1(x2), 126.8(x2), 118.7(x2), 116.8(x2), 71.3, 66.8, 42.0. 
31PNMR (121.5MHz, CDCl3, 27°C),  (ppm)=23.205. IR (KBr): 
3061, 3028, 2955, 2924, 2854, 2249, 1642, 1617, 1492, 1438, 1367, 
1311, 1259, 1234, 1156, 1129, 1067, 960, 756, 727, 698; 
HRMS(EI): m/z (%): calcd for C28H24NO3P: 453.1494; found: 
453.149. 

Preparation of 10a-10d 

Compound 5 (9.17mmol) and triethylamine 20mL were added 
under free-water and free-oxygen conditions in a dry 100mL 
Schlenk flask. They were dissolved in 30mL of dry toluene, and 
then phenylphosphonic dichloride (4.50mmol) was added dropwise. 
The reaction mixture was refluxed for 72h. The solvent was re-
moved under reduced pressure, giving the crude red oil. Further 
purification was performed by silica gel. (petroleum ether/ dichlor-
methane 1/9). 

Preparation of 3-((S)-1-chloro-4-methylpentan-2-yl)-2-phenyl-3-
hydrobenzo[e][1,3,2]oxazaphosphinin-4-one-oxide 

Light yellow liquid, yield%: 46%, [a]20
D= +50.7º (c=0.18, 

CHCl3): 

1HNMR (500MHz, CDCl3, 27°C),  (ppm) = 8.15 8.18 (dd, 
J=3, 3Hz, 1H), 7.75 7.82 (m, 2H), 7.56 7.62(m, 2H), 7.43 7.50(m, 

2H), 7.30 7.35(m, 1H), 7.11(d, J=13.5Hz, 1H), 4.06 4.12(m, 2H), 

3.76 3.82(m, 1H), 1.55 1.94(m, 3H), 0.94(d, J=11Hz, 6H), 
13CNMR (125MHz, CDCl3, 27°C) 163.1, 150.7, 150.6, 135.7, 
134.0, 131.9, 130.3, 128.9, 128.8, 125.0, 118.7, 118.6, 118.2, 56.6, 

45.8, 39.7, 25.2, 22.4, 22.3. 31PNMR(121.5MHz, CDCl3, 27°C):  

 (ppm)=12.259, IR (KBr): 3440, 3070, 3049, 3024, 2250, 1591, 

1487, 1429, 1187, 1119, 1103, 1028, 997, 741, 717, 698, 528, 510, 
493; HRMS(EI):m/z (%): calcd for C19H21NO3PCl: 377.0948; 

found:377.0945. 

Preparation of 3-((S)-1-chloro-3-methylbutan-2-yl)-2-phenyl-3-
hydrobenzo[e][1,3,2]oxazaphosphinin-4-one-2-oxide 

Light yellow liquid, yield%: 59%, [a]20
D= +28.3º (c=0.16, 

CHCl3): 
1HNMR (500MHz, CDCl3, 27°C)  (ppm) = 8.13 (d, J=7Hz, 

1H), 7.72 7.76 (m, 2H), 7.54 7.58(m, 2H), 7.26 7.41(m, 3H), 
7.12(d, J= 8Hz, 1H), 4.28(s, 1H), 3.78 3.80(m, 2H), 2.54(s, 1H), 

1.05 (m, 6H). 13CNMR(125MHz, CDCl3, 27°C) 163.12, 150.77, 

150.70, 135.76, 133.72, 131.89, 130.26, 128.72, 128.57, 

124.98(x2), 118.71, 118.62, 65.94, 44.62, 29.85, 20.82, 20.60. 
31PNMR(121.5MHz, CDCl3, 27°C)  (ppm)=14.066. IR (KBr): 

2970, 2917, 2849, 2251, 1679, 1612, 1568, 1462, 1440, 1390, 1313, 

1273, 1221, 1124, 1063, 1031, 908, 789, 733, 691, 649, 621, 570, 

528; HRMS(EI): m/z (%): calcd for C18H19NO3PCl: 363.0791; 
found: 363.0793. 

Preparation of 3-((S)-2-chloro-1-phenylethyl)-2-phenyl-3-
hydrobenzo[e][1,3,2]oxazaphosphinin-4-one-2-oxide  

Colorless crystals, yield%: 62%, m.p.: 38~40 ºC; [a]20
D= -

57.05º (c=0.19, CHCl3): 
1HNMR (500MHz, CDCl3, 27°C)  (ppm) =8.10(d, J=6.5Hz, 

1H), 7.53 7.65(m, 4H), 7.08 7.28(m, 9H), 5.24 5.26(m, 1H), 

4.54 4.58(m, 1H), 4.34 4.38(m, 1H). 13CNMR(125MHz, CDCl3, 

27°C) 162.8, 150.4(x2), 136.2, 135.8, 133.9, 132.3, 132.2, 

130.3(x2), 129.0(x2), 128.9, 128.7, 128.5, 128.3, 125.0, 118.8, 

118.7, 61.8, 43.7. 31PNMR(121.5MHz, CDCl3, 27°C),  

(ppm)=18.338. IR (KBr): 3064, 3033, 2956, 2924, 2854, 2250, 

1684, 1643, 1612, 1590, 1537, 1495, 1479, 1461, 1440, 1378, 1304, 

1274, 1249, 1221, 1138, 1156, 1126, 1070, 1030, 909,793, 754, 

734, 698, 648, 626, 557, 527; HRMS(EI):m+1/z (%): calcd for 

C21H18NO3PCl: 398.0713; found: 398.0710. 

Preparation of 3-((S)-1-chloro-3-phenylpropan-2-yl)-2-phenyl-3-
hydrobenzo[e][1,3,2]oxazaphosphinin-4-one-2-oxide 

Light yellow liquid, yield%: 51%, [a]20
D= -26.5º (c=0.053, 

CHCl3): 
1HNMR (500MHz, CDCl3, 27°C)  (ppm) = 8.18 8.22(dd, J=3, 

2.5Hz, 1H), 7.75 7.80(m, 2H), 7.56 7.60(m, 2H), 7.11 7.44(m, 

9H), 4.42(t, J=2.5Hz, 2H), 3.60 3.64(m, 1H), 3.38 3.42 (m, 2H). 
13CNMR(125MHz, CDCl3, 27°C) 163.1, 150.7, 150.6, 137.2, 
135.7, 134.0, 132.3, 132.2, 130.2, 129.3, 129.2, 128.9, 128.8, 128.7, 

127.0, 125.0, 118.8, 118.7, 59.8, 44.0, 38.1, 29.8. 
31PNMR(121.5MHz, CDCl3, 27°C),  (ppm)=13.076. IR (KBr): 

3028, 2918, 2849, 2248, 1679, 1642, 1612, 1586, 1479, 1461, 1440, 
1304, 1156, 1126, 1092, 1030, 978, 926, 844, 789, 730, 690, 648, 

626, 594, 551, 480; HRMS(EI):m+1/z (%): calcd for 

C22H20NO3PCl: 412.0871; found: 412.0869. 

Preparation of 11a-11d 

Compound 6 (10.95mmol) and triethylamine 20mL were added 
under free-water and free-oxygen conditions in a dry 100mL 
Schlenk flask. They were dissolved in 30mL of dry toluene, and 
then diphenylphosphonic dichloride (3.48mmol) was added drop-
wise. The reaction mixture was refluxed for 72h. The solvent was 
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removed under reduced pressure, giving the crude red oil. Further 
purification was performed by silica gel. (petroleum ether/ dichlor-
methane 1/9). 

Preparation of 3-((R)-1-chloro-4-methylpentan-2-yl)-2-phenyl-3-
hydrobenzo[e][1,3,2]oxazaphosphinin-4-one-2-oxide 

Light yellow liquid, yield: 65%; [a]20
D= -24.3º (c=0.21, CHCl3): 

1HNMR (500MHz, CDCl3, 27°C),  (ppm) = 8.14 8.17 (dd, 
J=2.5Hz, 2.5Hz, 1H), 7.75 7.82 (m, 2H), 7.74 7.81(m, 2H), 
7.56 7.62(m, 2H), 7.27 7.32 (m, 1H), 7.10(d, J=13.5Hz, 1H), 
4.06 4.12(m, 2H), 3.75 3.81(m, 1H), 1.73 1.75(m, 3H), 0.94(d, 
J=11Hz, 6H), 13CNMR(125MHz, CDCl3, 27°C) 163.1, 150.6, 
135.7, 134.0, 133.9, 130.3, 129.0, 128.7, 125.0, 118.7, 118.6, 118.2, 
56.6, 44.6, 39.7, 29.7, 25.2, 22.4, 22.3. 31PNMR(121.5MHz, CDCl3, 
27 ):  (ppm)=15.421, IR (KBr): 3062, 2958, 2927, 2870, 1725, 
1682, 1642, 1612, 1586,1479,1461,1439,1387, 1306, 1250, 1216, 
1154, 1126, 1097, 1068, 1030, 999, 926, 790, 755, 722, 692, 620, 
613, 582,556, 508. HRMS(EI):m/z (%): calcd for C19H21NO3 PCl: 
377.0948; found: 377.0937. 

Preparation of 3-((R)-2-chloro-1-phenylethyl)-2-phenyl-3-hydro-
benzo[e][1,3,2] oxazaphosphinin-4-one-2-oxide 

Colorless crystals, m.p.: 38~40 ºC, yield: 48%; [a]20
D= -58.9º 

(c=0.132, CHCl3): 
1HNMR (500MHz, CDCl3, 27°C)  (ppm) = 8.14 (d, J=7.5Hz, 

1H), 7.03 7.55 (m, 13 H), 5.95(s, 1H), 4.40 4.45(m, 2H); 
13CNMR(125MHz, CDCl3, 27°C) 162.6, 150.2(x2), 135.5(x2), 
132.8(x2), 130.6(x2), 130.2(x2), 129.1(x2), 128.2, 128.1, 127.9, 
124.6, 118.3, 118.2, 57.8, 43.4. 31PNMR(121.5MHz, CDCl3, 27°C) 
 (ppm)=16.040. IR (KBr): 3063,2966,2924, 2248, 1682, 1641, 

1612, 1588, 1496, 1479, 1439, 1304, 1249, 1220, 1155, 1126, 1072, 
1030, 928,791, 753, 724,691, 608, 587, 575, 555, 523; HRMS(EI): 
m/z (%): calcd for C21H17NO3P M- Cl): 362.0946; found: 
362.0928. 

Preparation of 3-((R)-1-chloro-3-phenylpropan-2-yl)-2-phenyl-3-
hydroben-zo[e] [1,3,2]oxazaphosphinin-4-one-2-oxide 

Light yellow liquid, yield: 55%, [a]20
D= +24.5º (c=0.269, CH-

Cl3):
1HNMR (500MHz, CDCl3, 27°C)  (ppm) = 8.15 8.18(dd, 

J=2.5, 2.5Hz, 1H), 7.50 7.57(m, 3H), 7.10 7.37(m, 5H), 

7.07 7.10(m, 3H), 6.83(d, J= 9.5Hz, 2H), 4.16 4.31(m, 1H), 
3.90 3.96 (m, 1H). 3.33(d, J=12.5Hz, 2H); 13CNMR(125MHz, 

CDCl3, 27°C) 162.9, 150.6, 137.1, 135.7, 133.7(x2), 132.2, 132.0, 

130.1, 129.2, 129.1, 129.0, 128.9, 128.7, 128.6, 126.7, 125.0, 118.7, 

118.6, 60.3, 43.8, 36.8. 31PNMR(121.5MHz, CDCl3, 27°C),  
(ppm)=16.515,IR (KBr) : 3338, 3062, 3027, 2965, 2929, 2248, 

1641, 1679, 1611,1590, 1479, 1461, 1440, 1304, 1155, 1126, 1090, 

1031, 976, 930, 873, 789, 753, 691, 622, 594, 593, 553, 529, 485; 

HRMS(EI):m+1/z (%): calcd for C22H20NO3PCl: 412.0871; found: 
412.0869. 

Preparation of 12a-12d 

Compound 7 (9.17mmol) and triethylamine 20mL were added 
under free-water and free-oxygen conditions in a dry 100mL 
Schlenk flask. They were dissolved in 30mL of dry toluene, and 
then phenylphosphonic dichloride (8.50mmol) was added dropwise. 
The reaction mixture was refluxed for 72h. The solvent was re-
moved under reduced pressure, giving the crude red oil. Further 
purification was performed by silica gel. (petroleum ether/ dichlor-
methane 1/9). 

Preparation of ((S)-N-(2-(4-isobutyl-4,5-dihydrooxazol-2-yl) 
phenyl)-P,P-diphenylphosphinic amide 

Light yellow liquid, m.p.: 68-70°C; yield: 80% [a]20
D= +11.16º 

(c=0.089, CHCl3): 

1HNMR (500MHz, CDCl3, 27°C),  (ppm) = 11.00 (d, 
J=21.5Hz, 1H), 7.83 7.91 (m, 4H), 7.76(d, J= 13Hz, 1H), 
7.28 7.52(m, 6H), 7.11 7.16(m, 2H), 6.80 .86(m, 1H), 
4.31 4.43(m, 1H), 4.21 4.22(m, 1H), 3.83(t, 1H), 1.23 1.46(m, 
3H), 0.72 0.76(dd, J=6.5, 6.5Hz, 6H). 13CNMR(125MHz, CDCl3, 
27°C) 163.9, 143.3, 132.2, 132.0(x2), 131.9, 131.8(x2), 131.7(x2), 
129.4(x2), 128.8(x2), 128.6(x2), 119.9, 118.3, 118.3, 71.9, 64.7, 
45.8, 25.2, 23.4, 22.0. 13PNMR(121.5MHz, CDCl3, 27 ):  
 (ppm)=14.818, IR (KBr): 3058, 2956, 2925, 2869, 2248, 1634, 

1602, 1583, 1504, 1486, 1438, 1363, 1308, 1259, 1213, 1123, 1109, 
1061, 938, 752; HRMS(EI):m/z (%): calcd for C25H27N2O2P: 
418.1810; found: 418.1806.  

Preparation of ((S)-N-(2-(4-isopropyl-4,5-dihydrooxazol-2-yl)phe-
nyl)-P,P-diphenylphosphinic amide 

Light yellow liquid, yield: 82% [a]20
D= -11.8º (c=0.67, CHCl3)  

1HNMR (500MHz, CDCl3, 27°C)  (ppm) = 11.02 (d, J = 
13.5Hz, 1H), 7.73 7.89 (m, 5H), 7.10 7.46(m, 7H), 7.12(t, J= 
0.5Hz, 1H), 6.80 (t, 1H), 4.29 4.32(m, 1H), 3.92 3.96 (m, 2H), 
1.55 1.58(m, 1H), 0.66 0.74(dd, J=6.5Hz, 6.5Hz, 6H). 
13CNMR(125MHz, CDCl3, 27°C) 163.9, 143.3, 133.2(x2), 132.1, 
131.9(x2), 131.7(x2), 129.4(x2), 128.7(x2), 128.6(x2), 119.8(x2), 
118.2(x2), 72.7, 69.4, 33.0, 18.9, 18.4. 31PNMR(121.5MHz, CDCl3, 
27°C),  (ppm)=14.846. IR (KBr): 3028, 2918, 2849, 2248, 1679, 
1642, 1612, 1586, 1479, 1461, 1440, 1304, 1156, 1126, 1092, 1030, 
978, 926, 844, 789, 730, 690, 648, 626, 594, 551, 480; 
HRMS(EI):m/z (%): calcd for C24H25N2O2P:404.1654 ; found: 
404.1657. 

Preparation of ((S)-P,P-diphenyl-N-(2-(4-phenyl-4,5-dihydro-oxa-
zol-2-yl)phenyl)phosphinic amide 

Light yellow liquid, yield: 75% [a]20
D= +62.5º (c=0.14, CHCl3): 

1HNMR (500MHz, CDCl3, 27°C)  (ppm) =11.03(d, J=13Hz, 

1H), 7.70 7.82(m, 5H), 7.16 7.40(m, 13H), 6.86(t, 1H), 5.35(t, 

J=0.5Hz, 1H), 4.72(t, J=0.5Hz, 1H), 4.21(t, J=0.5Hz, 1H). 
13CNMR(125MHz, CDCl3, 27°C) 165.1, 143.4, 141.8, 132.7, 

131.9(x2), 131.8(x2), 131.7, 131.6, 131.5(x2), 129.6(x2), 

128.8(x2), 128.7(x2), 128.6(x2), 127.8, 126.6, 120.0, 118.4, 118.3, 

73.2, 69.8. 31PNMR(121.5MHz, CDCl3, 27 ),  (ppm)=14.756. IR 

(KBr): 3404, 3059, 2957, 2924, 2853, 2250, 1632, 1601, 1583, 

1501, 1455, 1438, 1361, 1304, 1267, 1212, 1163, 1123, 1108, 1064, 

1046, 938, 793, 752, 698, 611, 546, 533, 522; HRMS(EI):m/z (%): 

calcd for C27H23N2O2P: 438.1497; found: 438.1494. 

Preparation of ((S)-P,P-diphenyl-N-(2-(4-benzyl-4,5-dihydro-oxa-
zol-2-yl)phenyl)phosphinic amide 

Light yellow liquid, yield: 63% [a]20
D= +45.73º (c=0.066, 

CHCl3): 
1HNMR (500MHz, CDCl3, 27°C)  (ppm) = 11.01(d, J=13Hz, 

1H), 7.86 7.90(m, 3H), 7.74(d, J=7.5Hz, 1H), 7.12 7.50(m, 13H), 
6.86(t, 1H), 4.60(t, J=0.5Hz, 2H), 4.27 4.33(m, 1H), 4.02 4.08(m, 
1H), 2.99 3.02(dd, J=5.5, 6Hz, 1H), 2.70 2.75(dd, J=8.5, 8Hz, 1H) 
13CNMR(125MHz, CDCl3, 27°C) 164.5, 143.3(x2), 137.5(x2), 
132.5, 132.0(x2), 131.8(x2), 131.7(x2), 131.6(x2), 129.5(x2), 
129.2, 128.8, 128.7, 126.7(x2), 120.0(x2), 118.4, 118.3, 70.6, 67.6, 
42.0. 31PNMR(121.5MHz, CDCl3, 27°C),  (ppm)=14.787. IR 
(KBr): 3370, 3059, 3026, 2956, 2923, 2852, 2249, 1633, 1602, 
1583, 1502, 1438, 1454, 1363, 1308, 1268, 1203, 1123, 1108, 1061, 
941, 751, 725, 698; HRMS(EI):m/z (%): calcd for 
C28H25N2O2P:452.1654 ; found: 452.1650. 

Preparation of 13a-13d 

Compound 7 (6.42mmol) and triethylamine 20mL were added 
under free-water and free-oxygen conditions in a dry 100mL 
Schlenk flask. They were dissolved in 30mL of dry toluene, and 
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then phenyl phosphine dichloride (3.00mmol) was added dropwise. 
The reaction mixture was refluxed for 72h. The solvent was re-
moved under reduced pressure, giving the crude red oil. Further 
purification was performed by silica gel. (petroleum ether/ dichlor-
methane 1/9). 

Preparation of N, N'-bis[2-[(4S)-4, 5-dihydro-4-(isobutyl)-2-
oxazolyl]phenyl]-P-phenyl phosphonic diamide 

Light yellow liquid, yield: 82% [a]20
D= -3.6º (c=0.208, 

CH2Cl2): 
1HNMR (500MHz, CDCl3, 27 ),  (ppm) = 10.90 10.98(dd, 

J=12, 13.5Hz, 2H), 7.96 7.99 (m, 2H), 7.64 7.72(m, 3H), 
7.43 7.52(m, 4H), 7.24 7.26(m, 2H), 6.84 6.86(m, 2H), 
4.21 4.37(m, 4H), 3.77 3.79(m, 2H), 1.23 1.32(m, 2H), 
1.12 1.16(m, 4H), 0.66 0.72(m, 12H). 13CNMR (125MHz, CDCl3, 
27 ) 163.6(x2), 143.4, 143.2, 132.3(x2), 132.1, 132.0(x2),  131.8, 
131.7, 129.3(x2), 128.7, 128.6, 119.8, 119.69, 118.1, 118.0, 118.0, 
71.8(x2), 64.6, 64.6, 45.7, 45.5, 25.2(x2), 23.4, 23.3, 21.9, 21.8. 

31PNMR(121.5MHz, CDCl3, 27 ):  (ppm)=4.907, IR (KBr) : 
3076, 2958, 2925, 2869, 2251, 1636, 1583, 1501, 1466, 1438, 1385, 
1365, 1309, 1258, 1216, 1162, 1139, 1122, 1162, 1061, 946, 905, 
854, 809, 750, 694, 622, 537, 479; HRMS(EI):m/z (%): calcd for 
C32H39N4O3P: 558.2760; found: 558.2767.  

Preparation of N,N'-bis[2-(4S)-4, 5-dihydro- 4-(2-isopropyl)-2-
oxazolyl]phenyl]-P-phenyl phosphonic diamide 

Colorless crystals, m.p.:38-40ºC; yield: 85% [a]20
D= -11.8º 

(c=0.67, CHCl3)  
1HNMR (500MHz, CDCl3, 27 )  (ppm) = 11.00(d, J = 

20.5Hz, 2H), 7.98 8.03(m, 2H), 7.69 7.76(m, 4H), 7.42 7.48(m, 
3H), 7.24 7.26(m, 2H), 6.84 6.88 (m, 2H), 4.27 4.30(m, 2H), 
3.90 3.95(m, 4H), 1.46 1.52(m, 2H), 0.61 0.72(m, 12H). 
13CNMR(125MHz, CDCl3, 27 ) 163.9(x2), 143.3(x2), 132.1(x2), 
131.9(x2), 131.7(x2), 129.4(x2), 128.7(x2), 128.6(x2), 119.8(x2), 
118.2(x2), 72.7(x2), 69.4(x2), 33.0(x2), 18.9(x2), 18.4(x2). 
31PNMR(121.5MHz, CDCl3, 27 ),  (ppm)=4.884. IR (KBr) : 
3075, 2960, 2904, 2250, 1634, 1583, 1500, 1437, 1360, 1305, 1156, 
1269, 1254, 1217, 1122 1064 950 897 751 729 695
621 507; HRMS(EI):m/z (%): calcd for C30H35N4O3P:530.2447 ; 
found: 530.2444. 

Preparation of N, N'-bis[2-[(4S)-4,5-dihydro-4-(phenyll)-2-oxazo-
lyl]phenyl]-P-phenyl phosphonic diamide 

Light yellow liquid, yield: 76% [a]20
D=+72.3º (c=0.85, CHCl3)  

1HNMR(500MHz, CDCl3, 27 )  (ppm)=10.89(d, J=12Hz, 
2H), 7.67 7.87(m, 6H), 6.88 7.26(m, 17H), 5.27(t, J = 0.5Hz, 1H), 
5.08(t, J = 0.5Hz, 1H), 4.56 4.68(m, 2H), 4.00 4.10(m, 2H). 
13CNMR(125MHz, CDCl3, 27 ) 165.0(x2), 143.5, 143.3, 141.9, 
141.8, 132.7(x2), 132.1(x2), 131.5, 131.4, 129.6(x2), 128.8(x2), 
128.7(x2), 128.6, 128.5, 127.6, 127.5, 126.5, 126.4, 120.0(x2), 
119.9(x2), 118.4, 118.4, 118.1, 118.0, 73.1, 73.0, 69.6, 69.5. 
31PNMR(121.5MHz, CDCl3, 27 ),  (ppm)=5.474. IR (KBr): 
3062, 2957, 2924, 2853, 2251, 1633, 1602, 1584, 1499, 1455, 1437, 
1361, 1301, 1265, 1218, 1164, 1136, 1122, 1065, 1047, 954, 910, 
752, 731, 697, 645, 621, 514, 475; HRMS(EI):m/z (%): calcd for 
C36H31N4O3P: 598.2134; found: 598.2131. 

Preparation of N, N'-bis[2-[(4S)-4, 5-dihydro- 4-(benzyl)-2-oxazo-

lyl]phenyl]-P-phenyl phosphonic diamide 

Light yellow liquid, yield: 70% [a]20
D= 44.63º (c=0.081, 

CHCl3): 
1HNMR (500MHz, CDCl3, 27 )  (ppm) = 10.84 10.92 (dd, 

J=11Hz, 12.5Hz, 2H), 7.98 8.02(m, 2H), 7.24 7.71(m, 7H), 
7.04 7.21(m, 12H), 6.85 6.87(m, 2H), 4.43 4.45(m, 2H), 
4.23 4.26(m, 2H), 3.97 3.98(m, 2H), 2.92 2.95(dd, J=5Hz, 5.5Hz, 
1H), 2.79 2.83(dd, J=8.5Hz, 8.5Hz, 1H), 2.59 2.64(dd, J=8Hz, 

8Hz, 1H), 2.47 2.52(dd, J=8.5Hz, 8.5Hz, 1H), 13CNMR(125MHz, 
CDCl3, 27 ) 164.2(x2), 143.2, 143.0, 137.7(x2), 137.5(x2), 
132.5(x2), 132.3(x2), 131.6(x2), 131.5(x2), 129.4(x2), 129.1(x2), 
128.7(x2), 128.6(x2), 128.6(x2), 126.6, 126.5, 120.0, 119.9, 118.1, 
118.0, 70.3(x2), 67.6, 67.5, 41.6(x2).31PNMR(121.5MHz, CDCl3, 
27 ),  (ppm) =4.281. IR (KBr) : 3462, 3028, 2924, 2853, 2249, 
1635, 1562, 1493, 1455, 1439, 1365, 1315, 1246, 1161, 1142, 1082, 
1054, 971, 926, 750, 699, 540; HRMS(EI):m/z (%): calcd for 
C38H35N4O3P:626.2447 ; found: 626.2452. 

Preparation of 14a-14d 

Compound 8 (12.84mmol) and triethylamine 20mL were added 
under free-water and free-oxygen conditions in a dry 100mL 
Schlenk flask. They were dissolved in 40mL of dry toluene, and 
then phenylphosphonic dichloride 0.7mL (4.99mmol) was added 
dropwise. The reaction mixture was refluxed for 72h. The solvent 
was removed under reduced pressure, giving the crude red oil. Fur-
ther purification was performed by silica gel. (petroleum ether/ 
dichlormethane 1/9). 

Preparation of N, N'-bis[2-[(4R)-4, 5-dihydro-4-isobutyl-2-oxazol-
yl]phenyl]-P-phenyl phosphonic diamide 

Light yellow liquid, yield: 85%; [a]20
D= 5.10º (c=0.294, 

CH2Cl2): 
1HNMR (500MHz, CDCl3, 27 ),  (ppm) = 10.92 11.00( dd, 

J=12Hz, 13.5Hz 2H), 7.95 7.99 (m, 2H), 7.65 7.72(m, 4H), 
7.41 7.52(m, 3H), 7.21 7.23(m, 2H), 6.81 6.83(m, 2H), 
4.30 4.33(m, 2H), 4.10 4.19(m, 2H), 3.72 3.77(m, 2H), 
1.23 1.32(m, 4H), 1.11 1.13(m, 2H), 0.63 0.70(m, 12H). 
13CNMR(125MHz, CDCl3, 27 ) 163.3, 163.1, 142.9, 142.7，
131.8, 131.7, 131.3, 131.8, 131.3, 131.0, 129.2, 128.8, 128.1, 119.3, 
119.2, 117.6, 117.4, 115.9, 112.0, 112.0, 71.3, 64.1, 64.0, 45.3, 
45.2, 25.2, 24.7, 23.0, 22.8, 22.6, 22.3, 21.3. 31PNMR (121.5MHz, 
CDCl3, 27°C),  (ppm)= 8.614, IR (KBr) : 3389, 3293, 3075, 2956, 
2926, 2869, 1692, 1636, 1583, 1501, 1466, 1438, 1365, 1258, 1215, 
1162, 1122, 1061, 946, 904, 854, 750, 694, 622, 538, 484; 
HRMS(EI):m/z (%): calcd for C32H39N4O3P: 558.2760; found: 
558.2764.  

Preparation of N, N'-bis[2-[(4R-4,5-dihydro-4-isopropyll-2-oxa-
zolyl]phenyl]-P-phenyl phosphonic diamide 

Pale yellow crystals, yield: 88%; [a]20
D=+12.89º (c=0.0368, 

CH2Cl2): 
1HNMR (500MHz, CDCl3, 27 )  (ppm) = 11.01(d, J = 13Hz, 

2H), 7.97 8.01(m, 2H), 7.68 7.74(m, 4H), 7.39 7.45(m, 3H), 
7.20 7.23 (m, 2H), 6.80 6.83 (m, 2H), 4.22 4.23 (m, 2H), 
3.85 3.88 (m, 4H), 1.41 1.47 (m, 2H), 0.56 0.67 (m, 12H). 
13CNMR(125MHz, CDCl3, 27 ) 163.2(x2), 142.9, 142.7, 
131.9(x2), 131.9(x2), 131.3(x2), 131.2(x2), 128.8, 128.3, 
128.2(x2), 119.39(x2), 117.5, 117.3, 72.1(x2), 69.1, 68.8, 32.8, 
32.6, 18.6 18.3, 17.9, 17.6. 13PNMR(21.5MHz, CDCl3, 27°C),  
(ppm)= 8.651. IR (KBr) : 3392, 3292, 3076, 2960, 2904, 2230, 
1636, 1583 1500 1437, 1360, 1305, 1156, 1269, 1251, 1217, 
1122, 1064, 957, 897, 751, 730, 695, 622, 507, 475. HRMS(EI):m/z 
(%): calcd for C30H35N4O3P: 530.2447 ; found: 530.2446. 

Preparation of N, N'-bis[2-[(4R)-4, 5-dihydro-4-phenyl-2-oxazolyl] 

phenyl]-P-phenyl phosphonic diamide 

Light yellow liquid, yield: 82%; [a]20
D=+105.73º (c=0.212, 

CH2Cl2): 
1HNMR(500MHz, CDCl3, 27 )  (ppm) = 10.92(d, J= 12.5Hz, 

2H), 7.69 7.89(m, 6H), 6.88 7.26(m, 17H), 5.29(t, J = 0.5Hz, 1H), 
5.09 (t, J = 0.5Hz, 1H), 4.56 4.67(m, 2H), 4.00 4.10(m, 2H). 
13CNMR(125MHz, CDCl3, 27 ) 164.5, 164.4, 143.0, 142.8, 
132.2(x2), 132.0, 131.7(x2) 131.0, 131.0(x2), 130.8(x2), 129.1(x2), 
128.3（x2), 128.2, 128.0, 127.1, 127.0, 126.0, 126.5, 125.9, 119.6, 
119.5, 117.9, 117.5, 112.0, 112.0, 111.8, 72.7, 72.6, 69.10, 69.01. 
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13PNMR(300MHz, CDCl3, 27°C),  (ppm)=9.299. IR (KBr) : 3466, 
3393, 3292, 3061, 2917, 2233, 1813, 1634, 1582, 1499, 1454, 1438, 
1363, 1307, 1256, 1216, 1163, 1135, 1122, 1059, 954, 910, 751, 
730, 698, 620, 540, 490; HRMS(EI):m/z (%): calcd for 
C36H31N4O3P: 598.2134; found: 598.2132. 

Preparation of N, N'- bis[2-[(4R)-4, 5-dihydro-4-benzyl-2-oxazolyl] 
phenyl]-P-phenyl phosphonic diamide 

Light yellow liquid, yield: 80%; [a]20
D= +53.09º (c=0.574, 

CH2Cl2):
1HNMR (500MHz, CDCl3, 27 )  (ppm) = 10.95 11.03 (dd, 

J=2.5Hz, 2.0Hz, 2H), 8.05 8.09(m, 2H), 7.31 7.81(m, 3H), 
7.20 7.27(m, 14H), 6.67 6.73(m, 4H), 4.47 4.61(m, 2H), 
4.25 4.26(m, 2H), 3.99 4.03(m, 2H), 2.54 3.16(m, 4H), 
13CNMR(125MHz, CDCl3, 27 ) 163.8, 148.2, 142.9, 142.8, 
137.9, 137.3, 137.2, 132.5, 132.4, 132.1, 131.9, 131.2, 131.1, 129.3, 
129.0, 128.9, 128.8, 128.6, 128.4, 128.2, 127.9, 126.2, 126.1, 120.0, 
119.6, 119.5, 117.8, 117.7, 115.8, 115.6, 112.2, 108.5, 70.0, 67.5, 
67.2, 67.0, 41.8. 41.2. 31PNMR (121.5MHz, CDCl3, 27°C),  
(ppm)=9.200. IR(KBr) : 3466, 3395, 3297, 3062, 3030, 2965, 2899, 
2244, 1633, 1562, 1498, 1455, 1438, 1362, 1302, 1266, 1212, 1163, 
1123, 1064, 954, 751, 698, 606, 533. HRMS(EI):m/z (%): calcd for 
C38H35N4O3 P:626.2447; found: 626.2448. 

Preparation of 2-phenyl-2-((trimethylsilyl)oxy) acetonitrile 

Products 9a-9d, 10a, 10c, 10d, 11a, 11c, 11d, 12(a-d)-14(a-d) 

(0.15mmol) were dissolved in 2ml THF, benzaldehyde 0.12g(1 
mmol) and TMSCN (25mL) at room temperature. After 6h, 8h or 
19h, the reaction was quenched and the mixture was extracted with 
dichloromethane (3x10mL). The combined organic layers were 
dried over Na2SO4, and concentrated in vacuo. Further purification 
was performed by silica gel (petroleum/dichloro-methane 4/1). 
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