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Abstract
The development of adhesive connections between cells was critical for the
evolution of multicellularity and for organizing cells into complex organs with
discrete compartments. Four types of intercellular junction are present in
vertebrates: desmosomes, adherens junctions, tight junctions, and gap
junctions. All are essential for the development of the embryonic layers and
organs as well as adult tissue homeostasis. While each junction type is
defined as a distinct entity, it is now clear that they cooperate physically and
functionally to create a robust and functionally diverse system. During
evolution, desmosomes first appeared in vertebrates as highly specialized
regions at the plasma membrane that couple the intermediate filament
cytoskeleton at points of strong cell–cell adhesion. Here, we review how
desmosomes conferred new mechanical and signaling properties to
vertebrate cells and tissues through their interactions with the existing
junctional and cytoskeletal network.
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Introduction: overview of intercellular junctions
Epithelia are essential for creating complex organs and organ-
izing them into discrete compartments that allow functional 
diversification in metazoans. The ability of epithelia to perform 
these roles requires four types of macromolecular assemblies 
or intercellular junctions: desmosomes (DSMs), adherens junc-
tions (AJs), tight junctions (TJs), and gap junctions (GJs)1–6.  
AJs and DSMs are anchoring junctions, which link the actin 
and intermediate filament (IF) cytoskeletons, respectively, 
to the plasma membrane at sites of cell–cell adhesion. TJs  
create seals in the plasma membrane to regulate paracellular  
transport and to polarize cells by keeping proteins in their  
correct compartments. Connexin-containing GJs electrically 

couple cells by allowing the movement of small molecules  
from cell to cell (Figure 1 and Figure 2).

In simple epithelia, three intercellular junctions are organ-
ized into a polarized “junctional complex” at the apical end of 
the lateral membrane connecting two cells. TJs are most api-
cal, followed by AJs and their associated actin belt, and finally 
DSMs7. Spot DSMs and GJs are also present on other regions 
of the lateral membrane. In stratified epithelia, junctions are  
also organized in a polarized fashion but in this case across mul-
tiple cell layers, from the basal proliferating layer to the most 
apical differentiated layer8 (Figure 1). In cardiac myocytes, 
DSMs, AJs, and GJs are organized into a specialized region of 

Figure 1. Organization of cell–cell junctions in different cell types. A) In simple epithelia, the junctional complex comprises apical tight 
junctions followed by adherens junctions and their attached cortical actin ring, and then desmosomes, which anchor the intermediate filament 
network. Gap junctions on the lateral membrane mediate the transfer of small molecules from cell to cell. Cell-matrix adhesion is facilitated by 
hemidesmosomes and integrin-based focal adhesions. B) In cardiac myocytes, contractile units called sarcomeres comprising thick (myosin) 
and thin (actin) filaments are joined at Z-discs and stabilized by interwoven desmin intermediate filaments. Actin fibers and intermediate 
filaments are anchored at hybrid junctions called area composita containing desmosome and adherens junction components. Stand-alone 
desmosomes anchor the remaining desmin-intermediate filament, and connexin (Cx)-containing gap junctions facilitate synchronous beating 
in heart tissue. C) Schematic of the epidermis and its multiple layers including the basal proliferating layer and differentiating spinous layer, 
granular layer, and fully differentiated cornified layer. Junctional proteins are polarized across multiple layers, as reported in 9–12. The patterns 
of junctional proteins and their attached cytoskeletons help drive the differentiation process. cad, cadherin; Cldn, claudin; CX, connexin; Dsc, 
desmocollin; Dsg, desmoglein; Jam-A, junctional adhesion molecule A; K, keratin; Ocln, occludin; Pkp, plakophilin; SG, stratum granulosum; 
Vinc, vinculin; ZO-1, zonula occludens 1.
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the plasma membrane called the intercalated disc (ID), which  
synchronizes cardiac myocyte contraction by coupling mechanical  
and electrical functions13 (Figure 1). Based on the importance 
of intercellular junctions in the development of embryonic  
layers and in adult tissues, it is not surprising that interference  
with their structure and function contributes to many 
human diseases due to loss of tissue integrity or polarized  
cell functions3,14,15.

In an historical overview of cell–cell junctions, Werner Franke 
and colleagues made an essential point: “It was the coop-
eration of the molecular ensembles of these junctions that  
provided the basis of eumetazoan life”16. While it is widely  
recognized that junctions are not discrete, independently assem-
bling and functioning structures, most reviews focus on junc-
tions as distinct entities. Here we explore how DSMs, the  
evolutionarily most recent intercellular junctions, connect with 

AJs, TJs, and GJs to create a robust, functionally diverse system  
(Figure 3).

Desmosomes emerged from adherens junctions with 
structural similarities but distinct functions
Cadherins and armadillo proteins are ancient protein fami-
lies that evolved independently but eventually came together to 
form primitive actin-associated AJs in simple epithelia of organ-
isms such as Hydra and sponges17–20. Later, in vertebrates, DSMs 
used updated versions of cadherins and armadillo proteins,  
borrowed an IF-binding domain from the spectraplakin family, 
and put together a new junction important for integrity and  
differentiation in complex tissues20,21. DSMs share a modular 
structure with their relatives, the AJs (Figure 2). At their adhe-
sive core, both junctions have transmembrane components in  
the calcium-binding cadherin family, classic cadherins in AJs,  
and desmosomal cadherins in DSMs (Module 1), which associate  

Figure 2. Schematics representing each of the major cell–cell junctions in simple epithelia and their major molecular components. 
Adherens junctions anchor the actin cytoskeleton at points of cell–cell adhesion, mediated by homophilic interactions between the classical 
cadherins (Module 1). The armadillo protein β-catenin (Module 2) and actin-binding protein α-catenin (Module 3) connect cadherins to the 
actin cytoskeleton. Similarly, in desmosomes, adhesion is mediated through desmosomal cadherins, desmogleins (Dsg) and desmocollins 
(Dsc) (Module 1), which associate with armadillo proteins plakoglobin (Pg) and plakophilins (Pkp) (Module 2) and desmoplakin (DP) (Module 
3) to anchor keratin-containing intermediate filaments to the membrane. In tight junctions, claudins and occludin are tetraspan membrane 
proteins that help form the paracellular barrier, and junctional adhesion molecules (JAM-A) assist in their assembly. Zonula occludens (ZO) 
proteins fortify the junction from the cytosolic side. Gap junctions are built from homo- or hetero-hexamers of connexin proteins to form a 
dodecamer connexin channel complex. These channels allow the flow of ions, small molecules, and proteins between cells. cAMP, cyclic 
adenosine monophosphate; cad, cadherin; DM, dense midline; ICS, intercellular space; IDP, inner dense plaque; IP3, inositol trisphosphate; 
ODP, outer dense plaque.

Page 4 of 16

F1000Research 2019, 8(F1000 Faculty Rev):2150 Last updated: 30 DEC 2019



in trans with cadherins on the adjacent cell to mediate adhe-
sion. The cadherin cytoplasmic domain links to members of the 
armadillo family (Module 2), which together act as a platform 
for association with cytoskeletal adaptors (Module 3). These  
adapters associate with actin (i.e. α-catenin) in AJs or IF  
(i.e. desmoplakin) in DSMs7.

Several features set desmosomes apart from adherens 
junctions
First, their association with IF sets DSMs apart structurally and 
functionally from actin-associated intercellular junctions: IFs 

stretch to multiple times their original length without break-
ing and resist force at higher tensile loads than actin. Thus, 
the DSM–IF system imparts mechanical integrity to tissues 
(reviewed in Broussard et al., unpublished). These mechani-
cal functions are critical in tissues that experience mechanical  
stress, such as the skin and heart. Second, there are two sub-
classes of desmosomal cadherins, desmogleins (Dsgs) and 
desmocollins (Dscs), both of which are required for DSM 
structure and function. Third, DSMs are uniquely capable of 
undergoing a transition from calcium-dependent to calcium- 
independent status, also known as the “hyperadhesive” state1,22. 

Figure 3. Structural and functional interactions between cell–cell junctions. Different components of cell–cell junctions work together 
to perform cellular processes and coordinate signaling events. From the perspective of the desmosome (DSM) (blue), here we list structural 
and/or functional relationships with tight junction (TJ) (yellow), adherens junction (AJ) (red), and gap junction (GJ) (green) components. Red 
and green arrows represent inhibition or activation, respectively, of DSM components. Black lines connecting DSM proteins with other junction 
components illustrate associations that promote or perturb junction form and function. The functional outcomes of these interactions are 
described over the connectors. Interactions represented in this figure are limited to those reported from 2014–2019. *Note: Sumigray et al. 
also reported a marked overexpression of claudins in desmoplakin (DP)-null keratinocytes. cad, cadherin; Cldns, claudins; CX43, connexin 
43; Dsg, desmoglein; Occln, occludin; Pkp, plakophilin; ZO-1, zonula occludens 1.
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Fourth, DSMs, but not AJs, segregate into lipid raft regions of 
the plasma membrane23. The resulting intercellular junctions 
are highly ordered, bilaterally symmetrical plasma membrane-
associated organelles that anchor 10 nm IFs to multi-layered  
electron-dense cytoplasmic plaques24. The following sections  
introduce the protein families that make up DSMs.

The cadherins
A major breakthrough in our understanding of DSM diver-
sity occurred when it became apparent that multiple members 
of the Dsg and Dsc subclasses of cadherins exist, which 
are expressed in a stratification-specific distribution in the  
multi-layered epidermis4,25,26. The pattern has biological mean-
ing tied to the differentiation program itself27 (Figure 1). The  
pattern also has functional importance in disease. For instance, 
the layer-specific nature of skin lesions in the autoimmune 
diseases pemphigus vulgaris and pemphigus foliaceus corre-
spond to the layers in which the target antigen (i.e. Dsg3 versus  
Dsg1) is at its highest concentration28,29.

Desmosomal cadherins evolved features not present in clas-
sic cadherins, tailoring their functions in vertebrates. Structural 
studies suggest that Dsgs and Dscs interact in trans via a strand 
swap mechanism, mimicking the interaction mechanism of 
classic cadherins. However, a pattern of conserved charged 
amino acids in their ectodomains inhibits homophilic interac-
tions such that heterophilic interactions are preferred (though  
evidence for the latter also exists)30. Other studies suggested that  
the Dsg2 ectodomain is flexible even in the calcium-bound state 
and shorter than the ectodomains of classic cadherins31. The 
data are consistent with the idea that desmosomal cadherins 
form trans but not cis interactions because they are spaced too 
far apart. Desmosomal cadherin flexibility may contribute to a 
switch between adhesive states during processes such as wound  
healing.

The cytoplasmic domains of the desmosomal cadherins are 
also different, with an extended Dsg-unique tail that scaffolds 
a number of binding partners involved in growth factor sign-
aling and cytoskeletal remodeling (reviewed in 32). The Dsc 
tail size is similar to that of classic cadherins but has two splice  
isoforms, whose functions are poorly understood. Dsc2, how-
ever, is sufficient to recruit and organize complexes contain-
ing the IF-anchoring protein desmoplakin (DP) on patterned  
substrates33.

The armadillo proteins
Like AJs, DSMs have two sorts of armadillo proteins with  
junctional and nuclear functions (reviewed in 34,35)  
(Figure 2). Plakoglobin and β-catenin are paralogues, and the 
plakophilins (PKPs) are most comparable to p120 catenin, 
owing to their similar structure of central armadillo repeats. 
Both plakoglobin and the PKPs associate directly with the IF- 
anchoring protein DP and interact with each other. Together, 
these interactions complete a link between the plasma  
membrane and IFs and promote clustering of plaque proteins in 
the cell cortex. Whereas β-catenin typically associates only with 
classic cadherins, plakoglobin is capable of associating with 

both desmosomal and classic cadherins36. This feature may be  
important in coordinating the assembly of AJs and DSMs.

PKPs contribute to junctional diversity in the epidermis and heart. 
In the epidermis, PKP1–3 are expressed in a differentiation-
dependent manner (Figure 1). PKP2 is expressed at low levels in 
the epidermal basal layer, and patients harboring PKP2 mutations 
have cardiac symptoms without visible alterations in the epider-
mis, likely due to the compensatory presence of other PKPs34.  
Human and animal studies show that PKP1 plays a criti-
cal role in ectodermal structural integrity, barrier function, and 
growth control37. PKP1 also exhibits differentiation-dependent 
localization in the epidermis: nuclear in basal cells and junc-
tional in suprabasal cells. The functional importance of this  
transition is poorly understood. Global PKP3 knockout mice 
are viable, but their skin exhibits features of human atopic  
dermatitis38. While p120 catenin and PKPs both regulate Rho 
GTPases, many of their functions are different, and we are only 
just beginning to appreciate the additional diversity these plaque  
elements bring to the structural and signaling functions of  
DSMs34.

In cardiac myocytes, a mixed type of junction, the area com-
posita, brings together DSM (DP, PKP2, Dsg2/Dsc2/plakoglobin) 
and AJ (N-cadherin, β-, and αT-catenin) components through 
PKP2’s ability to associate with αT-catenin in cardiac cells39. 
The intermingling of AJ and DSM components results in the 
attachment of desmin IFs and actin microfilaments within the  
same plasma membrane domain, providing additional sup-
port for actively beating cardiac myocytes. The identification 
of the area composita occurred in parallel with the recognition 
of a cardiac disorder called arrhythmogenic cardiomyopathy 
(AC), associated with mutations in DSM molecules. With these 
events came an explosion of studies focused on the specialized  
junctions of the heart and DSM mutations in AC40.

The cytoskeletal adaptor protein
DP is an essential mediator of IF anchorage at DSMs. Its domain 
structure evolved from the more primitive spectraplakin family, 
which can be found in non-vertebrates such as Caenorhabditis  
elegans41. The IF-binding domain exhibits broad functionality,  
binding to IFs in most classes42. DP associates with all of 
the armadillo proteins directly through its amino termi-
nus, associations that are regulated by post-translational  
modifications43. The spectrin repeats in the DP N-terminus 
also associate with binding partners such as the microtubule 
plus-tip protein EB1, which stabilizes microtubules to promote  
Cx43 trafficking to the membrane (see below)44.

Desmosomes and adherens junctions: integration of 
junction dynamics
DSM dynamics (assembly and turnover) have been studied 
mostly in vitro, using calcium levels, growth factor stimulation 
or inhibition, and scrape wounding, as a means to manipu-
late junction status26. In general, the formation of DSMs is 
considered to be dependent on classic cadherin-mediated  
adhesion, since cells lacking classic cadherins do not assemble  
DSMs45. Live-cell imaging at the newly contacting edge of a 
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scrape wound shows fluorescently tagged E-cadherin arriving 
at cell–cell interfaces within 3 minutes, along with associated  
β-catenin, and perhaps plakoglobin. Indeed, it has been proposed 
that DSM and AJ assembly crosstalk depends on the armadillo  
protein plakoglobin46, which has the special ability to associ-
ate with both classic and desmosomal cadherins. At the same 
time, PKP2 accumulates at nascent borders in concert with  
RhoA and the coalescence of circumferential actin bundles 
under the membrane47. These PKP2-dependent actin rear-
rangements help transport hundreds of small macromolecular  
particles containing DP and PKP2 associated with tufts of 
IFs towards the forming cell–cell adhesion to reinforce the  
desmosomal plaque48.

In PKP3-deficient cells, the ordered recruitment of DP into small 
precursor particles does not occur. Instead, DP coalescences 
aberrantly at cell–cell borders, which is reversed by activating 
cAMP with forskolin. Rather than utilizing the PKA pathway, 
cAMP signaling engages EPAC and its downstream effector, 
the small GTPase Rap49. While most literature focuses on how 
DSMs hitchhike on AJ assembly, here, data support the idea that,  
in addition to regulating DP precursor assembly, PKP3 pro-
vides a scaffold for binding and activation of Rap1 required 
for E-cadherin association, which in turn is necessary for con-
centrating E-cadherin at AJs. PKP3 also creates more dynamic 
DSMs compared with PKP1, which promotes robust adhesion50.  
Growth factor-dependent phosphorylation of PKP1 and PKP3 
dictates their association with different 14-3-3 isoforms to  
promote either PKP1’s disassociation from DSMs or PKP3’s 
association with a special site at the nexus of three cells  
called tricellular contact sites51. These associations either dial  
down or dial up DSM stability and adhesion.

The availability of assembly-competent DP is also determined 
by post-translational modifications within a signaling hub in  
the DP C-terminus. Phosphorylation of DP S2849 cooper-
ates with upstream arginine methylation to drive the phospho-
rylation of an intervening cascade of serines by GSK3β. The 
fully phosphorylated state is more dynamically associated with 
IFs and assembles more efficiently into DSMs52. While the  
phospho-deficient DP mutant S2849G incorporates more slowly 
into DSMs owing to its accumulation on cytoplasmic IFs, once 
incorporated, it mediates a stronger association with IFs and 
strengthens adhesion53. Interestingly, one of the key arginine 
methylation sites is a target for mutation in AC, underscoring  
the critical nature of this regulatory mechanism in vivo54.

Dsgs incorporate into DSMs independently from the DP/
PKP2 complex in response to cell–cell contact48,55. Whereas 
DP/PKP2 depend on actin for their assembly into junctions, 
the desmosomal cadherins require microtubules and, in the 
case of Dsg2/Dsc2, move outwardly on kinesins to the plasma  
membrane. At least some Dsgs (Dsg2) can associate with  
E-cadherin, and this interaction may help initiate early stages of 
DSM assembly56. How these events are coordinated temporally 

and spatially, particularly in complex stratified tissues, is  
poorly understood.

While interactions between Dsg2 and E-cadherin may be a tran-
sient step in the assembly of DSMs, desmosomal components 
constitutively associate with other types of cadherin-containing 
junctions. In addition to its association with N-cadherin/catenin  
complexes in the area composita, as discussed above, DP  
associates with VE-cadherin via plakoglobin in certain 
endothelial cells to strengthen endothelial adhesions through  
association with vimentin IFs57. Furthermore, PKP2 is in sev-
eral types of N-cadherin-based junctions in the retina, astro-
cytes, and mesenchymal cells58,59. Finally, force-associated 
attachment of keratins with C-cadherin in Xenopus, through  
plakoglobin, is important for the formation of polarized  
protrusions and persistent migration within a collectively  
migrating tissue60.

Just as classic cadherins and associated cortical actin con-
tribute to DSM assembly, actin is also involved in DSM  
de-stabilization. Reduced calcium, tyrosine kinases, including 
growth factor receptors such as EGFR, proteases (MMPs, ADAMs, 
and bacterial toxins), autoimmune antibodies, and regulators of  
endocytosis have all been implicated in DSM turnover, frequently 
also involving the actin cytoskeleton associated with AJs4,61,62.

For instance, loss of DSM adhesion via pemphigus vulgaris 
autoantibodies targeting Dsg3 involves impairment of the actin 
cytoskeleton and is restored by activating RhoA63. Further-
more, serine phosphorylation of the actin-associated protein 
adducin due to calcium influx and PKC activity is protective in  
pemphigus64. This positive role for PKC in adhesion is interest-
ing in light of its known role in increasing DSM dynamics and 
calcium chelation-dependent internalization of half DSMs61. 
PKC-sensitized internalization of DSMs is thought to occur  
in vivo during wound healing and in response to loss of keratins  
or transition to wound-healing keratins65,66.

Differential downregulation of E-cadherin and Dsgs by EGF 
was recently reported to result in entry of Dsg2 into a recycling 
pool, while E-cadherin is cleaved by MMPs and degraded67.  
In this case, initial disappearance of Dsg2 was observed 
in vitro and in vivo at the leading edge of the wound. Dsgs 
also destabilize through loss of the primary cilia compo-
nent RPGRIP1L, which normally inhibits Dsg3 turnover by  
blocking endocytosis68.

In the gut, the enteropathogenic Escherichia coli (EPEC)  
bacterium interferes with DSM stability by inhibiting Rho 
GTPases through the effector protein EspH69. On the other hand, 
complete loss of DP from gut epithelium did not lead to overt  
adhesion defects. However, microvilli were significantly 
shorter in these animals, suggesting crosstalk with actin-based  
structures with a potential impact on gut homeostasis70.
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In our next section, we discuss how DSMs and DSM–IF  
interactions coordinate with AJs and actin to alter cell and tissue  
behavior.

Coordination of desmosome and adherens junction 
functions in cytoskeletal control of cell behavior and 
signaling
IFs are networked through direct and indirect interactions 
with other non-muscle cytoskeletal elements, actin and micro-
tubules, and their assembly and behavior depend on these 
interconnections71. In particular, association of the DSM–IF  
complex with actin-linked adhesions is bolstered upon appli-
cation of physical force60,72. In turn, the DSM–IF network can 
modulate the mechanical properties of cells but may require  
actin to do so.

For instance, mutations in the IF-anchoring protein DP that 
either dial up (DP S2849G mimicking a hypophosphorylated 
form of DP that binds more robustly to IFs) or dial down  
(DP-NTP which uncouples IFs from the DSM) DP–IF 
interactions result in increased or decreased stiffness and  
cell–cell adhesion forces, respectively73. PKCα is involved 
in mediating a switch between hyperadhesive and dynamic 
DSMs by modulating DP–IF interactions: PKC inhibition  
increases adhesive strength to promote hyperadhesion, whereas 
PKC activation stimulates DSM dynamics1,74. Thus, PKCα can 
act as a rheostat to influence biological outcomes. Alterations in 
cell mechanical properties downstream of the DP–IF interac-
tion depend on an intact actin cytoskeleton73. Since it has been 
suggested that the IF system can resist forces generated by the  
actin system75, these data are consistent with the idea that 
the contractile actin cytoskeleton works against the DSM–IF  
network to tune cell mechanics.

What actin regulators are involved in integrating AJs and DSMs? 
AJs and TJs are well established to recruit Rho GTPase regula-
tors such as RhoGEFs and GAPs important for junction assem-
bly and regulation of intracellular signaling76. However, DSMs 
also interact with RhoA signaling mediators. As mentioned  
above, inhibition of RhoA via an enteropathogen destabilizes  
DSMs in the gut. Furthermore, desmosomal proteins such as  
PKP2 regulate small GTPases in the Rho family to modulate  
actin-dependent assembly of the desmosomal plaque47. PKP2 
also brings PKC to DP to regulate its dynamics and junction  
stability; thus, PKP2 may functionally link these two pathways74.  
A potential RhoA regulator at DSMs is the GEF Ect2. Ect2 
was previously shown to be recruited by α-catenin to the 
AJ, where the complex regulates membrane tension77. Ect2 
also associates with DP in cardiac muscle to control actin  
polymerization and in keratinocytes where it controls adhe-
sion (Kam, Zarkoob, et al., unpublished data). The extent to 
which classic and desmosomal cadherin-dependent recruitment  
of RhoGEFs and GAPs are integrated awaits further study.

The importance of desmosomal control of actin remodeling is 
apparent in the physiologic context of epidermal differentiation. 
In basal cells, decreased cortical tension coupled with increased 
classic cadherin adhesion drive differentiation and delamination 

to promote stratification78. In addition, however, overlaid onto 
the classic cadherins are multiple desmosomal cadherins that 
are expressed in tissue-specific and differentiation-dependent  
patterns. This desmosomal cadherin patterning also helps drive 
differentiation and morphogenesis9 (Figure 1). For instance, 
Dsg1, which is present only in stratified tissues of mammals, 
is first expressed as basal cells of the epidermis commit to  
differentiate and stratify. The onset of Dsg1 expression  
during epidermal differentiation corresponds with re-organization  
of the actin cytoskeleton via Arp2/3-dependent actin polym-
erization near DSMs. This new actin polymerization near DSMs 
is associated with a reduction of tension on AJs as measured 
by an E-cadherin FRET sensor and reduced vinculin stain-
ing. The biological consequence of these actin rearrange-
ments is delamination of basal cells into superficial layers of 
the epidermis79. The question remains, however, whether the  
DP–IF connection is required for this process. Consistent 
with its importance in morphogenesis, DP was recently shown 
to drive the process of radial intercalation where basally located  
cells move into the outer epidermal layer in Xenopus80.

In cardiac muscle cells, DP associates with Myozap (myocar-
dium-enriched zonula occludens-1 [ZO-1]-interacting protein), 
which in turn associates with Dysbindin. Dysbindin interacts 
with RhoA to affect SRF-dependent transcription and induce 
cardiac hypertrophy81. Other signaling pathways contributing 
to AC have been attributed to DSM dysfunction. This includes 
the Hippo pathway, which is activated in PKP2-deficient  
cardiac myocytes and which contributes to adipogenesis in AC82.  
Another major source of signaling regulation important for  
cutaneous and heart biology is the β-catenin/WNT path-
way, which is impacted by changes in the DSM molecule  
plakoglobin. For details of this large subject area, we refer the  
reader to recent reviews83,84.

Finally, DSM molecules also regulate actomyosin signaling 
and function in single cells, suggesting that they work together 
with not only cell–cell AJs but also the cytoskeleton associ-
ated with focal contacts and ECM. This was shown previously  
for plakoglobin85, and more recently for DP, which through its 
ability to regulate RhoA and p38 MAPK signaling controls  
epithelial cell migration86.

Desmosomes and connexins/gap junctions
The importance of E-cadherin for promoting connexin (Cx)  
dynamics and GJ assembly was recognized first in the early  
90’s87,88. Recently, a provocative report showed that Cxs also 
regulate cadherins: a nuclear-localized piece of the Cx43  
C-terminus forms a complex with basic transcription factor-3  
and PolII to regulate N-cadherin gene transcription89.

DSMs also contribute to Cx assembly and GJ function.  
Interfering with this relationship through mutation of DSM 
components is an important contributor to skin and heart  
disease13,90,91. A connection between the DSM and Cxs was 
first made in the heart, showing that PKP2 is critical for Cx43 
expression and function92,93. High-resolution STORM micros-
copy revealed an intimate physical association between PKP2 
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and Cx43 in molecular clusters scaffolded by Ankyrin-G and 
containing the sodium channel NaV1.594. These complexes can 
occur outside of GJ plaques in what has been referred to as the  
“connexome”93. These data are consistent with the observa-
tion that PKP2 regulates the sodium current and action potential 
velocity. Thus, DSM molecules help integrate mechanical and  
chemical signals at the ID95,96.

Desmosomal cadherins, DP, and plakoglobin also function-
ally link to Cx43 and GJs. Dsg2 co-immunoprecipitates 
with Cx43, and knockdown of Dsg2 or its associated protein  
plakoglobin interfered with the rhythmic beating and reduced 
the velocity of excitation propagation in HL-1 cardiac  
myocytes. This effect was rescued through adrenergic signaling 
stimulated by cAMP elevation97. Dsg2 and NaV1.5 also  
co-immunoprecipitate, and Dsg2 mutant mice exhibited reduced 
action potential due to a lower sodium current density98.

DP regulates Cxs in the heart and skin through multiple  
mechanisms. It interferes with Cx43 turnover by attenuating a  
Ras/pErk pathway that leads to Cx43 phosphorylation, priming 
it for internalization99. In the epidermis, DP also regulates 
Cx43 by dampening pErk, but in this case something other than 
Ras seems to be the upstream stimulus for Erk activation in  
DP-deficient keratinocytes. These results raise the possibility 
that DSM control over junctions exhibits both shared and  
tissue-specific components99. DP also promotes Cx43 delivery 
to the plasma membrane through its ability to stabilize  
junctional microtubules by binding the microtubule plus-tip  
protein EB144. Interfering with DP binding to EB1 through 
point mutations in the DP N-terminus does not affect DP  
localization at borders but results in unstable microtubules and 
loss of border-localized Cx43 and GJ coupling44. As DP loss 
also reduces NaV1.5 on the plasma membrane in HL-1 cells100, 
it would be interesting if microtubule instability underlies  
NaV1.5 reduction.

DP and Dsg1 mutations have recently been shown to result in  
systemic disorders such as severe dermatitis, multiple allergies, 
and metabolic wasting (SAM) syndrome and erythrokeratodermia- 
cardiomyopathy syndrome, some of which are also associated 
with perturbation of Cx43 and GJ function101–104. In fact, some  
SAM patients exhibit epidermal skin lesions reminiscent of  
erythrokeratodermia variabilis caused by Cx mutations105. In 
these cases, Dsg1 reduction impaired Cx43 expression and 
localization, possibly through PKC-dependent phosphorylation 
and de-stabilization of Cx43. Importantly, there were no 
observed changes in other DSM molecules, and loss of Dsg1 
did not reduce adhesion in an in vitro test of cell–cell adhesion, 
so the results are unlikely to be due to a generalized loss of  
adhesion.

In the future, it will be important to determine the extent to 
which these connections reflect direct interactions between DSM 
and components outside of their normal junctional structures,  
as proposed for the “connexome” in cardiac myocytes.

Desmosomes and tight junctions
TJs are made of an interconnected network of protein strands 
that on cross section appear as “kissing points” that seal 
adjoining plasma membranes and create selective ion perme-
ability barriers between epithelial or endothelial cells7,106. It has 
been known for some time that TJs form in simple polarized  
epithelial cells in parallel with the formation of the  
AJ-dependent actin re-organization (reviewed in 6). Actomyosin 
contraction not only regulates cadherin-based junction dynam-
ics but also is critical for TJ function and responses to  
external stimuli107.

The dependence of TJs on AJs could be due to a number of 
factors. These include AJ-mediated recruitment of signaling 
molecules (e.g. RhoGTPases, GAPs, and GEFs), assembly 
of Par polarity protein complexes necessary for TJ position-
ing, microtubule rearrangements that initiate trafficking of  
TJ membrane proteins like claudins (although the TJ  
protein cingulin can recruit microtubules on its own108), or 
AJ-dependent alterations in lipid content (e.g. increased  
cholesterol content6). The dependence of TJs on lipid content is  
consistent with the reported partitioning of TJs to lipid rafts. 
DSMs also preferentially partition into lipid rafts23,109,110,  
but whether or not this or other aspects of DSM biology impact  
TJ assembly is only now being addressed.

As described above, DSMs have been shown to control micro-
tubule stability through EB1 binding to DP, which affects Cx 
trafficking, but could also promote trafficking of TJ proteins44. 
DP also stimulates cortical microtubule assembly in vivo in 
mouse epidermis by recruitment of centrosomal proteins such 
as Lis1 to the plasma membrane as cells differentiate111–114.  
This DP-dependent rearrangement of microtubules in turn 
recruits myosin II to junctions, which causes tension-induced AJ 
strengthening associated with elevated TJ function as measured  
by TEER113. DP–IF attachments also engage AJ and cortical 
actin, promoting cell stiffening and increased force on cell–cell  
junctions. These outcomes depend on the presence of a func-
tional actin contractile system73. As DP–keratin interactions 
become more robust with differentiation, it is possible that actin  
uses this evolving DP–IF system to increase tension in the  
system, which in turn helps to increase TJ integrity and possibly  
restrict TJ assembly to the granular layers, as discussed below.

In the epidermis, continuous TJ strands are restricted to one 
of three superficial keratinocyte layers in the multicellular  
epithelium, the stratum granulosum 2 (SG2) layer115. This 
special layer separates an aqueous environment below and 
the physical stratum corneum barrier above. The restricted 
positioning of TJs to this layer likely depends on a number 
of factors. For instance, E-cadherin integrates EGFR and 
actin-based mechanical signaling to inhibit TJ formation in  
lower layers while increasing tension and TJ stability in the 
SG2 layer116. Interfering with the superficial DSM cadherin 
Dsg1 has a similar impact on TJs: in both cases, the TJ protein 
ZO-1 accumulates aberrantly in the spinous layer, losing its 
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restricted positioning in the SG2 layer (Broussard et al., unpub-
lished data). The importance of Dsg1 for TJs was also observed 
in Dsg1 knockout animal models117 (Godsel, Roth-Carter et al.,  
unpublished data). Loss of PKP1, which associates with both 
DP and Dsg1, also results in impaired TJ function118. Whether 
it is the role of PKP1 in enhancing Dsg1–DP clustering  
activity119 or some other independent function, or both, awaits  
further study.

Functional interactions between DSMs and TJs also exist in 
another regenerating tissue, the gut. Dsg2/Dsc2 expression is 
reduced in the intestinal epithelia of patients with the inflam-
matory condition Crohn’s disease120,121. Tissue-specific dele-
tion of Dsg2 and Dsc2 in mice showed that Dsg2 but not Dsc2 
is required for TJ barrier development/maintenance121. Dsg2’s 
regulation of the barrier was attributed to its ability to control  
EGFR activation through Src120, and more recently to con-
trol p38 MAPK122. Another recent report showed that KLF5 
mediates the transcription of Dsg2, which in turn promotes 
the TJ barrier; barrier loss due to KLF5 ablation could be  
partially restored by re-introducing Dsg2123. Thus, desmosomal  
molecules and their regulatory pathways are potential new 
targets for developing treatments for patients with barrier- 
disrupting intestinal disorders.

In the heart, proteins that make up epithelial TJs are present 
in the ID and act as connectors and scaffolds for other intercel-
lular junction components, but do not form TJs15. These include 
ZO-1, which is a TJ plaque protein but is also associated with 
AJ proteins and Cxs. In cardiac IDs, ZO-1 is linked to the DSM 
protein DP by Myozap124. Myozap deficiency results in severe 
contractile dysfunction in zebrafish124, whereas overexpres-
sion of Myozap in mice results in protein-aggregate-associated  
cardiomyopathy125. This example highlights the intercon-
nectedness of proteins at the ID, where intercellular junction  
proteins reach the height of structural and functional interactions.

Interfering with the integrated DSM-junction network 
in human disease: more than just adhesion?
Based on the work discussed in preceding sections, it is 
clear that the integrated DSM network is a target in skin, 
heart, and gut disorders. While many biological outcomes 
have been attributed to loss of cell–cell adhesion in general,  
molecule-specific functions that supersede adhesion and impinge 
on multiple junction types are emerging40,126–128. These func-
tions include regulation of gene transcription, protein translation, 
cell growth, differentiation, apoptosis, motility and invasion, and  
cancer metastasis32,118,129–132.

In the autoimmune skin disease pemphigus, pathogenic 
autoantibodies result in blistering, likely through a combina-
tion of interference with adhesion, targeted turnover of Dsgs, 
and signaling pathways that are elicited downstream of anti-
body binding. Several target pathways have been identified, 
such as calcium p38MAPK, RhoA, PKC, Src, EGFR/Erk, and  
p53 (reviewed in 62 and see below 133). Most of these sign-
aling mediators have been linked not only to DSMs in other  
contexts such as epidermal differentiation and wound healing 

but also to other intercellular junctions through either genetic  
manipulation or disease (reviewed in 6,15,134).

Similarly, in AC, many normal developmental signaling path-
ways are altered in response to DSM mutations, and these can 
have broad consequences for cardiac myocyte functioning and 
cell fate by connecting the ID with mechanical signaling135,136.  
For instance, cardiac myocyte identity depends on coupling 
the ID with RhoA-ROCK/actin to govern gene transcription 
via the transcription factor MRTF/SRF136. PKP2 loss in car-
diac myocytes also elevates TGFbeta and p38MAPK signaling, 
which together coordinate a transcriptional program resulting in  
pro-fibrotic gene expression. Importantly, DP levels were reduced 
under these conditions, and re-introduction of DP restored 
normal levels of this signaling cascade137. PKP2 also con-
trols the transcription of genes involved in calcium cycling and  
cardiac rhythm138,139. As mentioned above, PKP2 mutations 
in AC have also been linked to alterations in Hippo/Wnt  
signaling82, and GSK3 inhibitors can reverse AC phenotypes 
caused by plakoglobin and DP mutations82. In some cases, 
defects associated with impairment of the interconnected junc-
tion network can be reversed by specific treatments. For instance,  
in cardiac muscle cells, activating adrenergic receptors in  
plakoglobin/Dsg2-depleted cells restores beating97. These  
studies not only expand our understanding of DSM function but 
also reveal potential targets for new therapeutic approaches to  
ameliorate disease.

Prospects and questions for the future
We have learned a lot about how intercellular junctions are inte-
grated to support normal tissue morphogenesis and homeos-
tasis. However, there are many questions remaining. Just as 
the DSM–IF system interacts with actin and microtubules, 
the DSM and its associated intercellular junction network  
interact with cell–substrate adhesions, including focal con-
tacts and hemidesmosomes. Cell–cell and cell–substrate forces 
must be balanced in biological systems, and thus there is much 
to be done in the future to determine how the entire junctional  
network is integrated.

The extent to which DSMs transduce mechanical signals  
directly, or simply modulate mechanical signals through their 
interactions with other cytoskeletal elements, is an area just 
now being addressed using newly developed desmosomal  
cadherin and DP tension sensors (reviewed in Broussard et al.,  
unpublished;140,141). While a tension sensor module placed just 
upstream of the IF-binding domain indicates that DP becomes 
mechanically loaded only when cells experience external stress, 
molecular dynamics simulations suggest that the N-terminal  
SH3 domain could act as a force sensor and perform a stabilizing 
role142. Whether this region of DP behaves as a mechanosensor 
awaits experimental tests.

Another fertile area for future study is to address how DSMs 
function not only to resist stress but also to sense and respond to 
stress. A role for DSMs as stress sensors is consistent with their 
appearance in evolution at a time when there was an expansion 
of epithelial tissue complexity, UV irradiation from sunlight, 
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and new microbes. Evolution of the circulatory system and the  
formation of hearts with multiple chambers as well as the  
development of a more complex immune system also occurred  
during this time (reviewed in 20).

Two examples supporting the idea of DSMs as stress sensors 
and responders come from studies focused on Dsg3 and Dsg1. 
These desmosomal cadherins are found specifically in com-
plex stratified epithelia such as the oral mucosa and skin, two 
tissues that experience multiple types of stress stimuli. Dsg3, 
which is concentrated in basal proliferating keratinocytes, was 
recently shown to protect cells from stress including that caused  
by UV irradiation133. It does so by keeping the reins on p53; 
knockdown of Dsg3 in vitro or its ablation in vivo resulted in 
elevated p53, reduction in cell cycle regulators, and increased 
indicators of apoptosis. Elevated p53 also occurred in  
response to treatment with pemphigus vulgaris antibod-
ies, raising the possibility that Dsg3’s ability to regulate p53 
is broadly applicable to multiple stress stimuli targeting this  
desmosomal cadherin133.

While Dsg3 levels remain constant in response to UV stress133,143, 
expression of the desmosomal cadherin Dsg1 is reduced 
under these conditions. Modeling UV-mediated stress, genetic 
depletion of Dsg1 was shown to increase pro-inflammatory 
secreted factors, similar to those stimulated by UV. In addi-
tion, these factors signal in a paracrine fashion to melanocytes.  
Conditioned media from Dsg1-deficient keratinocytes stimu-
lated melanocyte dendritogenesis and pigment secretion from 
normal melanocytes, both of which occur normally in response 
to UV to promote the transfer of pigment to neighboring  
keratinocytes144. Thus, loss of keratinocyte Dsg1 in response to 
UV-mediated stress may serve as a sensor that elicits a protective 
response in other cell types within the tissue microenvironment.

Similarly, Dsg1 loss in SAM syndrome, a disorder caused by 
bi-allelic loss of Dsg1 or mutations in DP resulting in Dsg1 
depletion, results in not only physical barrier defects but also 
increased pro-allergic and pro-inflammatory cytokines pro-
duced by keratinocytes in a cell-autonomous fashion101,103. These  
cytokines could have multiple biological outcomes, from  
decreasing TJ and Cx/GJ assembly and function to the recruitment 
of immune cells into the affected epidermis105,128. Indeed, targeting 
cytokine networks can ameliorate symptoms in patients with skin 
disease due to DP mutations145.

DSM response to stress can be paracrine in nature in both the 
heart and the skin. For instance, PKP2 knockdown stimulated 
ATP release at least in part through Cx43 and resulted in over-
expression of genes involved in adenosine-receptor cascades. 
This paracrine pathway contributes to fibrosis and impaired 
cardiac function in PKP2 knockout animals146. These data  
suggest that stimulation of paracrine signals in response to 
DSM mutations in cardiocutaneous and cardiac disorders may 
cooperate with altered mechanical signaling to contribute to  
disease pathogenesis.

While we focused primarily on downstream events stimu-
lated by junction interactions or modulation, upstream stress  
sensing also regulates intercellular junctions. For example, 
the transcription factor Nrf2, which controls genes involved in  
antioxidant defense, increases the expression of the microRNAs 
miR-29a and miR-29b in keratinocytes to target hyperadhesion by  
decreasing Dsc2147.

In conclusion, it is clear that intercellular junctions have evolved 
to meet the increasingly complex needs of the organism by 
developing new ways of communicating and cooperating with 
other junctions. It is also clear that we have only skimmed the 
surface of the complexity of cell junctional networks. Future  
work will be advanced by the availability of sophisticated new 
optical imaging probes and sensors, by BioID methods to char-
acterize nearest neighbors in the junction network, and by 
state-of-the art methods for genetic interference and editing  
as well as single cell analysis of complex tissues.
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