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Light-sensitive G protein-coupled receptors (GPCRs)—rhodopsins—
absorb photons to isomerize their covalently bound retinal, trig-
gering conformational changes that result in downstream signal-
ing cascades. Monostable rhodopsins release retinal upon
isomerization as opposed to the retinal in bistable rhodopsins that
“reisomerize” upon absorption of a second photon. Understanding
the mechanistic differences between these light-sensitive GPCRs
has been hindered by the scarcity of recombinant models of the
latter. Here, we reveal the high-resolution crystal structure of a
recombinant bistable rhodopsin, jumping spider rhodopsin-1,
bound to the inverse agonist 9-cis retinal. We observe a water-
mediated network around the ligand hinting toward the basis of
their bistable nature. In contrast to bovine rhodopsin (monosta-
ble), the transmembrane bundle of jumping spider rhodopsin-1 as
well that of the bistable squid rhodopsin adopts a more “activation-
ready” conformation often observed in other nonphotosensitive
class A GPCRs. These similarities suggest the role of jumping spider
rhodopsin-1 as a potential model system in the study of the struc-
ture–function relationship of both photosensitive and nonphotosen-
sitive class A GPCRs.
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Gprotein-coupled receptors (GPCRs) act as signal trans-
ducers converting external stimuli into cellular responses.

Among these, rhodopsins are light-sensitive class A GPCRs
operating in visual and nonvisual processes (1). Photosensivity is
rendered by the chromophore retinal, covalently bound via a
protonated Schiff base to a lysine in the orthosteric ligand-binding
site. A nearby negatively charged residue, the counterion, stabi-
lizes the protonated Schiff base (2–4). Upon illumination, the
retinal isomerizes from cis to trans, triggering conformational
changes that culminate in the formation of an activated form of
the receptor (Meta), ready for G protein binding (5).
Based on the thermal stability of these active states, rhodopsins

can be classified as monostable and bistable. Illumination even-
tually bleaches monostable rhodopsins by deprotonation and hy-
drolysis of the Schiff base and subsequent release of the
chromophore (6). Bistable rhodopsins, on the other hand, un-
dergo a 2-photon bidirectional photoreaction (cis-trans/trans-cis)
in which the Schiff base remains protonated and the retinal bound
throughout the photocycle (4, 7, 8). Over the years, biophysical
and structural characterization of bovine rhodopsin (monostable)
and squid rhodopsin (bistable) have provided insights into these
mechanistic differences. For instance, in monostable rhodopsins a
glutamate on the third transmembrane domain (Glu-1133.28 in
TM3 of bovine rhodopsin; SI Appendix, Table S1) is the proximal
counterion in the inactive conformation and mediates the charge
stabilization of the protonated Schiff base via a salt bridge (2, 3).
Upon activation, these rhodopsins transiently adopt a distal
counterion on the extracellular loop 2 (ECL2; Glu-18145.44) before
deprotonation and hydrolysis of the Schiff base (5, 9). In contrast,

bistable rhodopsins employ the equivalent glutamate on ECL2
(45.44) (10) as their sole distal counterion for the entire photo-
cycle (4). Nevertheless, the counterion position alone does not
explain the mechanistic differences between the 2 receptor types.
Structural and Fourier transform infrared (FTIR) spectroscopic
analysis of squid rhodopsin (11) suggested the presence of a hy-
drogen bond network between its protonated Schiff base and the
distal counterion (12, 13). However, the exact architecture of this
network remains elusive, posing a challenge to our understanding
of the functional differences between mono- and bistable rho-
dopsins. In addition, the lack of a recombinant model system for
the study of bistable rhodopsins impedes further advances that
would shed new light on this topic.
In this work, we present the high-resolution crystal structure of

the bistable jumping spider rhodopsin-1 (JSR1) in its ground
(inactive) state. This structure provides concrete insights into the
molecular architecture of the retinal-binding pocket that lay
the basis for understanding the activation mechanism around the
protonated Schiff base in bistable opsins. In comparison with squid
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rhodopsin, the structure of JSR1 shows a large number of tightly
coordinated water molecules that span the transmembrane region.
Interestingly, the orientation of key residue side chains in this
region of both bistable receptors resemble that of the inactive
conformation of other class A GPCRs, in contrast to those of the
monostable bovine rhodopsin (14). Furthermore, our functional
data also indicate a promiscuity of JSR1 in G protein recognition,
as often observed in other class A GPCRs (15). Altogether, our
findings highlight remarkable similarities between bistable rho-
dopsins and nonphotosensitive class A GPCRs, in contrast to the
functionally distinct and highly specialized bovine rhodopsin sys-
tem (16, 17). Hence, we propose JSR1 as a suitable photosensitive
target to study activation dynamics of bistable rhodopsins and,
potentially, the broader class A G protein-coupled receptors ap-
plying light-driven methods by the development of new opto-
genetic tools (18–20).

Results
JSR1 Isorhodopsin and Overall Structure. Wild-type JSR1 was
recombinantly produced in mammalian HEK293 GnTI− cells
(21), reconstituted with the inverse agonist 9-cis retinal analog,
and purified in 3 chromatographic steps (see Methods). Jumping
spider isorhodopsin-1 (JSiR1, 9-cis retinal bound) shows an ab-
sorbance maximum at 505 nm, which is blue shifted from the 535-
nm absorbance maximum of the native 11-cis retinal-bound form
(JSR1) (22) (ground states; Fig. 1 A and B). Nevertheless, upon
activation, isomerization of either of these isoforms yields an all-
trans retinal-bound photoproduct with an absorbance maxima at
535 nm (active conformation, a-Meta) (22). Therefore, the spec-
tral separation provided by the 9-cis retinal facilitates in vitro
handling of the sample by allowing the detection of light
contamination.
To ensure the full functionality of the receptor, we measured

the ability of JSiR1 to activate G proteins using a Gi-based ac-
tivity assay (23–25). We observed that recombinant JSiR1 trig-
gers Gi activation in vitro (Fig. 1C). Interestingly, JSR1 was
previously suggested to activate Gq in vivo (22), which suggests
that JSR1 exhibits an inherent promiscuity in G protein activa-
tion as observed in many class A GPCRs (15). Finally, recombi-
nant wild-type JSiR1 shows high thermostability (26) in a range of
detergents and pH conditions (SI Appendix, Fig. S1), thus being an
ideal target for structural and biophysical characterization.
Purified JSiR1 was incorporated into a lipidic cubic phase

(LCP) to facilitate its crystallization. Analysis by UV-visible (UV-vis)
spectroscopy reveals a similar spectrum to the detergent-solubilized
protein, indicating that the receptor reconstituted in LCP is

qualitatively identical (Fig. 1 A and B). Diffraction datasets from
the crystals were collected at the Swiss Light Source (SLS, Paul
Scherrer Institut [PSI]), and the structure was solved by molec-
ular replacement using squid rhodopsin as a template (PDB ID
code 2Z73) (12).
Diffraction data were processed to a high-resolution limit of

2.5 Å, 2.1 Å, and 2.3 Å along the a*, b*, and c* axes. The
structure lacks part of the N terminus (residues 1–19), in-
tracellular loop 3 (ICL3; residues 257–262), and C terminus
(including TM8; residues 336–380) that have poor electron
density. The rest of the structure is very-well resolved; in par-
ticular, TM5 and TM6 are well ordered and extend well beyond
the transmembrane bundle (Fig. 2 and SI Appendix, Fig. S2).
While such features are also present in squid rhodopsin (12),
these regions are seldom observed in other class A GPCR
structures, usually due to protein engineering schemes to remove
flexible regions (27). However, these extensions in TM5/6 are
very relevant to GPCR function as they have been suggested to
partake in G protein and arrestin binding (16).

The Extracellular N-Terminal Domain. The N-terminal region of
JSiR1 caps the extracellular domains of the receptor stacking
over the second extracellular loop (ECL2) (Fig. 3). This fold,
observed with some variations in all opsin crystal structures (12,
28) (SI Appendix, Fig. S3), occludes the orthosteric ligand-
binding site from the extracellular milieu, contributing to the
stability of the ligand-binding pocket and possibly of the overall
receptor (28). In JSiR1, the N-terminal domain folds into 3 short
hydrophobic helices anchored to the transmembrane domains
through histidine-mediated contacts with residues in ECL2 and
ECL3 (Fig. 3A). This fold resembles that of squid rhodopsin, but
clearly differs from that of bovine rhodopsin (6, 28, 29). Analysis
of structure-based sequence alignments of rhodopsins from dif-
ferent organisms suggests the presence of 2 distinct patterns in
their N terminus (10, 30, 31); while invertebrate rhodopsins
present an HxHW helical motif, as seen in the crystal structures
of JSiR1 and squid rhodopsin, vertebrates rhodopsins show in-
stead a Px(E/D)xPQ motif in the same region (Fig. 3B).

The Ligand-Binding Pocket. In the orthosteric ligand-binding site,
electron density before refinement confirmed the presence of
9-cis retinal covalently bound to Lys-3217.43 via a protonated Schiff
base (Fig. 4 and SI Appendix, Fig. S4). We observed that the 9-cis
retinal bends out of absolute planarity (−46.7° torsional twist at
the C9–C10 cis bond, see SI Appendix, Fig. S4), similarly to bo-
vine rhodopsin bound to 11-cis retinal (−36.1° torsional twist at
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Fig. 1. In vitro activation of recombinantly produced JSiR1 and JSR1. (A and B) Normalized UV-vis spectra of JSiR1 (9-cis retinal, λmax 505 nm, A) and JSR1
(11-cis retinal, λmax 535 nm, B) recorded in solution. Ground states (inactive) are represented by blue (A) and green (B) curves, respectively. Photoproducts
(λmax 535 nm) are indicated in black. The Insets of A and B represent normalized UV-vis spectra of JSiR1 (A) and JSR1 (B) recorded in LCP. (C) G protein
activation assay, where intrinsic tryptophan fluorescence from the Gα subunit is recorded upon addition of GTPγS (24). Photoactivated recombinant
JSiR1 triggers Gi protein dissociation (dark purple curve; K = 5.65 ± 0.24 × 10−3) The dark pink curve indicates inactive JSiR1 whose activity is slightly higher
(K = 0.51 ± 0.002 × 10−3) than that of the control (no JSiR1 in light pink; K = 0.32 ± 0.001 × 10−3). The value after the ± sign indicates the SE mean (SEM). All
data are measured in triplicates at 20 °C at a pH of 7.3. A concentration of 600 nM of heterotrimeric Gi was used for the assay.
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the C11–C12 cis bond; 1U19) (29). It has been shown that such a
“pretwist” of retinal reduces the energy barrier for isomerization
of the cis bond and enables a more efficient activation of the
receptor (32). However, 9-cis retinal bound to bovine and squid
rhodopsins (2PED, 3AYN) (33, 34) did not show this higher
torsional twist.
The physicochemical environment around the Schiff base is

crucial in determining its protonation state and thus, the ultimate
fate of retinal (i.e., hydrolysis and release in monostable rho-
dopsins or the ability to isomerize again in bistable rhodopsins).
The counterion, a conserved negative charge in the ligand pocket,
is fundamental for the stabilization of the charge distribution in
this region. In monostable rhodopsins, such as bovine rhodopsin,
the role of counterion in the inactive state is performed by the
proximal Glu-1133.28. Additionally, in bovine rhodopsin a highly
conserved “glutamate cage” of tyrosines (Tyr-19145.54, Tyr19245.55,
and Tyr-2686.51) restrains the conformation of the Glu-18145.44

side chain. As it is the case in other bistable rhodopsins, the
proximal counterion position of JSiR1 is occupied by a conserved
tyrosine (Tyr-1263.28) and the role of the counterion is instead
played by the distal Glu-19445.44 (2–4, 35). In our crystal structure,
Glu-19445.44 is too far from the Schiff base (Glu-19445.44[Cδ]–Lys-
3217.43[NΖ] = 7.6 Å) for a direct salt bridge (Fig. 4). Instead, the
Schiff base and Glu-19445.44 are linked by a water-mediated hy-
drogen bond network. Interestingly, the adjacent Ser-19945.49 is
also involved in this network. A similar architecture of this ex-
tended Schiff base/counterion system is seen in bovine rhodopsin,
while squid rhodopsin has an asparagine in the place of serine
(Fig. 4). In JSiR1, Glu-19445.44 also interacts with a nearby “glu-
tamate cage” formed in this case by only 2 residues, Tyr-2936.51

and Tyr-20445.54. A structure-based sequence analysis (31) of
monostable and bistable rhodopsins reveals a connection between
the nature of the residue at position 3.28 and the glutamate cage.
Receptors with a proximal counterion (i.e., a glutamate at position
45.44) have an additional tyrosine at the 45.55 position in the
second extracellular loop (SI Appendix, Fig. S5), oriented toward
Glu-18145.44 in bovine rhodopsin, while Tyr-19145.54 is oriented
toward the C19 of retinal and is involved in its deprotonation (5).
Interestingly, position 45.55 is not a tyrosine in bistable rhodop-
sins. In JSiR1, Tyr-20445.54 appears to take on the role of Tyr-
19245.55 and orients toward Glu-18145.44 and away from retinal
(Fig. 4 and SI Appendix, Fig. S8A).

To assess the dynamic nature of this extended water-mediated
hydrogen bond network around the Schiff base, we performed
molecular dynamics simulations of JSiR1 embedded in a lipid
bilayer (Fig. 5; see Methods). Our results indicate that the
counterion Glu-19445.44 can maintain stable direct hydrogen
bonds with Ser-19945.49 and Tyr-2936.51 (Fig. 5B, red and green
traces) and indirect water-mediated interactions with Tyr-
20445.54 (Fig. 5B, blue trace). Thus, Ser-19945.49, Tyr-2936.51,
and Tyr-20445.54 restrain the conformation of the Glu-19445.44

side chain. The Schiff base itself is strongly solvated (4–5 water
molecules during the simulation, see SI Appendix, Fig. S6A) and
forms indirect water-mediated interactions with Glu-19445.44,
Ser-19945.49, and Tyr-1263.28 in the extended counterion system
(Fig. 5C). In summary, our simulations show that transiently
ordered water molecules around the Schiff base, in particular in
the triad Glu-19445.44–water–Ser-19945.49, are involved in key
polar interactions that are likely to play a functional role in
regulating the protonation state of the Schiff base (SI Appendix,
Fig. S8A).

The Transmembrane Hydrogen Bonding Network.Our structure also
reveals the presence of a set of highly ordered and coordinated
waters forming a polar network from the retinal-binding site to
the G protein-binding site (Fig. 6). In class A GPCRs—including
JSR1—the highly conserved Trp2906.48 acts as a hydrophobic
gate that separates the ligand-binding pocket and the receptor
core between TM2, TM3, TM6, and TM7 (17, 36). Similar to
other rhodopsins, JSR1 does not have a Na+-binding site in this
region, which has been observed in some other class A GPCRs
(17). Instead, a trail of waters connect the polar residues around
this pocket: Asp-962.50 in TM2 to Ser-3237.45, Asn-3277.49, and
Tyr-3317.53 in the (S/N)xxxNPxxY motif of TM7. These residues
are highly conserved in class A GPCRs (17) and are involved in
structural rearrangements that lead to receptor activation (37).
In addition to hydration of this interhelical interface, a few
specific waters have a structural role, such as stabilizing a 310
helical segment in TM7.
Interestingly, there are specific characteristics around the G

protein-binding site of JSR1 that resemble those of ligand-
activated class A GPCRs (Fig. 7 and SI Appendix, Fig. S7).
For instance, Tyr-2345.58 in TM5 and Tyr-3317.53 in the
(S/N)xxxNPxxYmotif of TM7 face toward the transmembrane core
(Fig. 7A)—in this last case, with the possible aid of 2 linking
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waters. This conformation contrasts with the ground state/in-
active bovine rhodopsin, where the side chains of the equiva-
lent residues orient away from the receptor core and toward the
surrounding membrane. Thus, we conclude that the trans-
membrane region of JSR1 differs in a few key aspects from that of
the monostable bovine rhodopsin and resembles instead the in-
active state structures of the majority of ligand-binding class
A GPCRs.
Furthermore, JSR1 contains a DRY motif at the cytoplasmic

side of TM3, which is highly conserved in ligand-binding class
A GPCRs (17, 36), in contrast to the ERY motif present in
vertebrate visual opsins (Fig. 7B). In a few class A GPCR
subfamilies (e.g., amine, prostanoid, adenosine receptors, and
opsins), the (D/E)RY motif is part of a more extensive polar
network involving Glu-2726.30 in TM6. Similarly, in JSR1 Arg-

1483.50 is held in its warped inactive conformation by Asp-1473.49

and Glu-2726.30 (Fig. 7 A and B). This double ionic lock (36, 38),
with both intra- and interhelical components, is involved in the
stabilization of the inactive state of the receptor. Our simulations
allowed us to estimate the dynamics of these interactions in the
context of a solvated bilayer. Interestingly, we observe that in
JSR1 the interhelical salt bridge (Arg-1483.50–Glu-2726.30) is more
stable than the intrahelical component (the “canonical” ionic lock
between Arg-1483.50 and Asp-1473.49) (Fig. 7B), which is weakened
by the large solvation of the negatively charged aspartate (SI
Appendix, Fig. S6B).

Discussion
In rhodopsins, the retinal chromophore is covalently bound to a
lysine in the ligand pocket via a protonated Schiff base that is
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between JSiR1 and bovine rhodopsin including the presence of an ordered water molecule (blue sphere) in the region. In contrast, the Schiff base of bovine
rhodopsin is stabilized by the proximal Glu-1133.28 by forming a direct salt bridge. Other key distances within the binding pocket are depicted by black dotted lines.
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stabilized by a negative counterion, usually a nearby glutamate
(4). Photon absorption triggers retinal isomerization and
drives subsequent structural changes that lead to receptor ac-
tivation (i.e., formation of the Meta states). Monostable rho-
dopsins, e.g., bovine rhodopsin, differ from bistable rhodopsins,
e.g., squid and jumping spider rhodopsins, as well as the ver-
tebrate melanopsin involved in the circadian clock regula-
tion, by having a unidirectional isomerization, followed by
deprotonation and hydrolysis of the Schiff base. Conversely,
in bistable rhodopsins a second photon reisomerizes the ret-
inal while the Schiff base remains protonated throughout the
photocycle (8).
Our crystal structure of jumping spider rhodopsin-1 (JSR1)

bound to 9-cis retinal sheds light on the molecular architecture of
the inactive state of bistable rhodopsins. Analysis of the retinal-
binding pocket indicates that the stabilization of the protonated
Schiff base involves a water-mediated hydrogen bond network
including Ser-19945.49 (Figs. 4 and 5). Our structural data explain
recent mutational studies on JSR1 and highlight the role of Glu-
19445.44 and Ser-19945.49 as part of a complex hydrogen bond-
based counterion system (39).
The retinal-binding pocket architectures of JSR1 and bovine

rhodopsin are similar, where the “Glu–water–Ser” triad sits in
proximity to the protonated Schiff base. In JSR1, a distal
counterion (Glu-19445.44) stabilizes the protonated Schiff base
through the above-mentioned water-mediated network. In-
terestingly, this position (45.44) also serves as a counterion
during bovine rhodopsin activation (in the Meta I state) (5, 9).
However, 2 main structural elements differentiate the 2 rhodopsin

systems. Firstly, in bovine rhodopsin the protonated Schiff base
is maintained by the proximal counterion Glu-1133.28 through a
direct ionic interaction (28). Conversely, in JSR1 this position is
held by a neutral and highly conserved tyrosine (Fig. 4). Sec-
ondly, compared with bovine rhodopsin, the “glutamate cage” of
JSR1 lacks 1 of the 3 tyrosines (at position 45.55), allowing for a
higher flexibility of its counterion Glu-19445.44. Finally, while
JSR1 and squid rhodopsin share a similar hydrogen-bond net-
work, key differences set it apart. In squid rhodopsin, position
45.49 is occupied by Asn-18545.49 instead of the Ser45.49 observed
in JSR1 and bovine rhodopsin. Furthermore, the squid rho-
dopsin structures did not reveal the presence of a water molecule
in this region (12, 13), possibly implying that the NH2 group of
the asparagine functions as a surrogate for the “water–Ser” duo
seen in JSR1. However, it is also possible that a mobile water
molecule mediates the hydrogen bond network in this region, as
suggested by FTIR data (11).
We propose that one of the major differences between mono-

and bistable rhodopsins lies in the distribution of charge around
the Schiff base (Fig. 8). In the monostable bovine rhodopsin, the
positive charge of the Schiff base is more localized due to the
presence of the proximal Glu-1133.28, while the distal Glu-18145.44

is trapped by the “glutamate polar cage.” Upon photoactivation,
the positive charge is ultimately transferred onto Glu-1133.28,
allowing for the subsequent hydrolysis of the deprotonated Schiff
base. A structure-based sequence analysis suggests that verte-
brate monostable rhodopsins may require a stronger polar cage
where 3 tyrosines engage Glu-18145.44 (SI Appendix, Fig. S5). On
the other hand, in JSR1, Tyr-1263.28 cannot assist in the depro-
tonation of the Schiff base upon illumination, and the members
of the extended counterion system maintain their protonation
state. This is supported by our spectroscopic analyses on JSR1,
which confirm the protonated state of the Schiff base throughout
the whole photocycle (8). The existence of a similar water-
mediated network around the extended Schiff base/counterion
system may facilitate the bidirectional reaction in bistable rho-
dopsins (i.e., a second isomerization).
The crystal structure of JSR1 indicates that its cytoplasmic

transmembrane domain conforms to the general architecture of
ligand-binding class A GPCRs rather than to bovine rhodopsin
(16). Structural similarities can be observed in key residues such
as Tyr-2235.58 on TM5 and Tyr-3317.53 on TM7 (S/N)xxxNPxxY
motif), which resemble the A2A adenosine receptor (5OM4)
(27) or the β-adrenergic receptor (2VT4) (40) rather than bovine
rhodopsin (1GZM) (28) (Fig. 7). These residues point toward
the transmembrane core of the receptor and are involved in the
water-mediated hydrogen bond network in the G protein-binding
site. This architecture contrasts to that observed in the inactive
conformation of bovine rhodopsin where Tyr-3067.53 and Tyr-
2235.58 are oriented away from the receptor core and toward
the membrane (28, 41). In both scenarios, these residues re-
position themselves upon activation to adopt the general archi-
tecture of the G protein-binding site in class A GPCRs (41–43).
Hence, we suggest that specific transmembrane structural elements
of JSR1 are positioned into an activation-ready conformation, as
observed in the bistable squid rhodopsin and in ligand-binding
class A GPCRs (Fig. 7 and SI Appendix, Fig. S7). Finally, we hy-
pothesize that the malleable water-mediated networks observed in
the binding pocket as well as in the transmembrane domain con-
tribute together to the unique functionality of bistable rhodopsins,
allowing them to stably switch between the ground state and the
active photoproduct. Thus, internal water-mediated hydrogen
bond networks are an important factor in shaping the conforma-
tional landscape of GPCR activation, providing an additional
mechanism to regulate functional aspects such as basal activity and
signaling efficacy.

Trp2906.48

Thr2826.40

Tyr3317.53

Tyr2345.58

9-cis retinal

Lys3217.43

Ser3237.45

Asp962.50

Asn3277.49

Tyr1493.51

Asp1473.49

Arg1483.50

Glu2726.30

Fig. 6. Water trail in the transmembrane region. A network of water-
mediated interactions (purple spheres and red dashes) connect the ligand-
binding pocket to the G protein-binding site in JSiR1 (green, 6I9K; ref. 63).
The “locked” conformation of the DRY motif indicates the inactive confor-
mation of the receptor. Interestingly, Arg-1483.50 is held in place by both
Asp-1473.49 (through an intrahelical salt bridge) and Glu-2726.30 (interhelical
salt bridge).
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Methods
Expression and Purification. Wild-type jumping spider rhodopsin isoform-1
(JSR1) from Hasarius adansoni was recombinantly expressed in suspen-
sion cultures of HEK293 GnTI− cells as described elsewhere (8). Harvested
cells were pelleted and stored at −80 °C before purification. Frozen cell
pellets were thawed and mechanically lysed in buffer A (50 mM Hepes pH
6.5, 150 mM NaCl, 3 mM MgCl2, cOmplete EDTA-free Protease Inhibitor
Mixture tablets; Roche) using a handheld dounce homogenizer. All steps
from this point onwards were carried out under 640 nm (dim red) light. The
cell lysate was incubated with 30 μM 9-cis retinal (98% grade, Sigma-Aldrich)
overnight at 4 °C (identical procedures were followed for the 11-cis retinal
sample). This suspension was initially centrifuged at 500 × g for 10 min at
4 °C separating the membrane faction (supernatant) from the cell debris
pellet. To ensure maximum recovery of membrane factions the pellet was

resuspended in buffer A, homogenized, and spun down at 500 × g for
10 min at 4 °C. The supernatants were combined for the following separa-
tion of membrane fractions (repeated thrice): first, the new supernatant was
spun down at 100,000 × g for 40 min; second, the resultant pellet was
resuspended in buffer B (50 mM Hepes pH 6.5, 150 mM NaCl, 3 mM MgCl2)
using an Ultra-Turrax (IKA). The final membrane fraction was solubilized
using 19.5 mM with n-dodecyl-β-D-maltopyranoside (DDM-Anagrade; Ana-
trace) and incubated for 2 h at 4 °C. The solubilized membrane suspension
was centrifuged at 100,000 × g for 50 min after which the supernatant was
mixed with CNBr-activated Sepharose 4B resin (GE Healthcare Life Science)
conjugated with anti-1D4 antibody and incubated overnight at 4 °C. The
resin was collected in a BioRad Glass Econo-Column and washed with buffer
C (50 mM Hepes pH 6.5, 150 mM NaCl, 3 mM MgCl2, 0.195 mM DDM). The
sample was eluted overnight at 4 °C in buffer D (50 mM Hepes pH 6.5,
150 mM NaCl, 3 mM MgCl2, 0.195 mM DDM, 0.8 mM 1D4 peptide).

Arg1353.50
Glu1343.49

Tyr1363.51

Tyr2235.58

Tyr3067.53

TM1

TM7

TM6

TM2

TM4
TM3

TM5

Arg1483.50

Asp1473.49

Tyr1493.51

Tyr2345.58

Tyr3317.53

TM1

TM7

TM6

TM2

TM4
TM3

TM5

Arg1333.50

Asp1323.49

Tyr1343.51

Tyr2205.58

Tyr3157.53

TM1

TM7

TM6

TM2

TM4
TM3

TM5

Arg1023.50

Asp1013.49

Tyr1033.51

Tyr1975.58

Tyr2887.53

TM1

TM7

TM6

TM2

TM4
TM3

TM5

ERY DRY DRY DRY

Arg1353.50

Glu1343.49

Glu2476.30

Arg1483.50 Asp1473.49

Glu2726.30

Arg1333.50 Asp1323.49

Glu2566.30intrahelical
salt bridge

interhelical
salt bridge

interhelical
salt bridge

TM6 TM3 TM6 TM3 TM6 TM3

ERY DRY DRY

Glu1343.49
Glu2476.30

Glu2726.30

Asp1473.49 Glu2566.30

Asp1323.49

pr
ob

ab
ili

ty

distance to Arg1353.50 distance to Arg1483.50 distance to Arg1333.50

Bovine Rhodopsin Jumping Spider Rhodopsin-1 Squid Rhodopsin

Bovine Rhodopsin Jumping Spider Rhodopsin-1 Squid Rhodopsin Adenosine A2A Receptor
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Concavalin A resin (GE Healthcare Life Science) was preactivated with buffer
E (50 mM Hepes pH 6.5, 150 mM NaCl, 3 mM MgCl2, 0.195 mM DDM, 1 mM
CaCl2, 1 mM MnCl2). The collected protein sample was then treated with
1 mM CaCl2 and 1 mM MnCl2 and incubated with the preactivated Con-
cavalin A resin for 30 min. The incubated resin was collected and packed into
a 5-mL cartridge column (Qiagen) and washed with buffer E using an Äkta
FPLC system (GE Healthcare Life Science). A linear gradient of buffer F
(50 mM Hepes pH 6.5, 150 mM NaCl, 3 mM MgCl2, 0.195 mM DDM, 1 mM
CaCl2, 1 mM MnCl2, 500 mM methyl-α-D-mannopyranoside; Sigma-Aldrich)
was used for elution. This concavalin A-based affinity chromatography step
was found to be necessary to ensure that misfolded/nonglycosylated re-
ceptor was removed. The eluted protein was assessed and quantified using
UV-vis spectroscopy and SDS/PAGE. The sample was finally treated with 1/
500× Endoglycosidase H (2.5 U stock; Roche Diagnostics) and incubated at
4 °C overnight.

UV-Visible Spectroscopy. UV-vis protein spectra were recorded in a spectro-
photometer (UV-2401PC, Shimadzu), against the appropriate buffer. Purity
was assessed using the OD λmax 280/505 nm ratio, which yielded a value
between 2.8 and 3.5. Protein concentration was calculated by Lambert–Beer
law, where eJSiR1 is ∼32.660 M−1·cm−1 and the molecular weight was calcu-
lated from the protein sequence as 44 kDa (8). Illumination was carried out
in the dark with 495 nm (short-pass filter) mounted on a projector lamp at
maximum intensity for 10 min (lamp parameters 150 W, 2A, 50/60 Hz, 220–
240 V, irradiance 5 W/cm2). Spectral characterization of JSR1 and JSiR1
reconstituted LCP was performed in a cuvette with a 0.05-cm path. In this
case, buffer H (see below Crystallization) reconstituted in LCP was used as
the baseline.

Thermostability Assay by CPM Fluorescence. JSiR1 in buffer C was diluted to a
final concentration of 0.01 mg/mL in detergents with varied chemical
properties: n-decyl-β-D-maltopyranoside (DM), n-dodecyl-β-D-maltopyrano-
side (DDM), 2,2- dihexylpropane-1,3-bis-β-D-glucopyranoside (OGNG), 2,2-
didecylpropane-1,3-bis-β-D-maltopyranoside (LMNG), n-nonyl-β-D-glucoside
(b-NG), n-octyl-β-D-glucoside (b-OG), n-octyl-β-D-thioglucoside (OTG), 6-cyclohexyl-
1-hexyl-β-D-maltoside (Cymal-6), and nonanoyl-N-methylglucamide (MEGA-9).
The detergents were used at 5 times critical micelle concentration (CMC),
and samples were incubated overnight at 4 °C to facilitate maximum de-
tergent micelle exchange. The thermostable engineered β1-adrenergic re-
ceptor in complex with 100 mM cyanopindolol (44) in 2× CMC DM was used
as control in addition to purified JSiR1 in 1× CMC DDM. Similarly, JSiR1 was
diluted in diverse pH conditions of buffer C: pH from 5 to 6.5 with MES, 7–8
Hepes, 8–10 in CHES buffers. All reaction mixtures were supplemented with
1 μL of 0.15 mg/mL of CPM fluorophore dye (n-[4-(7-diethylamino- 4-methyl-
3-coumarinyl)phenyl]maleimide) (26) in a final volume of 20 μL. A Rotor-
Gene Q qPCR machine (Qiagen) was used to ramp the temperature from
25 °C to 95 °C during which the receptor starts to unfold, allowing the CPM
dye to bind to buried cysteines. This binding results in an increase in fluo-
rescence which was recorded as a function of temperature. The resultant
sigmoidal curves were fitted by Boltzmann equation and a melting tem-
perature (Tm) was obtained in GraphPad Prism.

G Protein-Based Activity Assay. Heterotrimeric G protein was assembled using
recombinant Gαi and βγ dimer from bovine retina in the presence of buffer G
(50 mM Bis-Tris, pH 7.3, 130 mM NaCl, 1 mM MgCl2, 1 mM DTT) as shown by
Maeda et al. (25). A total of 50 nM JSiR1 was incubated in a 1-mL quartz
cuvette (path length 1 cm), with 600 nM heterotrimeric Gi in the dark for
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2 min in buffer H (50 mM Bis-Tris, pH 7.3, 130 mM NaCl, 1 mM MgCl2, 1 mM
DTT, 0.196 mM DDM) on ice. This mixture was irradiated with 495 nm for
3 min so as to form a JSiR1/Gi complex. The cuvette was returned to the dark
(on ice) for 2 additional minutes after which a baseline fluorescence was
recorded using a Cary Eclispse Fluorescence Spectophotometer (Agilent)
with a stirring cell chamber (excitation [ex.] wavelength: 295 nm; emission
[em.] wavelength: 340 nm; ex. slit width: 5; em. slit width: 20; average time
1 s; 20 °C). The reading was paused and 10 μM of GTPγS was added to the
mixture after which data acquisition was continued for 1.5 h. Data were
analyzed using a 1 phase association fit (Y = Y0 + (Ymax-Y0)*[1-exp(-K*x)])
to obtain a rate constant. All statistical analyses were performed on
GraphPad Prism (25).

Crystallization.Deglycosylated JSiR1 was concentrated using a 50-kDa Amicon
Ultra concentrator (Merck Millipore) at 1,363 × g to facilitate buffer ex-
change into buffer H (50 mM Hepes pH 6.5, 150 mM NaCl, 3 mM MgCl2,
0.195 mM DDM, 1 mM CaCl2, 1 mM MnCl2, 280 mM methyl α-D-mannopyr-
anoside) on a PD-10 Desalting Column (GE Healthcare Life Science). The el-
uent was further concentrated using a 100-kDa Amicon Ultra concentrator
at 6,797 × g for 10 min per run. Final concentrations between 20 and 30 mg/mL
were used for crystallization. Concentrated JSiR1 was mixed with monoolein
(9.9 MAG, Nu-check) in a 40:60 ratio to form LCP at room temperature (45)
under a 640-nn LED lamp. This mixture was used to screen for crystal con-
ditions using a mosquito LCP robot (TTP Labtech) at 4 °C using 100 μm glass
on glass Laminex plates (Molecular Dimensions). The plates were then in-
cubated at 20 °C in the dark. Successful initial hits were further optimized.
Diffracting crystals were obtained from 31% to 36% PEG400 and 100 mM
Bis-Tris pH 6.5.

Data Collection and Processing. Diffraction data were collected at 100 K using
a wavelength of 1,000 Å on a 16 M Eiger detector at the ×06SA (PX1)
beamline, Swiss Light Source (SLS, PSI). Collected datasets were individually

indexed and integrated using XDS (46) (Table 1). Two datasets were merged
and scaled with Aimless (47) (CCP4 suite) (48, 49). Merging statistics indicated
that the overall resolution distribution was anisotropic with resolution
leading up to 2.1 Å along the b* reciprocal axis at a CC1/2 of 0.3. To include
these regions, and to exclude background noise, the data were reprocessed
to obtain unmerged reflections [Pointless (50, 51) and CCP4 suite] and fur-
ther run on the STARANISO server (52, 53). This resulted in an elliptically
truncated, scaled, and merged dataset [performed by Aimless (47) on the
STARANISO server]. It has to be noted that the elliptical truncation reduces
the completeness in the low-resolution shell although the CC1/2 is main-
tained (0.537). Before truncation, the data appeared to be ∼90% complete
in the low-resolution shell. The final resolution limits along the 3 reciprocal
axes were identified to be 2.5 Å (0.525 a* − 0.851 c*), 2.1 Å (b*), and 2.4 Å
(2.366 a* + 0.810 c*).

Phasing and Refinement. Phase information was obtained via molecular re-
placement with Phaser-MR (54) (Phenix, version 1.13–2998) (55). An apo-
monomer of squid rhodopsin (PDB ID code 2Z73) (12) was used as the search
model. A preliminary model was generated from the output of the molec-
ular replacement model by manual amino acid substitution from squid
rhodopsin to that of JSR1 using Coot (56, 57). This model served as a basis for
the Autobuild (58) (Phenix) which generated the initial apomodel of JSiR1,
for the resulting model was corrected manually in Coot (56, 57). Iterative
refinement was carried out in phenix.refine (59) (Phenix). Toward the final
stages of model refinement, the option to optimize weightage between
experimental electron data and stereochemistry was enabled. A large un-
known density (in both 2Fo-Fc and Fo-Fc) was observed to be anchored to
His-244 near ICL3. The N-terminal region, parts of ICL3 and the C terminus
appeared to be highly disordered and hence were not modeled due to lack
of electron density. Polder maps (60) were generated to ascertain the quality
of the electron density in the ligand-binding pocket (SI Appendix, Fig. S4).
Structure validation was carried out by the MolProbity server (61, 62),
showing 97.70% of residues in the Ramachandran favored region with
2.3% in the allowed regions and 0% outliers. Rotamer outliers were ob-
served to be at 1.98%. The JSR1 structure was deposited with the PDB ID
code 6I9K (63).

Structural Modeling. To add the missing residues in ICL3 and helix 8 and C-
terminal of JSiR1, homology modeling was performed using the crystal
structure of squid rhodopsin (PDB ID code 2Z73) (12) as a template. First, the
sequences of JSR1 (UniProt ID code B1B1U5) and squid rhodopsin (UniProt ID
code P31356; ∼38.14% sequence identity) were aligned using MUSCLE (64).
This initial alignment was manually refined using Chimera (65) to adjust the
gaps in the loop regions. Using this alignment and the squid rhodopsin
template, a 3D model of JSiR1 was built using the multitemplate modeling
method of Modeler v9.14 (66). All models were subjected to 300 iterations of
variable target function method optimization and thorough molecular dy-
namics and simulated annealing optimization, and scored using the discrete
optimized protein energy potential. The 20 best-scoring models were ana-
lyzed visually, and a suitable model (in terms of low score and structure of
the loops) was selected for the next step. We added to this preliminary
model the crystallographic waters resolved within the transmembrane
bundle of JSiR1 crystal structure. We then used PROPKA at pH 7.0 as
implemented in PDB ID code 2PQR (67) to determine protonation states of
titratable groups, to add hydrogens to the structure, and to optimize the
hydrogen bond network. The counterion Glu-19445.44 was kept charged and
disulphide bond between Cys-1233.25 and Cys-20045.50 was retained. The
model was superimposed according to Orientation of Proteins in Membranes
(OPM) (68) coordinates for proper assignment of membrane boundaries. The
model was embedded in a preequilibrated lipid bilayer consisting of 137
molecules of 1-palmitoyl-2-oleoyl-sn-glycerol-3-phosphatidylcholine (POPC),
which was hydrated with a layer of approximately 45 Å of water molecules on
each side. Sodium and chloride ions were added to a concentration of 150 mM
NaCl, and then additional ions were added to achieve charge neutrality. The
dimensions of the final tetragonal box were ∼90 × 90 × 144 Å, containing a
total of ∼68,000 atoms. This system was equilibrated as follows: first a short
(0.5 ns) simulation was performed in which only the lipid tails were allowed to
move, to induce the appropriate disorder of a fluid-like bilayer. Then, the
geometry of the entire system was optimized by 1,000 steps of energy mini-
mization, followed by 2 equilibration steps with the protein constrained
(0.5 ns) and without constraints (0.5 ns). This equilibrated system was used as a
starting point to perform unrestrained molecular dynamics simulations. All
simulations were carried out with NAMD 2.10 (69) with the c36 CHARMM
force field (70) in the NPT ensemble, using Langevin dynamics to control
temperature at 300 K, and with a time step of 2 fs, while constraining all bonds

Table 1. Crystallographic table

Protein JSiR1

Data collection
Space group I 121
Cell dimensions
a, b, c (Å) 50.95, 130.63, 77.30
α, β, γ (°) 90, 100.55, 90
Resolution (Å) 46.78–2.145 (2.39–2.145)
Ellipsoidal high-

resolution limit
2.1, 2.3, 2.6

Rmerge 0.142 (4.12)
Rpim 0.092 (0.693)
CC1/2 0.995 (0.537)
I/Sigma 7.2 (1.4)
Completeness (%) 70.5 (12.9) (spherical) 90.6 (51.7)

(ellipsoidal)
Multiplicity 6.1 (3.5)

Refinement
Resolution (Å) 46.78–2.145
No. reflections 18,977
Rwork/Rfree 0.215/0.255
No. atoms
Protein 2,417
Ligand/ion 20 (9-cis retinal)/133 (OLC)
Water 54
B-factors
Protein 38.5
Ligand/ion 36.46 (9-cis retinal)/51.7 (OLC)
Water 39.75

R.M.S. deviations
Bond lengths (Å) 0.008
Bond angles (°) 1.010
Ramachandran favored 97.7%
Ramachandran accepted 2.3%
Ramachandran outliers 0%
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between hydrogen and heavy atoms. Simulations were carried out on a Euler
supercomputer (ETH Zürich). The above molecular dynamics setup was used
also for bovine rhodopsin. Highly resolved crystallographic waters of mutant
bovine rhodopsin (5DYS) (71) was added to the structure of bovine rhodopsin
(1GZM) (28). Analysis of the simulation trajectories were done using VMD (72)
and MD analysis (73) toolkit.

Sequence Conservation Analysis. We measured the sequence variability at N-
terminal and “ERY” motif positions in an alignment of ∼900 sequences from a
recent large-scale analysis of opsin evolution (74), in which the 26 outgroups had
been removed. The sequence variability was created using BerkeleyWebLogo3 (75).
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