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Abstract: Whereas the etiology of non-alcoholic fatty liver disease (NAFLD) is complex, the role of
nutrition as a causing and preventive factor is not fully explored. The aim of this study is to associate
dietary patterns with magnetic resonance imaging (MRI) parameters in a European population
(Greece, Italy, and Serbia) affected by NAFLD. For the first time, iron-corrected T1 (cT1), proton
density fat fraction (PDFF), and the liver inflammation fibrosis score (LIF) were examined in relation
to diet. A total of 97 obese patients with NAFLD from the MAST4HEALTH study were included in
the analysis. A validated semi-quantitative food frequency questionnaire (FFQ) was used to assess
the quality of diet and food combinations. Other variables investigated include anthropometric
measurements, total type 2 diabetes risk, physical activity level (PAL), and smoking status. Principal
component analysis (PCA) was performed to identify dietary patterns. Six dietary patterns were
identified, namely “High-Sugar”, “Prudent”, “Western”, “High-Fat and Salt”, “Plant-Based”, and
“Low-Fat Dairy and Poultry”. The “Western” pattern was positively associated with cT1 in the
unadjusted model (beta: 0.020, p-Value: 0.025) and even after adjusting for age, sex, body mass
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index (BMI), PAL, smoking, the center of the study, and the other five dietary patterns (beta: 0.024,
p-Value: 0.020). On the contrary, compared with low-intake patients, those with medium intake of
the “Low-Fat Dairy and Poultry” pattern were associated with lower values of cT1, PDFF, and LIF.
However, patients with a “Low-Fat Dairy and Poultry” dietary pattern were negatively associated
with MRI parameters (cT1: beta: −0.052, p-Value: 0.046, PDFF: beta: −0.448, p-Value: 0.030, LIF:
beta: −0.408, p-Value: 0.025). Our findings indicate several associations between MRI parameters and
dietary patterns in NAFLD patients, highlighting the importance of diet in NAFLD.

Keywords: NAFLD; NASH; MRI; dietary patterns; MAST4HEALTH

1. Introduction

Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease
worldwide. It is an umbrella term for a variety of pathological conditions ranging from
simple hepatic steatosis (SS) or non-alcoholic fatty liver (NAFL) to the more severe nonalco-
holic steatohepatitis (NASH) and NASH cirrhosis [1]. Research advances in the last decade
have demonstrated that NAFLD is a multisystem disease with many complex processes
involved in its manifestation and development. Furthermore, an increasing number of
studies demonstrate that NAFLD affects a variety of extrahepatic organs and regulatory
pathways [2].

NAFLD is a severe public health issue in both industrialized and developing countries,
with an estimated global incidence of 25% [3]. The prevalence of NASH varies from 1.5%
to 6.45%, with 41% of those with NASH progressing to fibrosis [3]. NASH-related cirrhosis
has become the second largest cause of liver transplantation (LT) in the United States since
2013, and it is anticipated to overtake LT as the primary cause in Europe within the next
decade [4,5].

NAFLD is closely related to metabolic disorders (such as hypertension, type 2 dia-
betes) and insulin resistance (IR); in addition, obesity and increased central adiposity are
strong indicators of its presence [6,7]. Growing evidence suggests that NAFLD and the
related metabolic disorders are linked to an increased risk of cardiovascular disease (CVD)
morbidity and mortality [8]. Although there are no definite approved pharmacotherapies
for NAFLD, and even though bariatric surgery in morbidly obese NAFLD patients is of-
fered, lifestyle interventions remain the safest and most effective treatment approaches for
NAFLD [9–15]. The high prevalence of the disease has been associated with poor dietary
habits [16], and as such, dietary modifications consist of key factors for NAFLD manage-
ment [17–19]. Diets that are high in saturated fats and refined carbohydrates, particularly
fructose, and along with physical inactivity, are characterized as predictive mediators for
NAFLD [20–22]. In contrast, the Mediterranean dietary pattern, which is rich in nuts, whole
grains, fruits, vegetables, fish, and olive oil, has been characterized as the diet of choice to
ameliorate NAFLD [23].

Numerous studies have described the link between foods and nutrients and the
risk of NAFLD [24–28]. In addition, several studies have explored the association of
dietary patterns and NAFLD risk. In a recent review and meta-analysis that included
18 studies, the Western dietary pattern was associated with a higher risk, whereas the
Prudent and Mediterranean dietary pattern were associated with a lower risk of NAFLD,
respectively [29]. Our study aims to assess for the first time the relation of dietary patterns
in a NAFLD (MAST4HEALTH) population with novel parameters that quantify hepatic
inflammation and fibrosis.
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2. Materials and Methods
2.1. Study Design and Patients

Data included in this study were derived from the MAST4HEALTH project, as de-
scribed previously [30]. Briefly, 98 participants were recruited across three centers (the
Department of Dietetics and Nutritional Science, Harokopio University, Athens, Greece
(HUA), Consiglio Nazionale delle Ricerche Institute of Clinical Physiology, Milano section
at Niguarda Hospital Italy, (CNR) and Faculty of Medicine, University of Novi Sad, Serbia
(UNS)), based on the previously reported inclusion and exclusion criteria [30]: The partici-
pants were men and women between the ages of 18 and 67, with a body mass index (BMI)
equal or greater than 30 kg/m2 and had established NAFLD/NASH as determined by the
sensitive LiverMultiScan magnetic resonance imaging (MRI) method (Perspectum Ltd.,
Oxford, UK). All centers obtained approvals by their ethical committees [30], and the trial
was carried out in accordance with the norms of the Declaration of Helsinki and the Data
Protection Act of 1998. To take part in the study, all participants provided written informed
permission. ClinicalTrials.gov provides access to the trial’s entire protocol (Clinicaltrials.gov
MAST4HEALTH, Identifier: NCT03135873).

2.2. Measures

Dietary intake was evaluated using a 24-h recall record (3 random days) and data
were processed utilizing the Nutritionist Pro™ software version 7.1.0 (Axxya Systems LLC,
Stafford, TX, USA) for the estimation of caloric intake. A standardized semi-quantitative
food frequency questionnaire (FFQ) was applied to evaluate dietary patterns. This FFQ in-
cluded 69 questions detailing the frequency of consumption of main food groups and bever-
ages [31]. The frequency was measured using a 6-grade scale ranging from “never/rarely”,
“1–3 times/month, 1–2 times/week, 3–6 times/week, 1 times/day,” to “≥2 times/day”,
which were subsequently transformed as servings per week. Sixty-six food items were
aggregated into 25 food groups (Table S1), [32,33].

Other variables used in the present study included MRI parameters, anthropometric
measurements, total type 2 diabetes risk, physical activity, and smoking status. MRI
parameters included iron-corrected T1 (cT1), proton density fat fraction (PDFF), and the
liver inflammation fibrosis score (LIF).

Body weight was calculated to the closest 0.1 kg. Height was estimated to the closest
millimeter and BMI was calculated as weight (kg) divided by height (m)2. In addition,
liver enzymes (γ-glutamyltransferase (g-GT), aspartate transaminase (AST), and alanine
transaminase (ALT)), lipids (total cholesterol, high-density lipoprotein (HDL), low-density
lipoprotein (LDL), and triglycerides (TG)), glucose, insulin, homeostasis model assess-
ment (HOMA-IR), and 75-g of the glucose 2 h oral glucose tolerance test (OGTT) were
measured [30]. HOMA-IR was measured using the following formula: fasting glucose
(mg/dL) × (fasting insulin)/405. Biochemical measurements (liver enzymes, lipid profile,
glucose, insulin, and OGTT) were performed in the pathology labs of the hospitals where
the clinical trial took place during the screening of the patients. The established Finnish
diabetic risk score (FINDRISK) questionnaire, which includes questions of age, BMI, waist
circumference (WC), physical activity, vegetables and fruits consumption, hypertension,
and personal and family history of hyperglycemia, was used for the estimation of the total
type 2 diabetes risk [34]. The international physical activity questionnaire (IPAQ) [35] was
used to assess physical activity level (PAL) and the metabolic equivalent task minutes per
week (MET-min/week) were obtained using the IPAQ scoring system. The total physical
activity score was calculated by adding all METs. Participants were questioned concerning
their smoking behaviors and classified as smokers and non-smokers.

2.3. Statistical Analysis

The data handling and analyses were performed using R version 3.5.1 programming
(R Foundation, Vienna, Austria) language. The eligibility criteria (Kaiser-Meyer Olkin
(KMO) index and Bartlett’s test for sphericity) were examined to test the sample adequacy
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before applying a principal component analysis (PCA) for the extraction of dietary pat-
terns of the study population. The input data were a correlation matrix of 25 food groups.
KMO was 0.71 and the Bartlett’s test was significant at p < 0.001, implying the dataset’s
suitability for PCA. Using the scree plot method and Kaiser’s criterion (Eigenvalue 1.00),
a 6-component solution was chosen. To obtain optimal non-correlated components (di-
etary patterns), the orthogonal rotation (varimax option) was applied. Food groups with a
loading coefficient of ≥|0.35| were identified for each factor as a measure of the signifi-
cant relevance of a given variable to a given factor. The dietary patterns’ scores identify
individual participant adhesion to the pattern. Dietary patterns were labeled with food
groups that were positively loaded on the factor. The dietary pattern’s scores were further
classified into tertiles, with the first tertile indicating low intake and the third indicating
high adherence to the dietary pattern.

The baseline study characteristics and nutrient intake were summarized based on
tertiles of dietary patterns. The Shapiro–Wilk test was used to assess the distribution of
the variables, which are presented as mean ± standard deviation (SD) for all normally
distributed variables (parametric variables) (Shapiro–Wilk p-Value > 0.05) or as the median
and interquartile range (IQR) for all variables that did not follow the normal distribution
(non-parametric variables). The analysis of variance (ANOVA) applying Tukey’s post hoc
test in the case of parametric variables and the Kruskal–Wallis test applying Dunn’s post
hoc test in case of non-parametric variables, was used to assess differences between the
dietary patterns’ tertiles. The chi-square test was used to compare tertiles of categorical
variables represented as numbers.

Linear regression models were used to evaluate the association between the dietary
patterns’ tertiles and the MRI parameters (cT1, PDFF and LIF). The low tertile of each
dietary pattern was used as a reference group. Due to the skewness of the distribution,
the cT1 and PDFF were log transformed. Four adjustment sets were considered: Model
1—crude; Model 2—adjusted for age + sex; Model 3—adjusted for age + sex + BMI; and
Model 4—adjusted for age + sex + BMI + PAL + smoking + center of the study + the
other five dietary patterns; Model 5—adjusted for age + sex + BMI + PAL + smoking +
center of the study + alcohol intake [yes/no] + the other five dietary patterns. Moreover,
the aforementioned regression models were used to assess the association between the
dietary pattern’s scores and the MRI-derived biomarkers. A p-Value < 0.05 was considered
significant in all tests.

3. Results

Ninety-seven NAFLD patients for whom dietary data were available were included in
the current analysis, 68 of whom are males and 29 are females. The patients recruited at
three centers (Greece: GR, Italy: IT and Serbia: SR) were compared based on demographic,
anthropometric, lifestyle, MRI, and biochemical characteristics (Table 1). BMI was found
significantly higher in Greek patients compared to Italians and Serbians (p-Value: 0.003). In
addition, PAL was significantly higher in Serbian patients compared to Italians and Greeks
(p-Value: 0.007). Greek patients had significantly higher LIF in comparison with Italians
(p-Value: 0.019). Italian patients exhibited significantly higher levels of AST (p-Value: 0.012)
and ALT (p-Value: 0.004) compared with Greeks. A total of 120 min OGTT glucose was
significantly higher in Serbian patients than in Greeks and Italians (p-Value: 0.007). Italian
patients had higher levels of HOMA-IR (p-Value: 0.018) and insulin levels (p-Value: 0.049)
than Serbians.
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Table 1. Comparison of demographic, anthropometric, lifestyle, MRI, and biochemical parameters in
the three centers (Greece: GR, Italy: IT and Serbia: SR) of the study.

Center of the Study

Variables GR (N: 38) IT (N: 30) SR (N: 29) p-Value

Age *** 51.5 (14.5) 47.5 (12.75) 47 (20) 0.352

Sex (F|M) 11|27 9|21 9|20 0.983

Smoking (Yes|No) 12|25 5|25 4|25 0.136

BMI *** 36.25 (7.12) †
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FindRisk Score *** 12.5 (4) 13 (4) 14 (6) 0.641 

cT1 (ms) *** 875.82 (107.11) 843.83 (106.13) 867.18 (67.56) 0.542 

PDFF (%) *** 12.52 (11.09) 15.84 (18.73) 15.73 (11.96) 0.562 

LIF * 2.49 (± 1.04) † 2.01 (± 0.97) † 2.26 (±0.54) 0.019 

AST (IU/L) *** 20 (7.75) † 27 (11) † 22 (13.5) 0.012 

ALT (IU/L) *** 26 (16) † 45 (45) † 35 (18) 0.004 

AST/ALT ratio *** 0.71 (0.26) 0.66 (0.29) 0.66 (0.27) 0.204 

γ-gt (U/L) *** 30 (13) 41.5 (42.75) 33 (32) 0.175 

Total cholesterol 

(mg/dL) *** 
187.5 (42.25) 198.5 (32.5) 203 (71.1) 0.176 

HDL (mg/dL) *** 45 (12.75) 45 (11.5) 37.9 (12.4) 0.096 

LDL (mg/dL) *** 114 (24) 121 (37.3) 130.7 (58.7) 0.072 

Triglycerides 

(mg/dl) *** 
133 (65.5) 132.5 (103) 147 (113.4) 0.534 

Glucose (mg/dL) 

*** 
104 (13) 102 (11.25) 99 (14.4) 0.284 

120 min-OGTT 

Glucose (mg/dL) 

*** 

106 (39)ꭅ 116 (41.5) ‡ 144 (54) ‡ꭅ 0.007 

HOMA-IR *** 4.64 (3.28) 5.51 (4.29) ‡ 3.58 (2.5) ‡ 0.018 

Insulin (μU/mL) *** 16.9 (10.07) 19.95 (19.05) ‡ 14.7 (9) ‡ 0.049 

Note: The normality assumption was checked using the Shapiro–Wilk test.; * parametric variable, 

*** non parametric variable.; parametric quantitative variables are expressed as mean (± standard 

deviation (SD)), non-parametric quantitative variables as median (interquartile range (IQR)) and 

categorical variables as numbers.; P-value was obtained using Kruskal–Wallis with Dunn’s post 

hoc test or ANOVA with Tukey’s post hoc test for continuous non-parametric and parametric var-

iables, respectively, and the chi-square test for categorical variables; †differences between GR and 

IT, ‡differences between ΙΤ and SR, ꭅ differences between GR and SR; PAL: physical activity level; 

FindRisk Score: Finnish diabetic risk score; cT1: included iron-corrected; proton density fat frac-

tion (PDFF); liver inflammation fibrosis score (LIF); AST: aspartate transaminase; ALT: alanine 

transaminase; AST/ALT ratio: AST to ALT ratio; γ-GT: γ-glutamyltransferase; HDL: high-density 

lipoprotein; LDL: low-density lipoprotein; HOMA-IR: homeostatic model assessment of insulin 

resistance. 

Six different dietary patterns (components) accounted for 56% of the samples’ total 

variance identified by PCA (Table 2). Higher absolute factor loadings implied greater con-

tribution to each component. As a result, the following dietary patterns were identified: 

“High-Sugar” explained 14% of the variance, and the foods identified included pies, dried 

fruits, processed meat, fruit juice, sweets, and fruits; “Prudent” explained 13% of the var-

iance and included sea-food, fish, eggs, vegetable fat, vegetables, coffee, and tea; “West-

ern” explained 8% of the variance and included refined grains, red meat, and fast food; 

“High-Fat and Salt” explained 8% of the variance and included salty snacks, sauces, dairy 

(high-fat), animal and hydrogenated fats, and soft drinks; “Plant-Based” explained 7% of 

the variance and included whole grains, pulses, and nuts; “Low-Fat Dairy and Poultry” 

explained 6% of the variance and included dairy (low-fat) and poultry. 

Table 2. Principal component analysis’ factor loadings for the 25 food groups. 

Food Groups 
High-Sugar 

Pattern 

Prudent Pat-

tern 

Western Pat-

tern 

High-Fat 

and 

Salt Pattern 

Plant-Based  

Pattern 

Low-Fat Dairy 

and Poultry 

Pattern 

1188 (1179) ‡ 3366.75 (6295.5)
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Variables GR (N: 38) IT (N: 30) SR (N: 29) p-value 

Age *** 51.5 (14.5) 47.5 (12.75) 47 (20) 0.352 

Sex (F|M) 11|27 9|21 9|20 0.983 

Smoking (Yes|No) 12|25 5|25 4|25 0.136 

BMI *** 36.25 (7.12) † ꭅ 32.22 (3.74) † 32.19 (4.31) ꭅ 0.003 

PAL (total) *** 1463.25 (1479.22) ꭅ 1188 (1179) ‡ 3366.75 (6295.5) ꭅ‡ 0.007 

FindRisk Score *** 12.5 (4) 13 (4) 14 (6) 0.641 
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ALT (IU/L) *** 26 (16) † 45 (45) † 35 (18) 0.004 

AST/ALT ratio *** 0.71 (0.26) 0.66 (0.29) 0.66 (0.27) 0.204 

γ-gt (U/L) *** 30 (13) 41.5 (42.75) 33 (32) 0.175 
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(mg/dL) *** 
187.5 (42.25) 198.5 (32.5) 203 (71.1) 0.176 
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Triglycerides 

(mg/dl) *** 
133 (65.5) 132.5 (103) 147 (113.4) 0.534 

Glucose (mg/dL) 

*** 
104 (13) 102 (11.25) 99 (14.4) 0.284 

120 min-OGTT 

Glucose (mg/dL) 

*** 

106 (39)ꭅ 116 (41.5) ‡ 144 (54) ‡ꭅ 0.007 

HOMA-IR *** 4.64 (3.28) 5.51 (4.29) ‡ 3.58 (2.5) ‡ 0.018 

Insulin (μU/mL) *** 16.9 (10.07) 19.95 (19.05) ‡ 14.7 (9) ‡ 0.049 

Note: The normality assumption was checked using the Shapiro–Wilk test.; * parametric variable, 

*** non parametric variable.; parametric quantitative variables are expressed as mean (± standard 

deviation (SD)), non-parametric quantitative variables as median (interquartile range (IQR)) and 

categorical variables as numbers.; P-value was obtained using Kruskal–Wallis with Dunn’s post 

hoc test or ANOVA with Tukey’s post hoc test for continuous non-parametric and parametric var-

iables, respectively, and the chi-square test for categorical variables; †differences between GR and 

IT, ‡differences between ΙΤ and SR, ꭅ differences between GR and SR; PAL: physical activity level; 

FindRisk Score: Finnish diabetic risk score; cT1: included iron-corrected; proton density fat frac-

tion (PDFF); liver inflammation fibrosis score (LIF); AST: aspartate transaminase; ALT: alanine 

transaminase; AST/ALT ratio: AST to ALT ratio; γ-GT: γ-glutamyltransferase; HDL: high-density 

lipoprotein; LDL: low-density lipoprotein; HOMA-IR: homeostatic model assessment of insulin 

resistance. 

Six different dietary patterns (components) accounted for 56% of the samples’ total 

variance identified by PCA (Table 2). Higher absolute factor loadings implied greater con-

tribution to each component. As a result, the following dietary patterns were identified: 

“High-Sugar” explained 14% of the variance, and the foods identified included pies, dried 

fruits, processed meat, fruit juice, sweets, and fruits; “Prudent” explained 13% of the var-

iance and included sea-food, fish, eggs, vegetable fat, vegetables, coffee, and tea; “West-

ern” explained 8% of the variance and included refined grains, red meat, and fast food; 

“High-Fat and Salt” explained 8% of the variance and included salty snacks, sauces, dairy 

(high-fat), animal and hydrogenated fats, and soft drinks; “Plant-Based” explained 7% of 

the variance and included whole grains, pulses, and nuts; “Low-Fat Dairy and Poultry” 

explained 6% of the variance and included dairy (low-fat) and poultry. 

Table 2. Principal component analysis’ factor loadings for the 25 food groups. 

Food Groups 
High-Sugar 

Pattern 

Prudent Pat-

tern 

Western Pat-

tern 

High-Fat 

and 

Salt Pattern 

Plant-Based  

Pattern 

Low-Fat Dairy 

and Poultry 

Pattern 

‡ 0.007

FindRisk Score *** 12.5 (4) 13 (4) 14 (6) 0.641

cT1 (ms) *** 875.82 (107.11) 843.83 (106.13) 867.18 (67.56) 0.542

PDFF (%) *** 12.52 (11.09) 15.84 (18.73) 15.73 (11.96) 0.562

LIF * 2.49 (± 1.04) † 2.01 (± 0.97) † 2.26 (±0.54) 0.019

AST (IU/L) *** 20 (7.75) † 27 (11) † 22 (13.5) 0.012

ALT (IU/L) *** 26 (16) † 45 (45) † 35 (18) 0.004

AST/ALT ratio *** 0.71 (0.26) 0.66 (0.29) 0.66 (0.27) 0.204

γ-gt (U/L) *** 30 (13) 41.5 (42.75) 33 (32) 0.175

Total cholesterol
(mg/dL) *** 187.5 (42.25) 198.5 (32.5) 203 (71.1) 0.176

HDL (mg/dL) *** 45 (12.75) 45 (11.5) 37.9 (12.4) 0.096

LDL (mg/dL) *** 114 (24) 121 (37.3) 130.7 (58.7) 0.072

Triglycerides
(mg/dl) *** 133 (65.5) 132.5 (103) 147 (113.4) 0.534

Glucose (mg/dL) *** 104 (13) 102 (11.25) 99 (14.4) 0.284

120 min-OGTT
Glucose (mg/dL) *** 106 (39)
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Variables GR (N: 38) IT (N: 30) SR (N: 29) p-value 

Age *** 51.5 (14.5) 47.5 (12.75) 47 (20) 0.352 

Sex (F|M) 11|27 9|21 9|20 0.983 

Smoking (Yes|No) 12|25 5|25 4|25 0.136 

BMI *** 36.25 (7.12) † ꭅ 32.22 (3.74) † 32.19 (4.31) ꭅ 0.003 
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PDFF (%) *** 12.52 (11.09) 15.84 (18.73) 15.73 (11.96) 0.562 

LIF * 2.49 (± 1.04) † 2.01 (± 0.97) † 2.26 (±0.54) 0.019 

AST (IU/L) *** 20 (7.75) † 27 (11) † 22 (13.5) 0.012 

ALT (IU/L) *** 26 (16) † 45 (45) † 35 (18) 0.004 

AST/ALT ratio *** 0.71 (0.26) 0.66 (0.29) 0.66 (0.27) 0.204 

γ-gt (U/L) *** 30 (13) 41.5 (42.75) 33 (32) 0.175 
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187.5 (42.25) 198.5 (32.5) 203 (71.1) 0.176 

HDL (mg/dL) *** 45 (12.75) 45 (11.5) 37.9 (12.4) 0.096 

LDL (mg/dL) *** 114 (24) 121 (37.3) 130.7 (58.7) 0.072 

Triglycerides 

(mg/dl) *** 
133 (65.5) 132.5 (103) 147 (113.4) 0.534 

Glucose (mg/dL) 

*** 
104 (13) 102 (11.25) 99 (14.4) 0.284 

120 min-OGTT 

Glucose (mg/dL) 

*** 

106 (39)ꭅ 116 (41.5) ‡ 144 (54) ‡ꭅ 0.007 

HOMA-IR *** 4.64 (3.28) 5.51 (4.29) ‡ 3.58 (2.5) ‡ 0.018 

Insulin (μU/mL) *** 16.9 (10.07) 19.95 (19.05) ‡ 14.7 (9) ‡ 0.049 

Note: The normality assumption was checked using the Shapiro–Wilk test.; * parametric variable, 

*** non parametric variable.; parametric quantitative variables are expressed as mean (± standard 

deviation (SD)), non-parametric quantitative variables as median (interquartile range (IQR)) and 

categorical variables as numbers.; P-value was obtained using Kruskal–Wallis with Dunn’s post 

hoc test or ANOVA with Tukey’s post hoc test for continuous non-parametric and parametric var-

iables, respectively, and the chi-square test for categorical variables; †differences between GR and 

IT, ‡differences between ΙΤ and SR, ꭅ differences between GR and SR; PAL: physical activity level; 

FindRisk Score: Finnish diabetic risk score; cT1: included iron-corrected; proton density fat frac-

tion (PDFF); liver inflammation fibrosis score (LIF); AST: aspartate transaminase; ALT: alanine 

transaminase; AST/ALT ratio: AST to ALT ratio; γ-GT: γ-glutamyltransferase; HDL: high-density 

lipoprotein; LDL: low-density lipoprotein; HOMA-IR: homeostatic model assessment of insulin 

resistance. 

Six different dietary patterns (components) accounted for 56% of the samples’ total 

variance identified by PCA (Table 2). Higher absolute factor loadings implied greater con-

tribution to each component. As a result, the following dietary patterns were identified: 

“High-Sugar” explained 14% of the variance, and the foods identified included pies, dried 

fruits, processed meat, fruit juice, sweets, and fruits; “Prudent” explained 13% of the var-

iance and included sea-food, fish, eggs, vegetable fat, vegetables, coffee, and tea; “West-

ern” explained 8% of the variance and included refined grains, red meat, and fast food; 

“High-Fat and Salt” explained 8% of the variance and included salty snacks, sauces, dairy 

(high-fat), animal and hydrogenated fats, and soft drinks; “Plant-Based” explained 7% of 

the variance and included whole grains, pulses, and nuts; “Low-Fat Dairy and Poultry” 

explained 6% of the variance and included dairy (low-fat) and poultry. 

Table 2. Principal component analysis’ factor loadings for the 25 food groups. 

Food Groups 
High-Sugar 

Pattern 

Prudent Pat-

tern 

Western Pat-

tern 

High-Fat 

and 

Salt Pattern 

Plant-Based  

Pattern 

Low-Fat Dairy 

and Poultry 

Pattern 

116 (41.5) ‡ 144 (54) ‡
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Variables GR (N: 38) IT (N: 30) SR (N: 29) p-value 

Age *** 51.5 (14.5) 47.5 (12.75) 47 (20) 0.352 

Sex (F|M) 11|27 9|21 9|20 0.983 

Smoking (Yes|No) 12|25 5|25 4|25 0.136 

BMI *** 36.25 (7.12) † ꭅ 32.22 (3.74) † 32.19 (4.31) ꭅ 0.003 

PAL (total) *** 1463.25 (1479.22) ꭅ 1188 (1179) ‡ 3366.75 (6295.5) ꭅ‡ 0.007 

FindRisk Score *** 12.5 (4) 13 (4) 14 (6) 0.641 

cT1 (ms) *** 875.82 (107.11) 843.83 (106.13) 867.18 (67.56) 0.542 

PDFF (%) *** 12.52 (11.09) 15.84 (18.73) 15.73 (11.96) 0.562 

LIF * 2.49 (± 1.04) † 2.01 (± 0.97) † 2.26 (±0.54) 0.019 

AST (IU/L) *** 20 (7.75) † 27 (11) † 22 (13.5) 0.012 

ALT (IU/L) *** 26 (16) † 45 (45) † 35 (18) 0.004 

AST/ALT ratio *** 0.71 (0.26) 0.66 (0.29) 0.66 (0.27) 0.204 

γ-gt (U/L) *** 30 (13) 41.5 (42.75) 33 (32) 0.175 

Total cholesterol 

(mg/dL) *** 
187.5 (42.25) 198.5 (32.5) 203 (71.1) 0.176 

HDL (mg/dL) *** 45 (12.75) 45 (11.5) 37.9 (12.4) 0.096 

LDL (mg/dL) *** 114 (24) 121 (37.3) 130.7 (58.7) 0.072 

Triglycerides 

(mg/dl) *** 
133 (65.5) 132.5 (103) 147 (113.4) 0.534 

Glucose (mg/dL) 

*** 
104 (13) 102 (11.25) 99 (14.4) 0.284 

120 min-OGTT 

Glucose (mg/dL) 

*** 

106 (39)ꭅ 116 (41.5) ‡ 144 (54) ‡ꭅ 0.007 

HOMA-IR *** 4.64 (3.28) 5.51 (4.29) ‡ 3.58 (2.5) ‡ 0.018 

Insulin (μU/mL) *** 16.9 (10.07) 19.95 (19.05) ‡ 14.7 (9) ‡ 0.049 

Note: The normality assumption was checked using the Shapiro–Wilk test.; * parametric variable, 

*** non parametric variable.; parametric quantitative variables are expressed as mean (± standard 

deviation (SD)), non-parametric quantitative variables as median (interquartile range (IQR)) and 

categorical variables as numbers.; P-value was obtained using Kruskal–Wallis with Dunn’s post 

hoc test or ANOVA with Tukey’s post hoc test for continuous non-parametric and parametric var-

iables, respectively, and the chi-square test for categorical variables; †differences between GR and 

IT, ‡differences between ΙΤ and SR, ꭅ differences between GR and SR; PAL: physical activity level; 

FindRisk Score: Finnish diabetic risk score; cT1: included iron-corrected; proton density fat frac-

tion (PDFF); liver inflammation fibrosis score (LIF); AST: aspartate transaminase; ALT: alanine 

transaminase; AST/ALT ratio: AST to ALT ratio; γ-GT: γ-glutamyltransferase; HDL: high-density 

lipoprotein; LDL: low-density lipoprotein; HOMA-IR: homeostatic model assessment of insulin 

resistance. 

Six different dietary patterns (components) accounted for 56% of the samples’ total 

variance identified by PCA (Table 2). Higher absolute factor loadings implied greater con-

tribution to each component. As a result, the following dietary patterns were identified: 

“High-Sugar” explained 14% of the variance, and the foods identified included pies, dried 

fruits, processed meat, fruit juice, sweets, and fruits; “Prudent” explained 13% of the var-

iance and included sea-food, fish, eggs, vegetable fat, vegetables, coffee, and tea; “West-

ern” explained 8% of the variance and included refined grains, red meat, and fast food; 

“High-Fat and Salt” explained 8% of the variance and included salty snacks, sauces, dairy 

(high-fat), animal and hydrogenated fats, and soft drinks; “Plant-Based” explained 7% of 

the variance and included whole grains, pulses, and nuts; “Low-Fat Dairy and Poultry” 

explained 6% of the variance and included dairy (low-fat) and poultry. 

Table 2. Principal component analysis’ factor loadings for the 25 food groups. 

Food Groups 
High-Sugar 

Pattern 

Prudent Pat-

tern 

Western Pat-

tern 

High-Fat 

and 

Salt Pattern 

Plant-Based  

Pattern 

Low-Fat Dairy 

and Poultry 

Pattern 

0.007

HOMA-IR *** 4.64 (3.28) 5.51 (4.29) ‡ 3.58 (2.5) ‡ 0.018

Insulin (µU/mL) *** 16.9 (10.07) 19.95 (19.05) ‡ 14.7 (9) ‡ 0.049
Note: The normality assumption was checked using the Shapiro–Wilk test; * parametric variable; *** non
parametric variable.; parametric quantitative variables are expressed as mean (±standard deviation (SD)), non-
parametric quantitative variables as median (interquartile range (IQR)) and categorical variables as numbers;
p-Value was obtained using Kruskal–Wallis with Dunn’s post hoc test or ANOVA with Tukey’s post hoc test
for continuous non-parametric and parametric variables, respectively, and the chi-square test for categorical
variables; † differences between GR and IT, ‡ differences between IT and SR,
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Variables GR (N: 38) IT (N: 30) SR (N: 29) p-value 

Age *** 51.5 (14.5) 47.5 (12.75) 47 (20) 0.352 

Sex (F|M) 11|27 9|21 9|20 0.983 

Smoking (Yes|No) 12|25 5|25 4|25 0.136 

BMI *** 36.25 (7.12) † ꭅ 32.22 (3.74) † 32.19 (4.31) ꭅ 0.003 
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PDFF (%) *** 12.52 (11.09) 15.84 (18.73) 15.73 (11.96) 0.562 

LIF * 2.49 (± 1.04) † 2.01 (± 0.97) † 2.26 (±0.54) 0.019 

AST (IU/L) *** 20 (7.75) † 27 (11) † 22 (13.5) 0.012 

ALT (IU/L) *** 26 (16) † 45 (45) † 35 (18) 0.004 

AST/ALT ratio *** 0.71 (0.26) 0.66 (0.29) 0.66 (0.27) 0.204 

γ-gt (U/L) *** 30 (13) 41.5 (42.75) 33 (32) 0.175 

Total cholesterol 

(mg/dL) *** 
187.5 (42.25) 198.5 (32.5) 203 (71.1) 0.176 

HDL (mg/dL) *** 45 (12.75) 45 (11.5) 37.9 (12.4) 0.096 

LDL (mg/dL) *** 114 (24) 121 (37.3) 130.7 (58.7) 0.072 

Triglycerides 

(mg/dl) *** 
133 (65.5) 132.5 (103) 147 (113.4) 0.534 

Glucose (mg/dL) 

*** 
104 (13) 102 (11.25) 99 (14.4) 0.284 

120 min-OGTT 

Glucose (mg/dL) 

*** 

106 (39)ꭅ 116 (41.5) ‡ 144 (54) ‡ꭅ 0.007 

HOMA-IR *** 4.64 (3.28) 5.51 (4.29) ‡ 3.58 (2.5) ‡ 0.018 

Insulin (μU/mL) *** 16.9 (10.07) 19.95 (19.05) ‡ 14.7 (9) ‡ 0.049 

Note: The normality assumption was checked using the Shapiro–Wilk test.; * parametric variable, 

*** non parametric variable.; parametric quantitative variables are expressed as mean (± standard 

deviation (SD)), non-parametric quantitative variables as median (interquartile range (IQR)) and 

categorical variables as numbers.; P-value was obtained using Kruskal–Wallis with Dunn’s post 

hoc test or ANOVA with Tukey’s post hoc test for continuous non-parametric and parametric var-

iables, respectively, and the chi-square test for categorical variables; †differences between GR and 

IT, ‡differences between ΙΤ and SR, ꭅ differences between GR and SR; PAL: physical activity level; 

FindRisk Score: Finnish diabetic risk score; cT1: included iron-corrected; proton density fat frac-

tion (PDFF); liver inflammation fibrosis score (LIF); AST: aspartate transaminase; ALT: alanine 

transaminase; AST/ALT ratio: AST to ALT ratio; γ-GT: γ-glutamyltransferase; HDL: high-density 

lipoprotein; LDL: low-density lipoprotein; HOMA-IR: homeostatic model assessment of insulin 

resistance. 

Six different dietary patterns (components) accounted for 56% of the samples’ total 

variance identified by PCA (Table 2). Higher absolute factor loadings implied greater con-

tribution to each component. As a result, the following dietary patterns were identified: 

“High-Sugar” explained 14% of the variance, and the foods identified included pies, dried 

fruits, processed meat, fruit juice, sweets, and fruits; “Prudent” explained 13% of the var-

iance and included sea-food, fish, eggs, vegetable fat, vegetables, coffee, and tea; “West-

ern” explained 8% of the variance and included refined grains, red meat, and fast food; 

“High-Fat and Salt” explained 8% of the variance and included salty snacks, sauces, dairy 

(high-fat), animal and hydrogenated fats, and soft drinks; “Plant-Based” explained 7% of 

the variance and included whole grains, pulses, and nuts; “Low-Fat Dairy and Poultry” 

explained 6% of the variance and included dairy (low-fat) and poultry. 

Table 2. Principal component analysis’ factor loadings for the 25 food groups. 

Food Groups 
High-Sugar 

Pattern 

Prudent Pat-

tern 

Western Pat-

tern 

High-Fat 

and 

Salt Pattern 

Plant-Based  

Pattern 

Low-Fat Dairy 

and Poultry 

Pattern 

differences between GR and SR;
PAL: physical activity level; FindRisk Score: Finnish diabetic risk score; cT1: included iron-corrected; proton
density fat fraction (PDFF); liver inflammation fibrosis score (LIF); AST: aspartate transaminase; ALT: alanine
transaminase; AST/ALT ratio: AST to ALT ratio; γ-GT: γ-glutamyltransferase; HDL: high-density lipoprotein;
LDL: low-density lipoprotein; HOMA-IR: homeostatic model assessment of insulin resistance.

Six different dietary patterns (components) accounted for 56% of the samples’ total
variance identified by PCA (Table 2). Higher absolute factor loadings implied greater
contribution to each component. As a result, the following dietary patterns were identi-
fied: “High-Sugar” explained 14% of the variance, and the foods identified included pies,
dried fruits, processed meat, fruit juice, sweets, and fruits; “Prudent” explained 13% of
the variance and included sea-food, fish, eggs, vegetable fat, vegetables, coffee, and tea;
“Western” explained 8% of the variance and included refined grains, red meat, and fast
food; “High-Fat and Salt” explained 8% of the variance and included salty snacks, sauces,
dairy (high-fat), animal and hydrogenated fats, and soft drinks; “Plant-Based” explained 7%
of the variance and included whole grains, pulses, and nuts; “Low-Fat Dairy and Poultry”
explained 6% of the variance and included dairy (low-fat) and poultry.
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Table 2. Principal component analysis’ factor loadings for the 25 food groups.

Food Groups High-Sugar
Pattern

Prudent
Pattern

Western
Pattern

High-Fat and
Salt Pattern

Plant-Based
Pattern

Low-Fat Dairy and
Poultry Pattern

Pies 0.77

Dried fruits 0.74

Processed meat 0.71

Fruit juice 0.63

Sweets 0.59

Fruits 0.45 0.43

Sea-food 0.88

Fish 0.69

Eggs 0.59

Vegetable fat 0.58

Vegetables 0.48 0.53

Coffee and tea 0.47

Sauces 0.7

Dairy (high-fat) 0.57 0.39

Soft drinks 0.36 0.57

Animal and
hydrogenated fats 0.54

Salty snacks 0.35

Refined grains 0.39 0.61

Red meat 0.44 0.59

Fast food 0.37 0.53

Whole grains 0.7

Pulses 0.68

Nuts 0.56 0.41

Dairy (low-fat) 0.67

Poultry 0.64

Percent (%)
variance explained

by each pattern
14% 13% 8% 8% 7% 6%

This table enables the factor loadings for the 25 food groups that were derived from the
PCA analysis. These values describe how much each food group contributes to a particular
dietary pattern. The largest the loading the highest the relationship of each food group to
the specific pattern. An often-used threshold (|0.35|) was utilized for identifying factor
loadings as key contributors to a pattern and labeling these patterns according to the food
groups with the highest factor loadings.

The comparisons of demographic, anthropometric, lifestyle, MRI, and biochemical
parameters for the different levels of dietary patterns are described in Table S2. In the
“Western” pattern, the group with the medium scores had significantly lower ALT levels in
comparison to the other two groups (p-Value: 0.02449). Moreover, in the “Plant-Based” pat-
tern, the AST (p-Value: 0.04727) and ALT (p-Value: 0.0138) levels of the medium adherence
scores were also lower compared to the other two groups. In addition, the AST/ALT ratio
(p-Value: 0.04029) was significantly lower in the “Plant-Based” pattern of low scores com-
pared to the group of medium scores. Italian patients were found to have higher adherence
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to the “Prudent” pattern. In addition, Greek patients were found to have more adherences
to groups with the highest scores of the “Western” and “Plant-Based” pattern. Moreover,
PDFF (%) was detected with significantly higher value in the group with low scores of the
“Low-Fat Dairy and Poultry” pattern compared to the medium group (p-Value: 0.04452).

The differences in nutrient intake between tertiles of dietary patterns are described in
Table S3. For example, total sugar (g) (p-Value: 0.01003) and glucose (g) (p-Value: 0.008712)
intakes were significantly higher in the medium tertile of the “High-Sugar” pattern when
compared to intakes in the low tertile but not when compared to the high. When compared
to the low tertile, fructose (g) intake was significantly higher in the medium and high
tertiles of “High-Sugar” pattern (p-Value: 0.005621).

The associations of the dietary pattern with the MRI parameters are presented in
Table S4 and Table 3. The “Western” pattern was associated with increased values of
log-cT1 in Model 1 (beta: 0.020, p-Value: 0.025). This effect remained significant in all
models, even after adjusting for age, sex, BMI, PAL, smoking, the center of the study, and
the other five dietary patterns (beta: 0.024, p-Value: 0.020) (Figure 1). The medium tertile of
the “Low-Fat Dairy and Poultry” pattern was associated with lower values of: log-cT1 in
Model 1 (beta: −0.047, p-Value: 0.038) and Model 4 (beta: −0.052, p-Value: 0.046)); log-PDFF
in all models (Model 1 (beta: −0.459, p-Value: 0.011), Model 2 (beta: −0.392, p-Value: 0.029),
Model 3 (beta: −0.387, p-Value: 0.032), Model 4 (beta: −0.448, p-Value: 0.030), and Model 5
(beta: −0.46, p-Value: 0.027]; LIF in Model 4 (beta: −0.408, p-Value: 0.025) and Model 5
(beta: −0.412, p-Value: 0.025) compared to the lowest tertile. No significant associations
were found between the other patterns and observed MRI parameters.
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Table 3. The associations of the “Western” and “Low-Fat Dairy and Poultry” patterns with the MRI
parameters in the MAST4HEALTH obese and NAFLD patients.

Western Pattern
Western Pattern

Low Medium High

Variables Beta (SE) p-Value Beta (SE) p-Value Beta (SE) p-Value

Log- cT1 (ms)

Model 1 Ref. −0.003 (0.022) 0.874 0.037 (0.022) 0.104 0.020 (0.009) 0.025

Model 2 Ref. −0.004 (0.022) 0.842 0.035 (0.023) 0.134 0.020 (0.009) 0.031

Model 3 Ref. −0.007 (0.021) 0.762 0.036 (0.022) 0.108 0.019 (0.009) 0.036

Model 4 Ref. −0.003 (0.025) 0.905 0.038 (0.027) 0.173 0.024 (0.010) 0.020

Model 5 Ref. −0.003 (0.025) 0.896 0.035 (0.028) 0.211 0.024 (0.011) 0.029

Log-PDFF (%)

Model 1 Ref. −0.236 (0.180) 0.192 −0.059 (0.181) 0.743 0.041 (0.074) 0.581

Model 2 Ref. −0.260 (0.176) 0.143 −0.087 (0.179) 0.629 0.033 (0.072) 0.649

Model 3 Ref. −0.268 (0.176) 0.132 −0.088 (0.180) 0.625 0.030 (0.073) 0.679

Model 4 Ref. −0.299 (0.200) 0.141 −0.090 (0.215) 0.678 0.072 (0.085) 0.401

Model 5 Ref −0.296 (0.202) 0.147 −0.08 (0.22) 0.719 0.081 (0.088) 0.359

LIF

Model 1 Ref. 0.023 (0.156) 0.882 0.249 (0.160) 0.123 0.121 (0.063) 0.059

Model 2 Ref. 0.020 (0.158) 0.897 0.243 (0.164) 0.142 0.119 (0.064) 0.067

Model 3 Ref. 0.005 (0.153) 0.974 0.254 (0.158) 0.113 0.111 (0.062) 0.078

Model 4 Ref. −0.049 (0.174) 0.777 0.138 (0.192) 0.473 0.105 (0.073) 0.154

Model 5 Ref −0.05 (0.175) 0.775 0.13 (0.196) 0.508 0.103 (0.075) 0.175

Low-Fat Dairy and Poultry Pattern
Low-Fat Dairy and Poultry Pattern

Low Medium High

Variables Beta (SE) p-Value Beta (SE) p-Value Beta (SE) p-Value

Log- cT1 (ms)

Model 1 Ref. −0.047 (0.022) 0.038 −0.021 (0.022) 0.343 −0.008 (0.009) 0.378

Model 2 Ref. −0.045 (0.023) 0.051 −0.020 (0.023) 0.380 −0.008 (0.009) 0.406

Model 3 Ref. −0.043 (0.022) 0.059 −0.018 (0.022) 0.416 −0.011 (0.009) 0.221

Model 4 Ref. −0.052 (0.025) 0.046 −0.016 (0.023) 0.499 −0.012 (0.010) 0.228

Model 5 Ref −0.051 (0.026) 0.051 −0.016 (0.023) 0.503 −0.011 (0.010) 0.239

Log-PDFF (%)

Model 1 Ref. −0.459 (0.177) 0.011 −0.209 (0.178) 0.243 −0.042 (0.074) 0.574

Model 2 Ref. −0.392 (0.177) 0.029 −0.115 (0.181) 0.525 −0.017 (0.073) 0.820

Model 3 Ref. −0.387 (0.178) 0.032 −0.110 (0.181) 0.547 −0.023 (0.074) 0.757

Model 4 Ref. −0.448 (0.202) 0.030 −0.078 (0.191) 0.686 −0.023 (0.079) 0.768

Model 5 Ref −0.46 (0.204) 0.027 −0.076 (0.192) 0.695 −0.025 (0.08) 0.756

LIF

Model 1 Ref. −0.294 (0.158) 0.066 −0.125 (0.157) 0.426 −0.038 (0.064) 0.554

Model 2 Ref. −0.290 (0.163) 0.079 −0.123 (0.163) 0.451 −0.036 (0.066) 0.583

Model 3 Ref. −0.270 (0.159) 0.092 −0.109 (0.158) 0.494 −0.061 (0.064) 0.342

Model 4 Ref. −0.408 (0.178) 0.025 −0.125 (0.163) 0.444 −0.071 (0.067) 0.297
Model 5 Ref −0.412 (0.18) 0.025 −0.126 (0.164) 0.446 −0.07 (0.068) 0.304

The cT1 (ms) and PDFF (%) were log-transformed due to the skewness of the distribution. Four adjustment
sets were considered: Model 1: crude model; Model 2: adjusted for age + sex; Model 3: adjusted for Model 2
+ BMI; Model 4: adjusted for Model 3 + PAL + smoking + center of the study + the other five dietary patterns;
Model 5: adjusted for Model 4 + alcohol intake [yes/no]. A P value < 0.05 was considered significant in all tests.
Ref: Reference (the low tertile of each dietary pattern was used as a reference group). beta: beta coefficient. SE:
standard error.
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4. Discussion

The present study examined the association of six dietary patterns of “High-Sugar”,
“Prudent”, “Western”, “High-Fat and Salt”, “Plant-Based”, and “Low-Fat Dairy and Poul-
try” in MAST4HEALTH patients with MRI parameters related to NAFLD progression.

For the first time, the “Western” pattern, which consists mostly of a high intake of
refined grains, red meat, and fast food, was associated with increased values of cT1, which
is strongly correlated with disease activity [36] and the fibrosis stage [37]. This association
was independent of age, sex, BMI, PAL, smoking, center of the study, and the other five
dietary patterns. Previous research supports our findings. For example, refined grains are
known to rapidly increase insulin and glucose levels in the blood, which are known to
contribute to insulin resistance (IR), diabetes, and obesity [38]. Additionally, the rate of de
novo production and the acceleration of fat in liver cells are enhanced by increased blood
sugar and hyperinsulinemia due to hepatic IR [39]. A high glycemic index diet stimulates
the accumulation of fat in the liver cells, leading to hepatic steatosis [39,40]. Moreover, a
high intake of red and/or processed meat and fast food has been linked to NAFLD [41,42].
In a recent meta-analysis, individuals who consume more red meat and soft drinks exhibit
a significantly increased likelihood of NAFLD [43]. Similarly, dietary patterns containing
high levels of red meat and refined grains, as well as high-fat dairy and processed foods,
could significantly increase NAFLD by 50% [29]. Saturated fatty acids (SFA) and trans-
fatty acids (FA) possibly influence steatosis of hepatic cells by chylomicron intake after
consumption of fatty foods [44]. It is worth noting that a recent study in NAFLD patients
demonstrated that the heterocyclic amines (HCAs) produced by high temperatures for an
extended period of cooking meat, were associated with IR and were found to be hazardous
to health [41].

Furthermore, the medium tertile of the “Low-Fat Dairy and Poultry” pattern was
associated with lower values of cT1, PDFF, and LIF, indicating an inverse relationship with
NAFLD. This is not surprising, as high protein intake has been linked with mobilization
and a decrease in liver fat. In mice fed with a choline-deficient high-fat diet, which induces
NASH, branched-chain amino acids supplementation alleviated hepatic steatosis and liver
injury associated with NASH by suppressing the expression of FAS gene and its protein
levels [45]. Additionally, whey protein supplementation significantly improved hepatic
steatosis and plasma lipid profiles in obese non-diabetic patients compared with an ad
libitum diet [46]. In the prospective study of type 2 diabetes patients, Markova et al. [47]
found that diets rich in protein and low in fat dramatically decreased liver fat regardless
of body weight, as well as indicators of insulin resistance and hepatic necroinflammation.
This impact was linked to a decrease in lipolysis and lipogenic indices.

Although the “Plant-Based” pattern, including whole grains, pulses, and nuts, had
no association with MRI parameters, the group with the lower adherence in this pattern
exhibited decreased AST/ALT ratio compared to the group of medium adherence. Previous
results [48] have shown that the consumption of whole grains improved the levels of liver
enzymes and hepatic steatosis in NAFLD patients. In addition, a higher intake of pulses has
been related to a decreased risk of NAFLD [49]. A meta-analysis demonstrated that a higher
nut intake was negatively associated with NAFLD [43]. Several studies have confirmed
a clear connection between nut consumption and reduced levels of inflammation, IR,
oxidative stress, and metabolic syndrome, all of which have been implicated in NAFLD
progression [50–55]. Regarding AST/ALT ratio, it is considered an indicator of liver disease
progression and its increase is associated with NAFLD [56]. In line with our findings, in
the manuscript published by Tzima et al. [57], the AST/ALT ratio was positively correlated
with the Mediterranean Diet, which is considered an established plant-based diet.

The “High-Sugar” pattern is characterized by a high intake of carbohydrate/sugar,
which promotes de novo fatty acid production in the liver [38]. Foods with a high glycemic
index induce hepatic steatosis, particularly in insulin-resistant individuals [40]. Research
findings also highlight the link between a high carbohydrate/sugar pattern and NAFLD
in women [58]. However, in the current study, we detected no statistically significant link
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between the “High-Sugar” pattern consumption and MRI parameters. Interestingly, another
research group found no association between fructose intake and NAFLD or risk of hepatic
fibrosis; however, in this study, underreporting of sugar intake due to overweight/obesity
and diabetes might be the reason for the lack of association [26].

To the best of our knowledge, this is the first study to examine the association of
different dietary patterns with NAFLD parameters assessed by MRI-derived measurements
of liver fat content, inflammation, and fibrosis. In the analysis, potential confounding
variables were identified and for which, adjusted.

There are certain limitations to our study that should be considered. One of this
study’s weaknesses was the number and heterogeneity (different origin) of the sample,
which was compensated by the strict criteria that were used in the PCA analysis, as well as
by the adjustment of the center of the study in the regression Models 4 and 5. Moreover,
as participants were obese and diagnosed with NAFLD, underreporting in certain food
items may have occurred. In addition, recall bias is possible due to the questionnaire’s
self-reporting character. Another significant restriction is that PCA analysis of dietary data
incorporates approaches that need subjectivity, such as grouping foods and determining
the number of components. Moreover, as a cross-sectional analysis, this study explored
the possible associations of dietary patterns with the presence of NAFLD, which does
not necessarily indicate that dietary interventions will influence NAFLD severity. When
p < 0.05 the results are significant, however, there is still a 1/20 chance that this is inaccurate;
thus, the replication of our findings in bigger cohorts in future is needed.

5. Conclusions

The current study in MAST4HEALTH NAFLD patients indicated that a “Western”
dietary pattern with refined grains, red meat, and fast food was positively associated with
the MRI marker of liver inflammation and fibrosis. In contrast, a “Low-Fat Dairy and
Poultry” pattern was negatively associated with these parameters. Upon validation by
future larger cohort studies, the results may assist clinicians to inform people at risk of, or
with, NAFLD, of healthy dietary choices.
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.3390/ijerph19020971/s1. Table S1, 66 food items were categorized into 25 food groups. Table S2: The
comparison of demographic, anthropometric, lifestyle, MRI, and biochemical parameters in different
levels of the dietary patterns. Table S3: Daily energy and nutrients intake in different levels of the
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