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Abstract
Purpose  Continuous technological advances result in the availability of new bone conduction hearing implants, of which 
their suitability for pediatric patients is of major concern. The CochlearTMOsia® 2 is a new active osseointegrated steady-state 
implant system that uses digital piezoelectric stimulation to treat hearing loss. The implant in the United States was approved 
for patients aged 12 years and above, whereas the CE mark is independent of age, the only requirement is body weight of 
at least 7 kg. Therefore, further clinical studies are required to assess device characteristics in younger patients. The aim of 
our study was to perform a morphometric study among 5–12-year-old children, and to develop a surgical protocol for Osia 
2 system implantation based on these findings.
Methods  We examined retrospectively cranial CT scans of 5–12-year-old patients from our clinical database. We measured 
the bone and soft-tissue thickness in the region of interest, and the position of the sigmoid sinus. 3D printed temporal bones 
were also used for planning.
Results  Soft-tissue thickness varied between 3.2 ± 0.5 mm and 3.6 ± 0.6 mm and bone thickness varied between 3.5 ± 1.1 mm 
and 4.7 ± 0.3 mm. The sigmoid sinus was located 1.3 ± 0.2 cm posterior to the ear canal, and the anterior distance was 
4.8 ± 0.9 to 7.1 ± 1.1 mm.
Conclusions  Our morphometric studies showed that patients aged 5–12 have different anatomical dimensions compared to 
adults, but that implantation of the Osia 2 system is feasible in these patients using an altered implant positioning recom-
mended by our data. The Cochlear™ Osia® 2 is, therefore, an option for hearing rehabilitation in younger pediatrics.
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Introduction

Since osseointegration was developed [1, 2] and the first 
direct bone conduction hearing aid was implanted by Profes-
sor Tjellström in 1977, the application of bone conduction 
implants (BCI) has increased exponentially, and extensive 
development of the device has begun [3–6]. Considering 
the needs and advantages of early hearing rehabilitation, 
pediatric application of BCI is also evolving. However, 
date of surgery, type of implanted system, applied surgical 

techniques, and complication management in small children 
is always a major concern [7]. Therefore, stable, safe, high-
power implants and straight-forward surgery adapted for the 
pediatric population is necessary.

The Cochlear Osia 2 system is a new active, transcutane-
ous, osseointegrated steady-state implant system that uses 
digital piezoelectric stimulation (Fig. 1). The Osia system 
is intended for adults and children with conductive or mixed 
hearing loss (up to 55 dB HL) and single-sided sensorineural 
deafness (SSD). The piezoelectric transducer is fixed to the 
bone via the BI300 titanium implant, and signal is trans-
ferred between implant and sound processor (SP) via a digi-
tal RF link [8, 9]. The Osia system grants high-power output 
and improved high frequency gain for optimizing speech 
perception and compared to Baha® 5 Power it provides 
significantly higher functional gain at higher frequencies 
(5–7 kHz) [10, 11]. Since it is transcutaneous, the possibility 
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of trauma and soft-tissue complications is lower compared to 
percutaneous BCIs, and it is aesthetically more feasible [12]. 
Considering the audiological and safety benefits of active 
transcutaneous systems, early application of these devices in 
the pediatric population would be advantageous. At present, 
the implant in the United States is approved for patients aged 
12 years and above, whereas the CE mark is independent of 
age, the only requirement is body weight of at least 7 kg. 
Since children are smaller and have morphological differ-
ences, i.e., thinner soft-tissue and bone structure compared 
to adults [13, 14], further clinical study of the implant area is 
required. Intraoperative complications, such as exposing the 
dura, injury of the sigmoid sinus and consequent bleeding, 
or entering the mastoid cavity can also be avoided via pru-
dent implantation technique. Therefore, knowledge of age-
dependent anatomy is essential. The aim of our study was to 
perform a morphometric investigation among 5–12-year-old 
children to develop a safe surgical protocol for implantation 
of the Osia 2 system.

Materials and methods

The ethical approval for this study was obtained from the 
Institutional Review Board (Human Investigation Review 
Board, University of Szeged, Albert Szent-Györgyi Clini-
cal Centre (Reference number: 164/2020). In this retrospec-
tive study high resolution cranial CT scans with a minimum 
of 0.625 mm slice thickness (0.4 mm in a proportion of 
cases) of 40 children between the ages of 5 and 12 years 
were collected from our clinical database and systematically 

analysed. The indication of cranial CT were the following: 
polytrauma/whole body CT (with no trauma in the region of 
interests) (n = 15); uni- or bilateral external ear canal atre-
sia without additional severe craniofacial malformation or 
syndrome (n = 6); temporal CT prior to ear surgery (n = 8), 
and preoperative cranial CT for neurosurgery patients or 
cranial CT for patients with particular neurological disor-
der (n = 11). Scans from individuals with any form of head 
trauma including temporal region or severe complex cranio-
facial malformations were excluded. Different attributions of 
the retroauricular/temporoparietal region were measured in 
four specified age groups (5–6 years; 7–8 years; 9–10 years, 
and 11–12 years). The number of patients in each group 
was 10, and both male and female candidates were selected.

All output of CT data were converted into Digital Imag-
ing and Communications in Medicine (DICOM) files, and 
exported to RadiAnt DICOM viewer 2020.2 (Medixant, 
Poznań, Poland) for morphometrical studies. Based on 
the recommended position and dimensions of the implant 
(Fig. 1) soft tissue and bone thickness was determined. To 
achieve a reproducible measuring method, fix points were 
assigned: lower margin of the orbita, zygomatic arch and the 
external ear canal (EEC) midline. Implant parameters were 
marked on the reference lines defined by the fix points. Bone 
and soft-tissue thicknesses were calculated in a multi-plane 
view along the mentioned reference lines (Fig. 2) Three 
adjacent sample points were taken and average skin and 
bone thickness was determined in each session. With this 
method, soft-tissue thickness was assigned in the level of the 
SP and in the level of the transducer, while bone thickness 
was calculated in the level of transducer/possible position of 

Fig. 1   Osia 2 system implant with size parameters (top left) and manufacturer recommended position (bottom left panels and panels A–D). 
Copyright © Cochlear Ltd. All rights reserved. Illustrations provided courtesy of and with permission from Cochlear



4911European Archives of Oto-Rhino-Laryngology (2022) 279:4909–4915	

1 3

BI300 implant, i.e., EEC midline. Besides the recommended 
BI300 position, bone thickness was also measured superior 
to the EEC midline to collect information of bone structure 
and to determine whether alternative placement of the tita-
nium implant would be feasible. For safety purposes, sig-
moid sinus distance from the posterior wall of the EEC, and 
bone thickness above the sinus was also observed. Both the 
left and right temporal areas were analysed of each patient. 
For further planning, representative samples were printed in 
3D to verify our measuring technique.

Data were collected and statistically analysed with SYS-
TAT 13 Software (Inpixon Inc., Version 13. Palo Alto, 
United States). Results are presented as mean ± SD.

Results

Soft‑tissue thickness

Table 1 shows the soft-tissue thickness at the level of the SP 
and transducer. Average soft-tissue thickness in the level 

of the SP in the entire population was 3.7 ± 0.6 mm, which 
was significantly lower compared to the level of the trans-
ducer 6.3 ± 2.2 mm (ANOVA, Mann–Whitney Rank Sum 
Test, p < 0.001). No difference between the left and right 
side was found. In the different age groups, no significant 

Fig. 2   3D CT reconstruction of a 5-year-old male. Picture A: sche-
matic position of the implant Picture B: reference lines determined 
by fix points: lower margin of the orbita, zygomatic arch and the ear 
canal midline (blue line). Green reference line shows the mid-axis 

of the implant. Picture C: multiplane view of cranial CT scans: fix 
points were set in each view. Soft tissue and bone thickness were cal-
culated in the region of interest

Table 1   Soft-tissue thickness at sound processor level and transducer 
level in different age groups in the area of interest

Soft-tissue thickness Age (year) Mean ± SD (mm)

Sound processor level Together 3.7 ± 0.6
5–6 3.2 ± 0.5
7–8 3.2 ± 0.1
9–10 3.6 ± 0.5
11–12 3.6 ± 0.6

Transducer level Together 6.3 ± 2.2
5–6 7.3 ± 2.4
7–8 6.8 ± 3.1
9–10 5.9 ± 1.6
11–12 5.6 ± 1.7
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difference was found in the level of SP, however, in the level 
of transducer, soft-tissue thickness slightly reduced with age.

Bone thickness

Average bone thickness was 4.8 ± 1.6 mm in the recom-
mended position of the BI300 implant (EEC midline) and 
4.5 ± 1.2 mm at the level of the tegmen. However, at this 
level compact cortical bone was found in each age group, 
in contrast to the recommended position, where underlying 
mastoid cavity was found in 57% of cases. Significant dif-
ferences were found in bone thickness between the young-
est and eldest age groups, where average bone thickness 
was 3.5 ± 1.1 mm in those 5–6 years and 4.7 ± 0.3 mm in 
11–12 years (ANOVA, Mann–Whitney Rank Sum Test, 
p < 0.001) in the recommended position (Fig. 3).

Age (year) Mean ± SD (mm)

5–6 3.5 ± 1.1
7–8 3.7 ± 0.5
9–10 4.2 ± 1.0
11–12 4.7 ± 0.3

Sigmoid sinus

Average distance of the anterior wall of the sigmoid sinus 
and posterior wall of the EEC was 1.3 ± 0.2 cm and no sig-
nificant difference was found among age groups. In con-
trast, the distance between the bone surface and the bony 
sigmoid sinus wall increased with age and this was statisti-
cally significant (p = 0.006) (Fig. 4). However, these data 
suggest not only compact cortical bone, but perisinusoidal 

Fig. 3   Average bone thickness 
in the recommended position 
of the implant in different age 
groups. (ANOVA, Mann–Whit-
ney Rank Sum Test, p < 0.001) Age (year) Mean±SD (mm)

5-6 3.5±1.1

7-8 3.7±0.5

9-10 4.2±1.0

11-12 4.7±0.3

Fig. 4   Linear dimensions of the mastoid by age group. Distance 
between the posterior wall of the external ear canal (left) and the 
anterior wall of the sigmoid sinus (right). No significant difference 
was found between the groups. In contrast, the distance between 

the bone surface and the upper wall of the sigmoid sinus increased 
with the age (p = 0.006). ANOVA, Mann–Whitney Rank Sum Test, 
p < 0.001)
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cells spreading above the sinus in 55% of cases (20% in 
5–6 years, 40% in 7–8 years, 70% in 9–10 years and 90% in 
11–12 years).

Discussion

Early implantation of a hearing intervention in childhood 
can support effective hearing rehabilitation; however, sur-
gery can be difficult due to the altered anatomy and dimen-
sion of the juvenile skull [14]. Preoperative CT for surgical 
planning, especially in young children, can be challenging 
and anaesthesia may be necessary. The aim of our study 
was to analyse several cranial CT scans of children between 
5 and 12 years of age, to map the retroauricular area in dif-
ferent age groups and to help planning Osia implantation.

Implantation of Baha, more specifically implantation of 
BI300 does not essentially require preoperative CT in most 
of the cases, and the overall number of cranial CT scans in 
early childhood is small. Moreover, studies, help to predict 
the ideal implant size in children and determine the position 
of BI300, are rare. Although, especially in childhood, most 
common indication of BCIs are external ear canal/middle 
ear malformation and chronic otitis media; patients from 
non-otological cases were also selected to create an average 
population, similarly to other researcher groups [15, 16]. 
The idea behind our patient selection (i.e., otological and 
non-otological cases together) was, that previous study of 
pediatric uni- and bilateral ear canal atresia patients indi-
cated that neither age nor diagnosis of atresia reliably predict 
a lower chance of identifying adequate bone thickness at 
typical implant sites, and no significant difference in bone 
thickness was found on the affected site compared to non-
affected side [17]. Moreover, SSD patients do not necessar-
ily have any anatomical involvement. In addition, hidden 
anatomical variations, different degree of mastoid air cell 
opacification, variation in mastoid pneumatisation resembles 
ventilation disorder also occurred in patient with no previous 
history of known ear problem, as we also perceived during 
the analysis.

To ensure a stable link between SP and coil in the Osia 
system, soft-tissue thickness should be under 9 mm at the 
level of the SP, Similar to Attract, 3–6 mm soft-tissue thick-
ness is ideal [18]. In the Osia system the vibration is gener-
ated in the implanted transducer, so magnet force, vibra-
tion and consequent heating does not occur; therefore, the 
skin complications caused by strong magnet compression 
are reduced [19–21]. Since soft-tissue thickness was sig-
nificantly below 9 mm in each age group, soft-tissue reduc-
tion could be avoided in children. In case of Attract, 3 mm 
flap thickness may adversely affect the risk of soft-tissue 
complication due to pressure, vibration and heat [22]. With 
the Osia system, the arrangement of the transducer and coil 

has solved this problem. In contrast with the passive Baha 
Attract, magnet strength in the Osia system is only necessary 
to hold the SP in place. At the transducer level, thicker tissue 
can reduce sound transmission with passive devices and lead 
to increased loads placed on the transducer to compensate 
for losses. Reduced tissue thickness in the older group may 
be due to the increasing size of the whole temporal area 
[23, 24].

It is also known that the size and shape of the mastoid 
develops continuously with age [23, 24]. However, most 
studies focus on the volume and shape of the mastoid cav-
ity, which is important when large portions of the implant 
or the transducer have to be recessed. In a previous study of 
Rahne et al., many child mastoids were analysed to predict 
the probability of fitting Bonebridge in different age groups 
and to find the most ideal transducer shape. Nowadays, 
implantation softwares are also accessible to help preopera-
tive planning of more robust implants (i.e., Bonebridge). 
These 3D methods give full detail of temporal bone density 
and volumetry [16, 25, 26]. Schilde et al. also highlighted 
that interindividual variation of temporal bone shape under-
lines the necessity of radiological preoperative planning in 
these cases [27]. An indisputable advantage of Baha sys-
tems, and the new Osia system, is that implantation needs 
minimal bone work. The ideal position of the Osia system 
is determined by the size of the transducer, which needs 
space behind the pinna and limits the position of the mag-
net and coil, as well as the SP. To accommodate differing 
bone thickness, different size (3 and 4 mm) BI300 titanium 
implants can be chosen. In our study, bone thickness was 
determined at different levels of the retroauricular space. 
Based on our results, the 3 mm BI300 is safe even in young 
children around the age of 5; and a 4 mm implant can be 
used in children aged 11–12. The possibility of entering the 
mastoid cavity increases with age due to the development of 
the air cells [23, 24]. Osseointegration in these cases is ques-
tionable, however, as the Osia system is transcutaneous, the 
possibility of tangential shear force, which can displace the 
system, is low compared to the percutaneous Baha Connect. 
Alternatively, positioning of the BI300 closer to the tegmen, 
where bone is more likely compact is advised. This can also 
be a good solution in cases, where the mastoid has previ-
ously been operated on, or where the possibility of future 
mastoidectomy is high.

For safety purposes, knowing the position of sigmoid 
sinus is also important. At the level of the recommended 
EEC midline the distance between the posterior wall of 
EEC and the anterior bony wall of the sigmoid sinus was 
relatively constant. However, the space between the sigmoid 
wall and the bone surface significantly increased, mainly due 
to developing mastoid cells. It is important to note that all 
our measurements were performed on a healthy population, 
without any severe malformations. In the study of Granström 
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et al., possible dura and sigmoid sinus contact was found 
with 3 and 4 mm Branemark type (Nobel Biocare) implants 
in 26 and 11% of all 129 insertion cases, respectively. How-
ever, the age group was between 1 and 15 years, and a large 
number of patients had severe craniofacial malformations, 
which may influence mastoid cell formation and bone thick-
ness [22]. Average bone thickness measured in 26 cases was 
also lower than in our study (2.5 ± 0.8 mm); however, the 
mean age of our study population was higher. Considering 
these findings, a 3 mm implant is the safest option for use 
in children.

The limitations of our study is the small sample size due 
to limited number of pediatric cranial CT scans; therefore, 
creation of much younger age groups or subgroups with dif-
ferent abnormalities within the age groups is challenging.

Conclusion

Our study provides a basis for guiding Osia system implanta-
tion in the pediatric population. Based on our results, 3 mm 
BI300 implants are likely to be the best choice in pediatric 
cases, and a slight superior positioning of the implant may 
prevent breaching the mastoid air cells. Considering these 
findings, preoperative CT is unnecessary for Osia implanta-
tion in non-complicated cases. However, surgery of patients 
with complex craniofacial malformation might need more 
precise preoperative planning with CT imaging.
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